
A Demonstration of Collaborative Web Services and Peer-to-Peer Grids

Minjun Wang1,3, Geoffrey Fox1,2,4, Shrideep Pallickara1
1Community Grid Computing Laboratory, Indiana University

501 N Morton, Suite 224, Bloomington IN 47404
2Computer Science Department, Indiana University

3EECS Department, Syracuse University
4School of Informatics and Physics Department, Indiana University

gcf@indiana.edu, minwang@indiana.edu, spallick@indiana.edu

Abstract

Peer-to-Peer Grids is a new trend in scientific
computing and collaboration. It is based on the
Peer-to-Peer and Grids technologies and
leverages the advantages of both.
Grids computing offers robust, structured,
security services that scale well in pre-existing
hierarchically arranged enterprises or
organizations; it is largely asynchronous and
allows seamless access to supercomputers and
their datasets.
Peer-to-Peer is more convenient and efficient for
the low-end clients to advertise and access the
files on the communal computers; it is more
intuitive, unstructured, and largely synchronous.
We develop our collaborative PowerPoint and IE
(Internet Explorer) applications with a common
Peer-to-Peer Grid architecture. We make
NaradaBrokering as our dynamic messaging
environment and systematic use of Web Services
as one type of our building blocks.
Making PowerPoint and Internet Explorer
applications collaborative using their event Meta
data and Instant Message as Web Services is
useful in situations such as long distance
education [2, 4] and web conferencing [6]. This
is also a good demonstration of harnessing and
leveraging of the power and richness of Web
Services and Peer-to-Peer Grids computing.

1 The Big Picture

We have developed collaborative PowerPoint
applications, one of which is a master client that
lectures and broadcasts its event messages to all
participating clients. The participating clients of
the collaborative PowerPoint receive and deal
with the event messages, and render the process
of the presentation individually. The applications
including Microsoft PowerPoint and the
resources of PowerPoint presentation files are

deployed beforehand to each and every client so
that control and communication of the whole
process are message based. By using string-
based event messages we improve the speed and
efficiency of the collaboration performances
because it lowers the Internet traffic greatly as
compared to Shared Display, which is based on
transferring image messages like bitmap.
Another type of participating clients is of IE
(Internet Explorer) style, in which the IE is
automated and the slides of the presentation are
loaded and rendered inside the IE browser. This
is suitable in situations where IE browser is
preferable.
We use NaradaBrokering messaging service [14,
15] as the message environment to communicate
event messages during the process. Together
with the Network infrastructure, it correlates the
elements of the Peer-to-Peer Grid, and therefore
makes the collaboration possible.
We have also developed and deployed Instant-
Messaging Web Services to further improve the
message communication and make it more
portable and extensible in the Internet
collaboration era.
We make the collaborative PowerPoint
applications use the Instant Message as a Web
Service by using XML (eXtensible Markup
Language) and SOAP (Simple Object Access
Protocol) protocol. We get and save the event
message Meta data of the PowerPoint
presentations, and make them as Web Services,
so that the presentations can be rendered
asynchronously as well as synchronously.

2 A Collaborative Web Service Model

We use a Shared Input Port Model [1, 3] for our
collaborative PowerPoint and IE applications
and web services, as in Figure 1.

In this model, the resource-facing input/output
ports supply the information which is to define
the state of the Web Service; the user-facing
input, output ports pass control information by
the user, and supply information for constructing
the user interfaces. The messages on these ports
define the state and results of each Web Service.
We have defined a protocol XGSP (XML
General Session Protocol), which is an XML-
based protocol to describe registration, session
parameters, session membership, negotiation, etc.
It defines session information for both general
and the A/V subsystems [8, 9]. The collaborative
PowerPoint and IE applications and web services
use XGSP information to set up sessions with the
session server.

 Fig. 1 Shared Input Port Model for Collaborative

applications and Web Services

Both master and other participating clients here
have a copy of the PowerPoint application and
presentations to be shared, and these PowerPoint
presentation files are deployed in consistent
directories between the master and the
participants.
The master client captures the event messages,
such as slide changes, window selection changes,
etc., during its presentation of a currently open
PowerPoint file. It sends out these event
messages to all the participating clients, which in
turn, navigate to the specific slide of a specific
presentation, or to a specific shape/text range
within a slide, based on these messages. This
way, everyone can share the presentation or
conferencing synchronously.

3 The Master Client

The master client plays a role as a Peer in the
Peer-to-Peer Grids. It is the one that captures the
event messages and sends them to the
participating clients during its presentation of a

session. It uses Automation, Connection Point
object and Event sinks technologies [23, 24] in
doing this.
Automation is a technology that enables the
otherwise end-user applications to expose its
functionality through interfaces, and the other
applications can reuse the posted functions in its
programs by using the methods resided in its
wrapper classes.
In the master client of the collaborative
PowerPoint, the client code controls the
functionality of the PowerPoint application
server through automation to make it started and
visible at the beginning and to clear up at the end.
Microsoft has designed the Connectable Object
technology that enable client and server object to
communicate with each other in both directions.
During the collaboration, when something
interesting happened in the server object, it
informs the client immediately in the form of a
message, which is what we call an event.
The Connection Point objects are managed by
the Connectable Object. This is where the
outgoing interfaces are defined but their
implementations are in the client event sinks.
Each Connection Point is associated with only
one outgoing interface. This is where the events
occur and is therefore called the source interface
for the client sink interface.
The sink is where the handlers of events are
implemented, in other words, the event massages
are handled and dealt with to generate different
reactions.
This is illustrated in Figure 2.

Fig. 2 Connectable Object calls outgoing interface
implemented by the sink. Master client handles events fired

from the connectable object through the sink.

During a presentation in the Master client, the
PowerPoint event messages are sent through the
Connection Point object to the sink object, where
they are identified, processed by adding extra
information about the master client, and sent out
to the NaradaBrokering message broker, where
the messages are distributed to the participating

Master
Client

Connectable
Object

Sink

collaborative PowerPoint clients for rendering on
the screen. In this way, the PowerPoint events
are captured and dispatched.

4 The Participating Clients

When the Narada messaging broker receives
event message from the Master client, it notifies
the participating clients and broadcasts the
message to them.
Each participating client plays a role as a Peer in
the Peer-to-Peer Grids, and has its own copy of
PowerPoint application and the presentation files
about the topic it has subscribed to. The
presentation files have been deployed to the
corresponding directories as in host of the
Master client. Each client processes the event
messages independently.
When the client receives the message, it parses it
and gets the different parts of information such
as event type and its properties. It then
dispatches the event type to the appropriate
handler or method to process. The event type is
the key to call different processing functions.
The associated properties are used in the
functions to generate the correct presentation
results.
The client uses automation technology [22, 24]
in rendering the session of a presentation. It calls
the functions in a PowerPoint wrapper class
under the instructions of the event message. The
functions are actually mapped to the functions in
the PowerPoint application. PowerPoint
functions get called; do the tasks such as
navigating through presentations and slides, and
return the result values eventually to the caller
functions in the wrapper class.
This is illustrated in Figure 3.

Fig. 3 The event messages invoke methods of wrapper class;
the methods then map to functions of PowerPoint application
through Dispatch Map/DISPID, execute and get result/status

code back.

The IE type of participating client functions in
the same way as the one described here. It loads
the presentation and renders each slide in its
browser’s screen.
Thus, the participating clients render the
presentations being presented independently and
simultaneously.

5 The Event Models

We abstract the event models of the collaborative
PowerPoint and Internet Explorer applications to
be of three levels of events: physical event,
semantic event, and rendering event, from low to
high, in that order.
The physical event is the event when a cursor is
on a specific area of the screen, a mouse clicking,
or a keyboard stroking, etc. When the master
client is on a presentation session, the lecturer
might use all combinations of the physical events
to control the process.
The PowerPoint application converts these
physical events to meaningful instructions to the
applications, such as change slides, change
windows, etc. These meaningful instructions we
call them semantic events.
In our programs we make use of the Dispatch
event interfaces of the PowerPoint application,
connectable object, connection point technology
and event sink to catch and deal with these
semantic events. For some reasons, in Microsoft
PowerPoint, one can only get the hexadecimal
codes of these events instead of meaningful
string name descriptions as in the other
applications of the Microsoft office suites. With
codes like this, one can not know the meanings
of them and can not figure out which is which.
We have done logical analysis according to the
input / output of presentation processes, and,
finally map each of the code to its corresponding
meaningful string name in the event interface of
the PowerPoint. We call this process a
translation.
After getting them, the master client sends the
semantic events through NaradaBrokering
message service to the participating clients. The
participating clients then call the functions of the
PowerPoint through automation, according to
each command of the semantic event, thus render
the process of the presentation. We call this kind
of event rendering event.

 Participating Client

NaradaBrokering Message Service

Dispatch Map
DISPID

PowerPoint

Application

Functions

Call
methods

6 NaradaBrokering Message Service

NaradaBrokering is a messaging environment; it
can be deployed as a Grid in Peer-to-Peer Grids,
using robust, secure, structured and powerful
machines and resources.
We integrate NaradaBrokering Message Service
in our collaborative PowerPoint and IE
applications to transmit event messages between
clients. NaradaBrokering is a system that
supports messaging in a Peer-to-Peer Grid [1,10];
it is a generalized publish-subscribe
mechanism; it handles dynamic protocol choice,
tunneling through firewalls; it supports TCP,
UDP, multicast, SSL and RTP; it can run in
client-server mode like JMS (Java Message
Service) [15, 17] or in distributed Peer-to-Peer
mode like JXTA [5,16]; it can be used in real-
time synchronous collaboration like our
collaborative PPT and IE; it has replaced the
JMS in the Anabas system of our
implementation handling all collaboration modes.
NaradaBrokering system was written in Java
language, and our collaborative PowerPoint and
IE applications have been developed in C++. In
order to communicate information between the
two developing environment, we use JNI (Java
Native Interface) as a tool to fulfill this task. The
communication is a two-way conduit, both from
C++ sending event messages to Java, and from
Java to C++.
The Master client in our applications captures the
event messages in PowerPoint and sends them to
the NaradaBrokering message service system
using the functions in JNI interface. In doing so,
it first creates and embeds a Java Virtual
Machine inside the C++ environment, maps data
types between them, calls the JNI functions
through the virtual machine.

Fig. 4

As soon as the NaradaBrokering system receives
a message, it broadcasts it to every participating
client, using the notification mechanism, as
shown in Figure 4. Here, the transformation of
the message is from Java to C++ environment.
The notifying method, i.e. onMessage(), is
overridden to include native function calls to
C++, so that the message type commands the
appropriate C++ functions in the participating
client application to perform the rendering
process of the presentation. The functionality of
the participating client is divided into C++
methods, and contained in a dynamic link library
component (e.g. collabPPT.dll), which is loaded
in the Java environment so that the Java native
functions can make use of it. The JNI interface
plays an important role in this communication
direction.
Thus, the master and participating client of the
collaborative PowerPoint and IE applications
communicate and corporate with each other
through the NaradaBrokering Message Service
system.

7 Instant-Messaging and Event Meta

Data as Web Services

Web Services along with Peer-to-Peer Grids play
important roles in collaboration. Web Services
enable developers to integrate functionality
across businesses and organizations.
In our applications, we develop and make use of
Web Services such as event Meta data and
Instant Messages, so that the nature of the
applications is of global collaboration.
The event messages from the applications can be
marked up using XML tags, so that an XML
document can be generated corresponding to the
DOM (Document Object Model) format [20].
This DOM-based XML document can then be
used as the unit of message communications
between the clients of the Collaborative
PowerPoint and IE services, it is transferred
through the Internet using SOAP protocol, and it
is the basis of Instant Message communication.
We have developed and deployed Instant-
Messaging Web Services [13] for the
communication in this project. The main services
include function that markup event message as
DOM-based XML document; function that get
the event message out of the XML document, etc.
The information of this web services such as its
URI (Universal Resource Identifier) endpoint, its
exposed methods, etc. are described in the

 NaradaBrokering Message

 0

 1

 2

 N

Master Client Participating Clients

WSDL (Web Service Description Language) file
and then be deployed using this file. The users
can find this web services using UDDI
(Universal Discovery, Deployment and
Integration), and then bind to the services they
need and use them via the internet [21].
In the collaborative PowerPoint and IE
applications, the master client send its event
messages to the NaradaBrokering message
services, which has discovered and bound to the
Instant-messaging web services beforehand,
which in turn make use of the exposed methods
of the web services to make the plain messages
received to be a DOM XML document, and then
transfers and distributes the document via the
internet to the participating clients for dealing
and rendering.
The participating clients leverage the
functionality of the Instant-messaging web
services through the NaradaBrokering message
service to get the plain event messages out of the
XML document, and operate on the instructions
of the messages syntactically, rendering the exact
process the master client going through. This is
shown in Figure 5.

Fig. 5

We also capture and save the event message
Meta data as files or in a database when the
Master client is presenting and sending messages,
and make it as a Web Service. This way, the
presentations can be rendered asynchronously
later by the subscribers, as well as synchronously
as in the real-time session described in this text.
We develop another application that accesses the
Meta data of the Web Service and renders the
presentations; it does this in an on-demand way,
according to the pace of the preference of the
subscriber. The user goes through the sequence
of a presentation on demand by clicking a button
on the interface such as “Navigate”. This way,
the user reviews the stored presentations in

his/her own way and need, taking the best
advantages out of them.
This is meaningful in Distance Learning,
Conferencing, and more.

8 Summaries

The Collaborative PowerPoint and IE
applications integrate the master and
participating client processes; cooperate with the
NaradaBrokering message service; leverage the
Instant-messaging and event Meta data web
services. It can be used in distance learning,
lecturing, conferencing, etc. With the advantages
of its small text based message transferring, the
robustness of NaradaBrokering message service,
the efficiency of Instant-message
communications, and the convenience of using
event Meta data Web Services, it serves well in
suitable areas, and it gives a good demonstration
of the usage of collaborative Web Services and
Peer-to-Peer Grids.

References

[1] Geoffrey Fox, Hasan Bulut, Kangseok Kim,
Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh,
Shrideep Pallickara, Xiaohong Qiu, Ahmet Uyar,
Minjun Wang, Wenjun Wu “Collaborative Web
Services and Peer-to-Peer Grids” presented at
2003 Collaborative Technologies Symposium
(CTS’03)
[2] Collection of Resources on distance
education by Geoffrey C. Fox.
http://grids.ucs.indiana.edu/ptliupapes/publicatio
ns/disted/
[3] Fran Berman, Geoffrey Fox and Tony Hey,
“Grid Computing: Making the Global
Infrastructure a Reality”, John Wiley & Sons Ltd,
Chichester, 2003. See http://www.grid2002.org
[4] Geoffrey Fox, “Education and the Enterprise
with the Grid”, Chapter in ref. 3
[5] Sun Microsystems JXTA Peer to Peer
technology. http://www.jxta.org
[6] WebEx Collaboration Environment.
http://www.webex.com
[7] Placeware Collaboration Environment.
http://www.placeware.com
[8] Geoffrey Fox, Wenjun Wu, Ahmet Uyar,
Hasan Bulut, “A Web Services Framework for
Collaboration and Audio/Video conferencing”;

Instant
Messaging

Web
Services

Service
Broker

Collaborative
PowerPoint
Applications

NB Message Service

proceedings of 2002 International Conference
on Internet Computing IC’02: Las Vegas, USA,
June 24-27, 2002.
http://grids.ucs.indiana.edu/ptliupages/publicatio
s/avwebserviceapril02.pdf
[9] Hasan Bulut, Geoffrey Fox, Shrideep
Pallickara, Ahmet Uyar and Wenjun Wu,
“Integration of NaradaBrokering and
Audio/Video Conferencing as a Web Service”.
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/AVOverNaradaBrokering.pdf
[10] Geoffrey Fox, Dennis Gannon, Sung-Hoon
Ko,Sangmi Lee, Shrideep Pallickara, Marlon
Pierce, Xiaohong Qiu, Xi Rao, Ahmet Uyar,
Minjun Wang, Wenjun Wu, “Peer-to-Peer Grids”,
Chapter in ref. 3
[11] Sangmi Lee, Geoffrey Fox, Sunghoon Ko,
Minjun Wang, Xiaohong Qiu, “Ubiquitous
Access for Collaborative Information System
using SVG”, Proceedings of SVGopen
conference July 2002, Zurich, Switzerland.
http://grids.ucs.indiana.edu/ptliupages/projects/c
arousel/pagers/draft.pdf
[12] Geoffrey Fox, Sangmi Lee, Sunghoon Ko,
Kangseok Kim, Sangyoon Oh, “CAROUSEL
Web Service: Universal Accessible Web Service
Architecture for Collaborative Application”,
November 2002,
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/Carousel_PerCom03.doc
[13] OASIS Web Services for Remote Portals
(WSRP) and Web Services for Interactive
Applications (WSIA) http://www.oasis-
open.org/committees/
[14] Geoffrey Fox and Shrideep Pallickara, “The
NaradaBrokering Event Brokering System:
Overview and Extensions”, proceedings of the
2002 International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA’02).
http://grids.ucs.indiana.edu/ptliupages/projects/N
aradaBrokering/papers/naradaBrokeringBrokerin
gSystem.pdf
[15] Geoffrey Fox and Shrideep Pallickara,
“JMS Compliance in the NaradaBrokering Event
Brokering System”, in the proceedings of the
2002 International Conference on Internet
Computing (IC-02).
http://grids.ucs.indiana.edu/ptliupages/projects/N
aradaBrokering/papers/JMSSupportInNaradaBro
kering.pdf
[16] Geoffrey Fox, Shrideep Pallickara, and Xi
Rao, “A Scalable Event Infrastructure for Peer to
Peer Grids”, proceedings of 2002 Java
Grande/ISCOPE Conference, Seattle, November
2002, ACM Press, ISBN 1-58113-599-8, pages

66-75.
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/ScaleableEventArchForP2P.doc
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/foxwmc03keynote.pdf
[17] Sun Microsystems. Java Message Service.
http://java.sun.com/products/jms
[18] Anabas Collaboration Environment,
http://www.anabas.com
[19] Guy Eddon and Henry Eddon. Inside
Distributed COM. Microsoft Press, 1998. ISBN
1-57231-849-X
[20] H. M. Deitel, P. J. Deitel, T. R. Nieto, T. M.
Lin, P. Sadhu. XML How to Program. Prentice
Hall, 2001. ISBN 0-13-028417-3
[21] H. M. Deitel, P. J. Deitel, J. P. Gadzik, K.
Lomeli, S. E. Santry, S. Zhang. Java Web
Services for Experienced Programmers. ISBN 0-
13-046134-2
[22] Guy Eddon and Henry Eddon. Inside
Distributed COM, Chapter 5, “Automation and
Component Categories”, Microsoft Press, 1998.
[23] Guy Eddon and Henry Eddon. Inside
Distributed COM, Chapter 6, “Connection Points
and Type Information”, Microsoft Press, 1998.
[24] Microsoft Knowledge Base,
http://support.microsoft.com/

