
DESIGN OF A COLLABORATIVE SYSTEM

Minjun Wang
EECS Department, Syracuse University, U.S.A

Community Grid Laboratory, Indiana University, U.S.A
501 N Morton, Suite 222, Bloomington IN 47404, U.S.A

minwang@indiana.edu

Geoffrey C. Fox
Community Grid Laboratory, Computer Science
Department, School of Informatics and Physics

Department, Indiana University, U.S.A
 gcf@indiana.edu

Abstract

In this paper we introduce the design of a new
collaborative system in distance education, e-Learning
and online conferencing – collaborative Impress
applications. Impress is a presentation application in Open
Office/Star Office; it has similar functionality as
Microsoft PowerPoint.

Making Impress collaborative across computers is
useful in e-Learning, web conference and distance
education.

We have developed collaborative Impress applications
which make use of the functions of Impress, and
collaborate between the Master and Participating clients
so that they share the same presentation slide display.

We use a common message broker, Narada Message
Broker, as the underlying messaging environment to
communicate messages between the clients in a session.

We realize the shared event idea in the collaboration. It
uses event messages in the controlling of a presentation
process. Compared to shared display, the short text
messages save great bandwidth over the Internet. This
realization is fast and efficient. Shared event model
should be a great paradigm in collaboration.

Key Words

Collaborative System, Open Office, Shared Event.

1. Introduction

Open Office [1] is an open source office suite; it has
similar functionality as Microsoft Office suite. Because it
is free downloadable, and every one has an opportunity to
develop and contribute to the resource using a broad
range of programming languages and protocols, it has the
features such as availability, usability, extensibility,
popularity, and versatility. It is people’s common property
and wisdom.

Impress is a presentation application in Open
Office/Star Office; it has similar functionality as
Microsoft PowerPoint.

Making Impress collaborative across computers is
useful in e-Learning, web conference and distance
education.

We have developed collaborative Impress applications
which make use of the functions of Open Office/Star
Office, and collaborate between the Master and
Participating clients so that they share the same
presentation slide display.

We use a common message broker, Narada Message
Broker [2, 3], as the underlying messaging environment
[4] to communicate messages between the clients in a
session.

We realize the shared event idea in collaboration [5, 6].
It uses event messages in the controlling of a presentation
process. Compared to shared display, the short text
messages save great bandwidth over the Internet. This
realization is fast and efficient. Shared event model
should be a great paradigm in collaboration.

This realization of collaborative Impress applications
implies a complementary effort to and also a further
research area in Open Office/Star Office.

2. Shared Event Model

A commonly used model in collaboration is Shared

Display. In this model, some amount of screen image in a
format (e.g. bitmap) is sent over the networks between the
collaborating computers each time when the image of the
screen is changed, either partially or totally.

The Remote Desktop Connection of Microsoft
Windows XP and VNC (Virtual Network Computing) [7]
are using this model.

It is appropriate in situations especially where the
screen output is random, like online meeting, discussion,
sharing data (text, graph, image, etc.,) or impromptu
presentations using some software.

The disadvantages of Shared Display include:
• It consumes big bandwidth of the networks

because of the image transferring. Thus it is
relatively slow and the latency is big.

• The feeling of using it is not smooth. The
waiting time depends on the amount of image
of a screen that needs to update. The worst
case is when the image changes abruptly, say,
the whole screen.

Let’s examine a case of using presentation files in
collaboration, such as Microsoft PowerPoint (.ppt) or
Open Office/Star Office Impress (.sxi) files. Each slide in
a presentation file is different and the content of a whole
screen needs to update. In this case, the disadvantages of
Shared Display behave to the worst.

To solve this problem, a competent collaboration
model is meant to take place and play an important role.

We believe a “lightweight” model, Shared Event
Model, will work efficiently and gracefully.

The idea is to catch event messages in the driving side
(let’s call it Master Client) of collaboration during a
presentation session, send them through common message
brokers to the other accepting side (Participating Clients
or Participants), and render the slide displays over there.
The event messages are short text strings, as “Presentation
Open”, “Slide Change”, etc.

The presentation files are deployed or downloaded to
same directories on the hosts of both the Master and
Participating clients before a session begins. This way, the
collaborative applications can locate, open and navigate
through them.

This model overcomes the disadvantages of Shared
Display, and therefore has these advantages:

• It is fast and efficient, because the small text
string messages greatly reduce the network
traffic, and because it makes full use of the
computing power of both sides.

• It gives consistent and smooth feelings of
presentations. The size of the messages are
small and approximately equal, so the time
for transferring them should remain in a
relatively constant range, just as mentioned in
the paper “The Rule of the Millisecond.”[8]

At the same time, because this model makes use of
modern common message brokers, it shares the
advantages of the brokers such as tolerance and quality of
service. It also contributes to Peer-to-Peer Grids
computing [9, 10, and 11].

Collaboration like web conference, distance education
and e-learning is a trend in today’s information revolution,
and the usage of presentation files accounts for a
considerable proportion in all the visual aids. So, Shared
Event model is playing and will play an important role
and show its power.

3. Collaboration Structure

In the collaborative Impress applications, one type is
of Master client, and the other is of Participating client, or
Participant. Both of the client types cooperate with a
common message broker, Narada Message Broker, as the

underlying communication environment to communicate
messages between the clients in a session.

The master client lectures and broadcasts its event
messages to all participating clients.

The applications make use of the functions of Open
Office/Star Office, and collaborate between the Master
and Participant clients so that they share the same
presentation slide display.

On the hosts of both the master and the participating
clients, one should have installed Open Office/Star Office
suite or just the Impress application, and should deploy or
download beforehand copies of presentation files to be in
a lecture. The Impress presentation files are deployed in
consistent directories between the hosts of the master and
the participating clients.

Thus, the structure makes it possible to collaborate
between the clients by communicating only text messages.
The master client captures events like “file opened”,
“slide changed” during a session of a lecture, translates
them into text messages and sends the messages to the
participating clients through Narada message broker. The
participating clients then render the show of the lecture
according to the directions of the received messages. This
way, they work synchronously in collaboration.

This is illustrated in Figure 1.

Figure 1. The collaboration between the Master client
and the Participating clients via the NaradaBrokering

Message Service

4. New Concept for Collaboration

Some features in Open Office/Star Office are meant to
be elegant for universal programming and the Web. They
include Universal Network Object (UNO) technology,
diverse programming environment, fine-grained
Application Programming Interfaces (API), and Frame-
Controller-Model Paradigm. They form a new concept for
modern programming, and global Collaboration [12].

4.1 Universal Network Object

UNO is a component technology that is designed for
universal programming and application. Components in
UNO can interact with each other across programming

NaradaBrokering Message Service

 0

 1

 2

 N

Master Client Participating Clients

languages, component technologies, computer platforms,
and networks.

UNO works with programming languages such as C++,
Java, Java Script, Visual Basic, VBScript, and Delphi.
UNO is the base component technology for Open
Office/Star Office; it can also cooperate with other
component technologies like Java Beans and Microsoft
COM/DCOM [13]. UNO is available on UNIX, Linux
and Windows platforms, thus has the features of
availability and popularity. UNO makes it possible that
components are able to collaborate through networks. In a
word, just as its name implies, UNO enables objects to
function well across networks, and makes universal
programming and application of objects a reality.

 Through UNO technology, application programs
connect to local or remote instances of Open Office/Star
Office from C++, Java, or COM/DCOM. The programs
then access the functionality of the instances using their
APIs, control and automate the process, either
sequentially or interactively. The purpose of UNO is to
treat applications/components as reusable objects, which
are accessible universally through the underlying
infrastructure networks, as long as those objects are
cooperative by providing programming interfaces, type
libraries, etc.

The APIs of Open Office provide comprehensive
specification of its programming features. In our
collaborative Impress applications, both the Master and
Participating clients connect to an instance of Impress
application via UNO; access the functions in its API;
capture and render the events thereof, respectively.

4.2 Diverse Programming Environment

Open Office offers Diverse Programming Environment.
It enables people to develop codes in languages such as
C++, Java, Java Script, Visual Basic, VBScript, and
Delphi; on platforms such as UNIX, Linux and Windows.
It has features of diversity, versatility, and popularity.
Therefore, people can program in their most familiar
languages and on their most convenient platforms. This is
a factor for productivity and quality of software, and
therefore a factor for contribution to human’s common
property.

People can add new functions to Open Office;
integrate with Java Integrated Development Environment
(IDE) through UNO components, and work with Office
documents in Java Frames. For example, people can
program new file filters, database drivers, linguistic
extensions, or even complete groupware applications.

We can connect to a local or remote instance of Open
Office from C++, Java, or COM/DCOM. Other than as
powerful as the others, the extended Java API of Open

Office is neat, efficient and secure. As an instance, it has
very similar methods as COM/DCOM for connecting
objects, like

queryInterface(),
addRef(),
deleteRef(),
…

People who are familiar with COM/DCOM technology
will feel comfortable in coordinating Open Office objects
in developing and using its functionality, yet take all the
advantages of Java language, such as its features for the
Web and Internet.

4.3 Fine-grained API

Open Office defines a comprehensive specification
describing its programmable features. It is called
Application Programming Interfaces (API). These
Interfaces are fine-grained – each method (function) is for
a sole and clear purpose; relative methods are grouped in
a class; relative classes form a package, they call it a
module; relative modules form a parent module, and
parent modules can have their own parent along the tree
structure, until a root module is reached, as in

com.sun.star.frame.XDesktop

From Software Engineering point of view, this design

has at least the following strengths:
• Because of its fine-grained API, it is of high

level of reuse, and therefore it will survive
through time.

• Program can just integrate with small and
necessary parts of the interfaces to fulfill its
functionality, instead of having to include
conglomerate blocks which contain lots of
unnecessary functions. Thus fine-grained API
makes program more effective and efficient.

• It makes the software highly extensible.
Extensibility is of vital importance in modern
software industry.

• It makes the software very easy to manage
and maintain. The cost of software
management and maintenance always is a big
part in the life cycle of software engineering.

In both the master and participating clients of our
collaborative Impress applications, the programs make
use of the functions in the API, leverage the power of it,
and collaborate with each other to share the screen
simultaneously. As an example, we list the event listener
interfaces and their corresponding event types we tried in
our programs, in table 1.

Table 1. Event listener interfaces and their

corresponding event types

4.4 Frame-Controller-Model Paradigm

The Model-View-Controller (MVC) design pattern [14]
is popular and widely applied to interactive software
development. Based on this pattern, Open Office adopts a
new paradigm in its developing. It is called Frame-
Controller-Model (FCM) Paradigm. We discuss them and
point out the advantages of FCM paradigm in Open
Office programming next.

In MVC, the Model is the application object; the View
is its screen presentation; and the Controller is the
encapsulation of a response strategy that defines the way
a user interface responds to user input.

MVC changes the previous monolithic programming
style in which the model, view and controller are
undistinguishable and mingled together to be one unit or
object; MVC decouples the model, view, controller from
the megalithic lump to make software more flexible and
reusable.

A model can have multiple views, and new views can
be added. The appearances of the views reflect the state of
the model. Between the view and model, there is a
Subscribe/Notify mechanism. Each view subscribes and
listens to the model. Whenever the values of the model
have changed, it notifies the views about this. The views
then access the model and update their screen appearances.

The controller is a response mechanism; it defines the
way the user interface (the view) responds to user input.
The controller object encapsulates the response strategy
which represents an algorithm. The view associates with a
controller instance at a time. It can have multiple
controllers in store, and can add new controllers. A view
can change a controller instance at run time, thus change
the way it responds to user input dynamically. The
controllers associated with the view may have different

strategies or variant algorithms about the response of user
interface to user input. The view switches to a different
controller object either statically or dynamically, without
changing its screen appearance.

The Frame-Controller-Model (FCM) paradigm in
Open Office has some common properties and works
similarly as MVC, but it has its own specialties and is
more suitable especially for its Universal Networking
Object (UNO) programming.

In FCM, the Model is the document object; it has
document data and also methods that access the data. The
methods can change the data directly without having to
use a controller object. The controller is the screen
interaction with the model; it observes the changes made
to the model, and manages the presentation of the
document. The frame is the controller-window linkage; it
contains the controller for a model, and has knowledge
about the window, but not the functionality of the window.
That functionality is encapsulated in the underlying
windows system – whatever platform it is. This decouples
specific windows implementation from the frame, thus
makes it possible to use a single frame implementation for
different windows in Open Office. The specific windows
work with the frame to make the screen presentation.

People can develop new models for new document
types in Open Office without having to worry about the
frame and the management of the underlying windows
system. Each model can have multiple controllers
associated with it. The controller depends on the model,
and controls the manner of the presentation of a model. A
controller can be replaced by another one without
changing the model or frame. New controllers can be
created for a model.

In programming, from a model object, we can use the
method getCurrentController() of the API to get the
controller object associated with this model; and from this
controller, we can use the method getModel() to get the
model object. Likewise, we can use the method getFrame()
to get the frame object from the controller object; and we
can use the method getController() to get the controller
object from the frame object. From the frame object, we
can even get the Container Window of the frame and
Component Window of the Component using the methods
getContainerWindow() and getComponentWindow(),
respectively. Through those window objects, we can do
jobs related to the management and control of the window
system.

This is convenient and powerful. The FCM paradigm
is just the right thing for Universal Network Object (UNO)
programming.

5. The Client/Server Communication Bridge

The master client connects to Open Office/Star Office
which serves as a server, listens to events fired there
during a session, and sends the event messages to a
message broker for broadcasting to participating clients
for rendering the screen displays as those of the master

XPropertyChangeListener PropertyChangeEvent
XSelectionChangeListener EventObject
XFrameActionListener FrameActionEvent
XKeyListener KeyEvent
XMouseListener MouseEvent
XMenuListener MenuEvent
XWindowListener WindowEvent
XContentEventListener ContentEvent
XFocusListener FocusEvent
XFormControllerListener EventObject
XModeChangeListener ModeChangeEvent
XChangeListener EventObject
XContainerListener ContainerEvent
XEventListener EventObject
XTerminateListener EventObject

client. So, the master and participants are working
synchronously in a session.

The client (either the Master or the Participant)
communicates information with the office server through
TCP/IP socket. The office server listens to client TCP/IP
connections using a connection URL as parameter,
indicating hostname/IP address, port number, protocol,
etc., as in Figure 2.

Client Office Server

Time Time

Launch Office Server in
listening mode using a

connection URL

Start Client Process
Office Server is listening to

TCP/IP socket on a port
number for client's connection,

using UNO remote protocol
Client connects to

server using the URL

connected

Establishing a UNO Communication Bridge between the
client and the Office server

Both the client and the Office server create UNO
objects in their own process. The objects talk to each
other across process boundaries to perform actions.

Figure 2. The process of the launch, connection and
interaction between the Client and Office Server

We launch the office server in listening mode by

issuing the command line:

soffice -accept=socket, host=localhost, port=8100; urp;
StarOffice.ServiceManager

Here, the office server is running on the local host,

listening to socket on port number 8100 for connection,
using UNO remote protocol for communication. We make
the client and server running on the same host for
convenience, though they can run on different hosts in
UNO programming environment.

As in other object oriented languages, objects are used
in UNO programming to perform specific tasks. They are
referred to as services in UNO context. A service manager
is a factory of services, which creates services and other
data used by the services. A component context consists
of the service manager.

Both the client and the office server have their own
component context and service manager. The client
creates services, or UNO objects, through the service
manager in the client process, and the server creates UNO
objects in the server process. Only the UNO objects
created by the service managers can talk to each other
across process boundaries.

On the Master applications side, the user controls
office files on the Office server, opening, loading, or
accessing the data. In our case, the user controls the
Impress presentation files on the Impress Office server,
and the master client catches the events fired over there.
On the Participant applications side, the participating
client processes the event messages received, and calls the
functions of the Office Server for rendering over there,
under the instructions of the messages, through
automation technology.

In order to do their jobs and work with the data located
on the Office servers, both the Master and the
Participating clients need to establish a communication
bridge with their respective Office Server and get the
server’s service manager. The process of building such a
bridge is described in Figure 3.

Creates a UNO Component Context in client process

Gets Service Manager from the component Context

Client Process
:

Creates a Url Resolver Service from the service manager

Gets the XUnoUrlResolver interface from the UNO
service object

Calls method resolve() of the interface to resolve the
initial object with the server

The Communication Bridge is set up

Figure 3. Establishing of a Communication Bridge
between Client and Office Server

We are describing the steps next, using explanations

and snippets of codes in our programs.
First, the client creates a local UNO component

context as follows:

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitiCompon
entContext(null);

This local component context contains a service

manager which is necessary to create services to talk to
the server’s component context. We can get this local
service manager from it as follows:

XMultiComponentFactory xLocalServiceManager =
xLocalContext.getServiceManager();

The local service manager then creates a service called

com.sun.star.bridge.UnoUrlResolver, which is an object
to be used in the connection:

Object urlResolver =
xLocalServiceManager.createInstanceWithContext("co
m.sun.star.bridge.UnoUrlResolver", xLocalContext);

From this object, the interface of XUnoUrlResolver

can be retrieved, which supplies methods to resolve the
initial object with the server:

XUnoUrlResolver xUnoUrlResolver =
(XUnoUrlResolver) UnoRuntime.queryInterface(
XUnoUrlResolver.class, urlResolver);

The method resolve() of the interface is called to

resolve the initial object with the server, using the same
connection URL as that of the server when it is launched:

Object initialObject =
xUnoUrlResolver.resolve("uno:socket, host=localhost,
port=8100; urp; StarOffice.ServiceManager");

Now we have set up a bridge between the client and

the server. The client makes use of this initial object
associated with the server to access the data and control
the functions of the server as if they were its own. It needs
to use the default context of the server and obtains it by
getting the XPropertySet interface and then the required
property with it:

XPropertySet xPropertySet =
(XPropertySet)UnoRuntime.queryInterface(XPropertS
et.class, initialObject);
Object context =
xPropertySet.getPropertyValue("DefaultContext");

Then it gets the server’s component context:

XComponentContext xRemoteContext =
(XComponentContext)UnoRuntime.queryInterface(X
ComponentContext.class, context);

Finally, it gets the server’s service manager:

XMultiComponentFactory xRemoteServiceManager =
xRemoteContext.getServiceManager();

Now, the client has a reference to the server’s service

manager. Thereafter, the client can use the reference to
get the server’s “Desktop” (com.sun.star.frame.Desktop)
object and its interface, which is used to load, access
documents (such as presentation files), and get the current
one.

Object desktop =
xRemoteServiceManager.createInstanceWithContext(
"com.sun.star.frame.Desktop", xRemoteContext);
XDesktop xDesktop =
(XDesktop)UnoRuntime.queryInterface(XDesktop.clas
s, desktop);

With the XDesktop interface, the client can call its

methods such as getCurrentFrame(), to get the server
environment’s Frame, Controller and Model (FCM),
either directly or indirectly. With the FCM paradigm, as
we discussed previously, the client can take control of the
process of the server.

This is described in Figure 4.

Gets the XPropertySet interface from the initial object of
the UNO communication bridge

Gets the Office server's Default Context using the
interface

Client Process
:

Gets the Office server's Component Context

Gets the Office server's Service Manager reference

Gets the Office server's Desktop object and its interface
from the reference to load and access office documents

Gets the Office server's Frame, Controller and Model to
do tasks on the office documents across the client and

server process boundaries

Figure 4. Accessing of the Office Server’s functionality

by the client through the established UNO
Communication Bridge

6. The Master Client

After the procedures described in the previous section,
the Master client has set up the remote bridge and taken
control of the programming features via FCM paradigm.

The master client gets the current frame, which in
Impress corresponds to the current opened presentation
file. It keeps testing for the current. If a change is detected,
that means either a new presentation file is opened, or
another opened one is switched to. The master client then
gets the URL of this current presentation file through a
method called getURL() in the interface of the Model.

The master client also registers listeners at the remote
bridge to listen to events fired at the Office server, as in
Figure 5. One of the registered listeners is the “Property
Change Listener,” which listens to property change events
of an object. The client makes the listener listen to
changes of “Current Page” of the current presentation file
object.

PropertyChangeListener propertyChangeListener =
new PropertyChangeListener();
xPropertySet.addPropertyChangeListener("CurrentPag
e", propertyChangeListener);

Narada Message Broker

R
e
m
o
t
e

B
r
i
d
g
e

Event Handler 1

Event Handler 2

Event Handler N

Controls
for the server

User controls the
process of presentation

files and slides

Master Client

Office Server
Listener 1

Listener 2

Listener N

event messages

event messages

documents

events

controls

:

Figure 5. The function structure in the side of the

Master client applications

Whenever a presentation slide changes in the Impress

server, the listener catches the event and notifies the event
handler to do further processing. The event handler first
gets the slide number using method
getPropertyValue(“Number”) of XPropertySet interface.
Then, it deals with the current slide number by adding
appropriate XML (eXtensible Markup Language) [15]
tags and its properties to address session information such
as session identifier, topic title, source, destination and the
like, as in

<event sessionID = “aSessionNumber” topic =
“aTitile” to = “receiver” from = “sender”> a slide
number </event>

So that each group of people in a session can send and

receive messages correctly in a concurrent sessions
support and public message broker environment such as
NaradaBrokering Message Service.

The master client deals with the URL of the current
presentation file in the same way, as in

<presentation sessionID = “aSessionNumber” topic =
“aTitile” to = “receiver” from = “sender”> a URL of a
presentation file </presentation>

As soon as such an XML message is generated, the

master client sends it to the Narada Message Broker for
broadcasting to all subscribed participating clients for
rendering concurrently.

7. The Participating Clients

When the Narada message broker receives event
messages from the Master client, it notifies the
participating clients and broadcasts the messages to them,
as in Figure 6.

Narada Message Broker

R
e
m
o
t
e

B
r
i
d
g
e

Processes/parses
event messages

Controls the server's
rendering of displays
under the instructions
of the messages, by

calling the functions of
the server via Remote

Bridge.
This process is

Automation

Participating Client
Office Server

event messages

event messages

documents

automation
Rendering

Figure 6. The function structure in the side of the

Participating client applications

Each participating client connects to, controls, and
makes use of Office server. An instance of the Office
application is installed on the host of the participating
client, and the presentation files have been downloaded or
deployed beforehand to the same directories as those on
the host of the Master client. Each client processes the

received event messages and renders the display
simultaneously with the Master client.

To connect to the Office server, the participating client
goes through the same procedures described previously,
as the Master client does, to create a remote bridge, get
the server’s component context and service manager. It
then gets control of the server’s Frame, Controller and
Model, and makes use of the FCM paradigm to use the
server’s functionality to control the rendering process.

When the client receives a message from the Narada
message broker, it parses it and gets the different parts of
information such as event type and its properties, or a
URL of a presentation file. It then calls the functions of
the server, such as loadComponentFromURL(), to
open/switch to a presentation; it calls the method
getDrawPages() of the XDrawPagesSupplier interface, the
method getByIndex(index) of the XDrawPages interface,
and the method select(xDrawPage) of the
XSelectionSupplier interface, to navigate to a specific
slide of an opened presentation, etc. The event type is the
key to call different processing functions, and its
associated properties are used in the functions to generate
the correct presentation results. This rendering process is
automation; the functions of the Office server are called
under the instructions of the event messages.

Thus, the participating clients render the presentations
being presented independently and simultaneously with
the master client.

8. Future Work

We plan to improve our collaborative application
system in the future by doing the following:

• Integrating the collaborative Impress
applications with an Audio/Video system, such
as Anabas Collaboration Environment [16]. This
is to bring multimedia into virtual classrooms
and online conferencing.

• Making the collaborative system work with a
session server, so that presentation/conference
sessions can be registered with the session server,
and subscribed by subscribers.

9. Conclusion

In this paper we have elaborated on the design,
mechanisms, technologies and paradigms used in the
Collaborative Impress applications, and the Narada
message broker as the underlying communication system.
We introduce the whole package as new distance
education, e-Learning and online conferencing tools. Like
anything else, it has limitations and advantages.

The limitations are: the Open Office/Star Office suite
has to be installed on the hosts of both the master and the
participating client, this may be difficult for hand-held
devices, like PDAs (Personal Digital Assistants) [17]; the

presentation files of the lectures have to be deployed or
downloaded beforehand on the hosts of both of the clients.

However, with the advantages of the small text based
message transferring, the robustness of Narada message
broker, and the free downloadable feature and high
availability of Open Office as its basis, the package of the
Impress collaborative system will be suitable in situations
like online conferencing, distance education, e-Learning
and more. We believe it will contribute to those areas.

References

[1] OpenOffice.org
http://www.openoffice.org/
[2] G.C. Fox and S. Pallickara, The Narada event
brokering system: Overview and extensions, proceedings
of 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’02), Las Vegas, USA, 2002, 353-359.
http://grids.ucs.indiana.edu/ptliupages/projects/NaradaBro
kering/papers/naradaBrokeringBrokeringSystem.pdf
[3] Sun Microsystems Java Message Service.
http://java.sun.com/products/jms
[4] Geoffrey Fox, Shrideep Pallickara, and Xi Rao, A
Scalable Event Infrastructure for Peer to Peer Grids,
proceedings of 2002 Java Grande/ISCOPE Conference,
Seattle, November 2002, ACM Press, ISBN 1-58113-599-
8, pages 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/Scalea
bleEventArchForP2P.doc
[5] WebEx Collaboration Environment.
http://www.webex.com
[6] Placeware Collaboration Environment.
http://www.placeware.com
[7] Virtual Network Computing
http://www.uk.research.att.com/archive/vnc/
[8] Geoffrey Fox, The Rule of the Millisecond, for CISE
Magazine, March/April 2004
http://grids.ucs.indiana.edu/ptliupages/publications/ciseja
no4.pdf
[9] G.C. Fox, H. Bulut, K. Kim, S. Ko, S. Lee, S. Oh, S.
Pallickara, X. Qiu, A. Uyar, M. Wang, W. Wu,
Collaborative web services and peer-to-peer Grids,
Proceedings of 2003 Collaborative Technologies
Symposium (CTS’03), Orlando, USA, 2003.
http://grids.ucs.indiana.edu/ptliupages/publications/foxw
mc03keynote.pdf
[10] Fran Berman, Geoffrey Fox and Tony Hey, Grid
computing: making the global infrastructure a reality
(Chichester, England: John Wiley & Sons Ltd, 2003). See
http://www.grid2002.org
[11] Sun Microsystems JXTA Peer to Peer technology.
http://www.jxta.org
[12] Geoffrey Fox, Sangmi Lee, Sunghoon Ko, Kangseok
Kim, and Sangyoon Oh, CAROUSEL Web Service:
Universal Accessible Web Service Architecture for
Collaborative Application, November 2002,

http://grids.ucs.indiana.edu/ptliupages/publications/Carou
sel_PerCom03.doc
[13] G. Eddon and H. Eddon, Inside distributed COM
(One Microsoft Way, Redmond, Washington: Microsoft
Press, 1998).
[14] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design patterns: elements of reusable object-oriented
software (201 W. 103rd Street, Indianapolis, IN 46290:
Pearson Education Corporate Sales Division, 2002).
[15] Extensible Markup Language (XML)
http://www.w3.org/XML/
[16] Anabas Collaboration Environment.
http://www.anabas.com
[17] S. Lee, G.C. Fox, S. Ko, M. Wang, X. Qiu,
Ubiquitous access for collaborative information system
using SVG, Proceedings of SVG open conference, Zurich,
Switzerland, 2002.
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/p
agers/draft.pdf

