

Collective Communications for HPJava

Sang Boem Lim*, Bryan Carpenter§, Geoffrey Fox§, and Han-ku Lee†

* Supercomputing Application Technology Department,

Korea Institute of Science and Technology Information (KISTI)
DaeJeon, Republic of Korea

slim@kisti.re.kr

§Community Grid Labs, Indiana University
Bloomington, IN 47404 USA
{dbcarpen, gcf }@indiana.edu

†School of Internet & Multimedia Engineering, Konkuk University

Seoul, Republic of Korea
hlee@konkuk.ac.kr

Abstract— We discuss implementation of high-level collective communication library, called Adlib, for scalable
programming in Java. We are using Adlib as basis of our system, called HPJava. Many functionalities of Java
version of high-level communication library is following its predecessor–C++ library developed by in the Parallel
Compiler Runtime Consortium (PCRC). However, many design issues are reconsidered and re-implemented
according to Java environment. Detailed functionalities and implementation issues of this collective library will be
described.

Keywords : Collective Library, HPJava, High-performance communication Library

1.0 Bakground

A C++ library called Adlib [2] was completed in the Parallel Compiler Runtime Consortium (PCRC) [3]
project. It was a high-level runtime library designed to support translation of data-parallel languages.
Initial emphasis was on High Performance Fortran (HPF), and two experimental HPF translators used the
library to manage their communications [4] [5]. It incorporated a built-in representation of a distributed
array, and a library of communication and arithmetic operations acting on these arrays. The array model
supported general HPF-like distribution formats, and arbitrary regular sections.

The Adlib series of libraries support collective operations on distributed arrays. All members of some
active process group, which may or may not be the entire set of processes executing the program, must
invoke a call to a collective operation simultaneously. Communication patterns supported include
HPF/Fortran 90 intrins ic such as cshift. More importantly they include the regular-section copy operation,
remap, which copies elements between shape-conforming array sections regardless of source and
destination mapping. Another function, writeHalo , updates ghost areas of a distributed array. Various
collective gather and scatter operations allow irregular patterns of access. The library also provides

essentially all Fortran 90 arithmetic transformational functions on distributed arrays and various
additional HPF library functions.

Initially HPJava used a JNI wrapper interface to the C++ kernel of the PCRC library. The library
described here borrows many ideas form the PCRC library, but for this project we rewrote high-level
library from the scratch for Java. It was extended to support Java object types, to target Java based
communication platforms and to use Java exception handling— making it “safe” for Java.

2.0 Features of HPJava

In this section, we present a high level overview of our HPJava. Some predefined classes and some extra
syntax for dealing with distributed arrays are added into the basic language, Java. We will briefly review
the features of the HPJava language by showing simple HPJava examples. In this section, we will only
give an overview of features. Detailed description of those features will be presented in the Section 3.

Figure 1: Sequential Matrix multiplication in HPJava.

Figure 1 is a basic HPJava program for sequential matrix multiplication. This program is simple and
similar to the ordinary Java program. It uses simple sequential multiarrays— a feature HPJava adds to
standard Java. A multiarray uses double brackets to distinguish the type signature from a standard Java
array. The multiarray and ordinary Java array has many similarities. Both arrays have some index space
and store a collection of elements of fixed type. Syntax of accessing a multiarray is very similar with
accessing ordinary Java array which uses single brackets, but an HPJava sequential multiarray uses
double bracket and asterisks for its type signature. The most significant difference between ordinary Java
array and the multiarray of HPJava is that the distributed array is true multi-dimensional array like the
arrays of Fortran, while ordinary Java only provides arrays of arrays. These features of Fortran arrays
have adapted and evolved to support scientific and parallel algorithms.

We can create a general purpose matrix multiplication routine that works for arrays with any distributed
format (Figure 2). This program takes arrays which may be distributed in both their dimensions, and
copies into the temporary array with a special distribution format for better performance. A collective
communication schedule remap() is used to copy the elements of one distributed array to another. From
the viewpoint of this dissertation, the most important part of this code is communication method. We can

divide the communication library of HPJava into two parts: the high-level Adlib library, and the low-level
mpjdev library. The Adlib library is responsible for the collective communication schedules and the
mpjdev library is responsible for the actual communication. One of the most characteristic and important
communication library methods, remap(), takes two arrays as arguments and copies the elements of the
source array to the destination array, regardless of the distribution format of the two arrays

Figure 2: A general Matrix multiplication in HPJava.

3.0 Implementation of Collectives

In this section we will discusses Java implementation of the Adlib collective operations. For illustration
we concentrate on the important remap operation. Although it is a powerful and general operation, it is
actually one of the more simple collectives to implement in the HPJava framework.

General algorithms for this primitive have been described by other authors. For example it is essentially
equivalent to the operation called Regular_Section_Copy_Sched in [1]. In this section we want to
illustrate how this kind of operation can be implemented in terms of the particular Range and Group
hierarchies of HPJava.

Constructor and public method of the remap schedule for distributed arrays of float element can be
described as follows:

class RemapFloat extends Remap {
RemapFloat (float # dst, float # src) {...}
public execute() {...}

}

The remap schedule combines two functionalities: it reorganizes data in the way indicated by the
distribution formats of source and destination array. Also, if the destination array has a replicated
distribution format, it broadcasts data to all copies of the destination. Here we will concentrate on the
former aspect, which is handled by an object of class RemapSkeleton contained in every Remap object.

During construction of a RemapSkeleton schedule, all send messages, receive messages, and internal
copy operations implied by execution of the schedule are enumerated and stored in light-weight data
structures. These messages have to be sorted before sending, for possible message agglomeration, and to
ensure a deadlock-free communication schedule. These algorithms, and maintenance of the associated
data structures, are dealt with in a base class of RemapSkeleton called BlockMessSchedule . The API for
the super class is outlined in Figure 3. To set-up such a low-level schedule, one makes a series of calls to
sendReq and recvReq to define the required messages. Messages are characterized by an offset in some
local array segment, and a set of strides and extents parameterizing a multi-dimensional patch of the (flat
Java) array. Finally the build() operation does any necessary processing of the message lists. The
schedule is executed in a “forward” or “backward” direction by invoking gather() or scatter().

Figure 3: API of the class BlockMessSchedule.

The implementation details of BlockMessSchedule will not be discussed in greater detail here because
they are not particularly specific to our HPJava system, and the principles are fairly well known (see for
example [1]).

However we do wish to describe in a little more detail the implementation of the higher-level
RemapSkeleton schedule on top of BlockMessSchedule . This provides some insight into the structure
HPJava distributed arrays, and the underlying role of the special Range and Group classes.

To produce an implementation of the RemapSkeleton class that works independently of the detailed
distribution format of the arrays we rely on virtual functions of the Range class to enumerate the blocks
of index values held by each process. These virtual functions, implemented differently for different
distribution formats, encode all-important information about those formats. To a large extent the
communication code itself is distribution format independent.

Some of the relevant virtual functions of the range are displayed in the API of Figure 4. The most relevant
methods optionally take arguments that allow one to specify a contiguous or striped subrange of interest.
The Triplet and Block classes represent simple struck-like objects holding a few int fields describing
respectively a “triplet” interval, and the strided interval of “global” and “local” subscripts that the
distribution format maps to a particular process. In the examples here Triplet is used only to describe a
range of process coordinates that a range or subrange is distributed over.

Figure 4: Partial API of the class Range.

4.0 Conclusions and Future Work

We have explored enabling parallel, high-performance computation— in particular development of
scientific software in the network-aware programming language, Java. Traditionally, this kind of
computing was done in Fortran. Arguably, Fortran is becoming a marginalized language, with limited
economic incentive for vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s programmers. Java looks like a
promising alternative for the future.

We have discussed in detail the design and development of high-level library for HPJava— this is
essentially communication library. The Adlib API is presented as high-level communication library. This
API is intended as an example of an application level communication library suitable for data parallel
programming in Java. This library fully supports Java object types, as part of the basic data types. We
discussed implementation issues of collective communications in depth. The API and usage of other types
of collective communications were also presented.

The initial release of HPJava was made on April 1, 2003. It is freely available from www.hpjava.org.
This release includes complete HPJava translator, two implementations of communication libraries
(mpiJava-based and multithreaded), test suites, and all the applications described in this dissertation. In
the future, further optimization of the HPJava translator is needed.

5.0 Reference

[1] Agrawal, A. Sussman, and J. Saltz. An integrated runtime and compiletime approach for
parallelizing structured and block structured applications. IEEE Transactions on Parallel and
Distributed Systems, 6, 1995.

[2] Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRC runtime kernel definition.
Technical Report CRPC-TR97726, Center for Research on Parallel Computation, 1997.

[3] Parallel Compiler Runtime Consortium. Common runtime support for high performance parallel
languages . In Supercomputing ‘93. IEEE Computer Society Press, 1993.

[4] John Merlin, Bryan Carpenter, and Tony Hey. shpf: a subset High Performance Fortran
compilation system. Fortran Journal, pages 2-6, March 1996.

[5] Guansong Zhang, Bryan Carpenter, Geoffrey Fox, Xiaoming Li, Xinying Li, and Yuhong Wen.
PCRC-based HPF compilation. In Zhiyuan Li et al, editor, 10th International Workshop on
Languages and Compilers for Parallel Computing, volume 1366 of Lecture Notes in Computer
Science. Springer, 1997. http://www.hpjava.org/pcrc.

