

1

Abstract— Web Service is a standardization effort to

interoperate loosely-coupled applications. A Web Service
interaction benefits and sometimes requires additive
functionalities, called as handlers. They contribute to build
rich, modular and efficient Web Services. However, the
way of utilizing them is very crucial for the Web Service
Architecture and its overall performance. Using
distributed approach for the handler execution facilitates
significantly to obtain full benefit from them. In this paper
we describe an orchestration structure for the handlers to
attain richer, more modular and efficient Web Services.

Index Terms— Concurrency, Orchestration, Web Service,
Web Service Handler.

I. INTRODUCTION
Web Service is defined by W3C as a software system that

provides standard means of interoperating different software
applications, running in a variety of platforms [1]. There are
two important nodes in a Web Service interaction: provider
and requester. A middleware, which encapsulates a SOAP [2]
processing engine and transport helpers, is employed to
support the interactions between these nodes. It, called as Web
Service container, basically hides the complexity of the SOAP
processing and the details of message transportation.

Moreover, a Web Service container provides suitable
environment for the utilization of additional functionalities
such as security, reliability and logging. These functionalities
are called as handlers. As it is in Apache Axis [3] and
Microsoft Web Service Enhancements (WSE) [4], a Web
Service container generally uses a processing pipeline to
execute the handlers in an order. Although the pipeline allows
incrementally adding new functionalities to an interaction, it
increases the response time because of having many handlers
in the execution path. Therefore, we created architecture,
which is efficiently distributing handlers to overcome the
limitation. We will focus on the orchestration of the handler
distribution in this paper. First, we will briefly explain our

March 18, 2008

architecture. Then, we will elaborate the orchestration for the
distributed handlers. Finally, we will provide experimental
results and conclude with some remarks.

II. ORCHESTRATION SYSTEMS
Many efforts have been spent to obtain a system providing a

solution to manage tasks and data in the distributed
environments. Academic community has contributed these
efforts; GriPhyn [5] provides a good computational
environment for the particle physics. SEEK [6] has a solution
to orchestrate the tasks for ecology. Taverna [7] offers a flow
mechanism for the life science. Not only did the academic
community provide a solution but there also exist propriety
software for the distributed task management such as
Inconcert [8], and Websphere MQ Workflow [9]. Moreover,
Grid community has interest in this area because of its focus
on secure and collaborative resource sharing across
geographically distributed institutions. For example, GridFlow
[10] offers an agent-based architecture to schedule the Grid
tasks dynamically. Additionally, several new specifications
have been presented such as Business Process Language for
Web Services (BPEL4WS) [11], and Web Services
Choreography Interface (WSCI) [12]. There also exist several
systems that utilize markup languages for the orchestration
purpose. One of them is eXchangeable Routing Language
(XRL). It uses XML based documents for the workflow
management [13].

III. DISTRIBUTING WEB SERVICE HANDLERS
A Web Service interaction mostly necessitates additional

capabilities such as security, reliability, logging, monitoring,
and so on. Many specifications have been also introduced to
standardize Web Services such as WS-Security [14], WS-
Reliability [15] and WS-Notification [16]. When we look at
the capabilities and the product of the standardization efforts,
we realize that they are good candidates of being handlers.
Unfortunately, this richness of handlers does not always bring
happiness. Using several handlers together in an interaction,
which is inevitable in many cases, can unreasonably increase
service response time. In other words, Web Service becomes

An Orchestration for Distributed Web Service
Handlers

Beytullah Yildiz1, 2, 4, Geoffrey Fox1, 2, 3, Shrideep Pallickara1
1Community Grids Lab, Indiana University

2Computer Science Department, School of Informatics, Indiana University
3Physics Department, College of Art and Sciences, Indiana University

4Presidency of the Republic of Turkey
{byildiz,gcf,spallick }@indiana.edu

2

fat. Fortunately, handler distribution comes to rescue to
overcome this obstacle.

A Web Service gains several advantages with the handler
distribution. First of all, parallel execution can be utilized.
Nowadays, even in a simple application, we witness many
concurrent tasks. For example, a computer game contains
hundreds of concurrent executions. Secondly, Handler
distribution allows replication of the handlers. This is very
beneficial when a single handler cannot answer requests.
Finally, handler distribution improves reusability; they can be
easily utilized by many services and clients.

Figure 1 : Distributing Web Service handlers

We created architecture, shown in Figure 1, to benefit from

the advantages we have just mentioned and chose a Message
Oriented Middleware (MOM) [17] to distribute the tasks for
the handlers. Messaging is one of the key concepts to decouple
the distributed applications. It is also very natural for the Web
Service environment because they are using SOAP messaging
over various transportation protocols. The Hypertext Transfer
Protocol (HTTP) is the one mostly utilized. It is an application
level generic stateless protocol for the distributed collaborative
hypermedia information systems [18]. However, HTTP has a
limitation because of the request/respond paradigm. The
request has to be followed with a response. Therefore, it does
not support asynchronous messaging very well. Hence,
Utilizing a MOM serves best for our purpose. Over this
environment, we have introduced an orchestration mechanism.

IV. DISTRIBUTED HANDLER ORCHESTRATION
Orchestration is the key feature of building an efficient

distributed execution. Using a markup language contributes
very positively to build efficient orchestration structures. Petri
Net Markup Language (PNML) [19] is a good example.
Similarly, we chose an XML based document to describe the
sequence and the resources for the orchestration. An XML
document carries semantic as well as syntax. The orchestration
structure, content and semantic are described by an XML
schema [20], which basically defines the shared vocabularies
of the instances of an XML document. Now, we will explain
the XML schema of the handler orchestration document.

Handler orchestration schema contains several simple,
shown in Table 1, and complex elements to define execution
sequence. Simple elements contribute to build complex
schema elements. Name, address, oneway and mustPerform
are the elements to define a handler. numberOfLooping,
numberOfHandler and condition support to fabricate the

execution constructs. The time entity is necessary to monitor
the handlers’ states. Several time-related variables are required
to construct a handler. Start, end and execution times are
needed to watch a handler execution.

Table 1: Simple elements in Orchestration Schema

<!--Element Definitions-->
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
<xs:element name="oneway" type="xs:boolean"/>
<xs:element name="mustPerform" type="xs:boolean"/>
<xs:element name="condition" type="xs:anyType"/>
<xs:element name="numberOfHandler"
type="xs:short"/>
<xs:element name="numberOfLooping"
type="xs:short"/>

Table 2 : Handler Definition

<!--Defines Handler-->
<xs:complexType name="handlerType">
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="address"/>
 <xs:element ref="mustPerform"/>
 <xs:element ref="oneway"/>
 <xs:element name="time" type="timeType"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Handler is the keystone of the orchestration. In other words,

it is the most important entity of the orchestration schema.
Table 2 defines a handler. It consists of several elements. The
name is an identifier to increase readability and the address
provides uniqueness for the correct message delivery. We
keep tract of the time related parameters to collect statistical
data and to ensure the message delivery. Several elements are
added to improve the performance such as oneway and
mustPerform.

Table 3 : The execution constructs
<xs:element name="executionConstruct">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="sequential"/>
 <xs:element ref="parallel"/>
 <xs:element ref="looping"/>
 <xs:element ref="conditional"/>
 </xs:choice>
 <xs:attribute name="position" type="xs:short"
use="required"/>
 </xs:complexType>
</xs:element>

The materials in the universe are composed from the

elements defined in the periodic table although their numbers
are limited. A written document comprises only letters that are
defined in an alphabet. A software language has a small set of
basic types to build up a complex syntax. A processor contains
the small set of instructions to execute the complex
commands. The same concept is applied to the handler
orchestration. We defined four basic constructs, shown in

3

Table 3. They are sequential, parallel, looping and conditional.
These basic constructs compose complex execution structures.

The common feature of chemical elements, alphabet, basic
types of a language and instruction set of a processor is being
well-defined. Hence, the four basic constructs of the
orchestration need to be well-defined to build more complex
structures correctly. Table 4 shows the definition of sequential
execution. It must contain at least one handler. The order of
the execution depends on the position of the handlers in the
construct.

Table 4 : The sequential execution construct
<xs:element name="sequential">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="handler" maxOccurs="unbounded"/>
 <xs:element ref="numberOfHandler"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The parallel execution, shown Table 5, is more complex

than the sequential one. There exist several types of parallel
execution. Synchronous execution forces the orchestration
engine to complete the execution of every handler before
starting the next construct. On the other hand, in an
asynchronous execution, the next construct may start its
executions before the completion of the some handlers in the
construct. In order to have parallel execution, there must be at
least two handlers.

Table 5 : The parallel execution construct

<xs:element name="parallel">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="handler" maxOccurs="unbounded"/>
 <xs:element ref="numberOfHandler"/>
 <xs:element ref="typeOfParallelExecution"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Table 6 : The looping execution construct

<xs:element name="looping">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="handler"/>
 <xs:element ref="numberOfLooping"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Instead of having multiple appearance of a handler, the
number of handler repetition is provided to have a neat
document structure. Table 6 shows the schema representation
of the looping construct. The quantity of the handlers in a loop
is basically one. However, a set of handlers may be processed
together many times. In other words, many handlers can also
be in a loop. Sometimes, conditions need to be used to decide
the execution sequences. We benefited from any type XML

element to represent the variety of situations. Table 7
illustrates the conditional construct.

Table 7 : The conditional execution construct
<xs:element name="conditional">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="handler" axOccurs="unbounded"/>
 <xs:element ref="condition"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

A. A scenario utilizing basic constructs
We created an instance of the orchestration, depicted in

Figure 2 , to elaborate how to construct a distributed handler
orchestration document. We intentionally put a single
occurrence from every basic construct. The first construct
consists of three handlers running sequentially. The second
construct contains four handlers processed concurrently. Each
handler starts their executions at the same time while they may
complete them in different moments. The third one is a
looping construct that many instances of a handler are
executed sequentially. Finally, a conditional is employed to
select a handler among two handlers.

Figure 2 : A sample of a handler orchestration

In sequential construct, the sequence of the execution is
defined by the position of the handler in the orchestration
document; Handler 1 is followed by Handler 2 and Handler 3
respectively. However, in parallel construct, the order of the
handlers is not crucial because the executions start together. In
the looping construct, the number of loops describes how
many instance of a handler is processed sequentially. For
example, Handler 8 is executed as many times as the
parameter defines. Depending on the given condition, the
orchestration engine executes either Handler 9 or Handler 10.
For example, handler 9 is executed if the SOAP message
contains wsLog element.

4

B. Interpreting orchestration document
Conversion of an orchestration structure to the engine

understandable execution structure is not in the scope of this
paper. However, we want to mention the importance of this
concept. The orchestration engine interprets the XML based
handler orchestration document, explained above, and creates
its internal execution structure to carry out the handler
processing. In other words, the constructs in an orchestration
document are mapped to the orchestration engine
understandable structure. This means the separation of the
description from the execution. This notion reduces the
complexity of the engine while it is providing a powerful
expressiveness. With this decision, the engine that carries out
the execution is kept as simple as possible. Simplicity is a
significant feature of a software system. Without hurting
efficiency, simplicity is the feature being sought in a good
design.

C. Flexibility and policy schema
Although an internal orchestration structure is initially

created by utilizing an instance of the orchestration schema, it
is possible to alter a sequence while the execution continues.
The modification is permissible unless the rules defined are
not ignored. An alteration of the internal orchestration
structure entails additional controlling mechanisms. Even
though the adaptability is an excellent feature so that the
system offers a significant flexibility to build a specific
execution, necessary policies should be enforced to ensure the
correctness of the execution. Some handlers may process any
kind of messages arriving to the system without causing any
complication. Yet, the others may not be appropriate to be
executed without restrictions. There may be a necessity for a
compulsory sequence among some handlers. For example, a
decryption handler should be processed at the beginning so
that the remaining handlers can understand the message
content. Therefore, we come up with another XML Schema to
define the policies. Policies define conditions to carry out the
execution without having problem. We choose any type
element to describe policies. Some policies may be optional
although some others must be compulsory. The policy may
comprise of many ordering elements to force the necessary
restrictions. Moreover, it contains the orchestration schema
file name and its version to let the system know where the
policies need to be applied

V. MEASUREMENTS
We have performed extensive series of the measurements

illustrating the advantages of distributed handler execution and
its orchestration structure. We will provide the benchmark
results gathered from a multiprocessor system, Sun Fire V880.
It has Solaris 9 Operating System which is equipped with 8
UltraSPARC III processors operating at 1200 MHz with 16
GB Memory. Deployment is made by using Apache Axis 1.2
and Apache Tomcat 5.5.20.

A. Performance benchmarking
Distributed handler execution allows utilizing additional

resources. There can be many types of resources such as
processor, memory, storage or even an application. Although
distribution improves the system performance because of the
parallelism and additional resources, the management of the
components may also cause overhead. Hence, we will
investigate the system performance in a multiprocessor system
in the remainder of this section.

Distributed handler execution is evaluated by utilizing 6
different configurations of 5 Web Service handlers. Handlers
are customized for benchmarking purposes. Two of them (A,
B) are CPU bound handlers. The remaining three handlers (C,
D, and E) have been chosen from the applications that are
gradually switching from CPU bound to I/O bound. Handler C
and D respectively utilize DOM and SAX parsers. Finally,
Handler E logs the data and prints out the information about
the SOAP message.

Apache Axis describes the handler execution sequence by
an XML based WSDD configuration file. It supports only
sequential execution. On the other hand, we utilized more
flexible approach for the deployments of handlers. The
orchestration document, instead, supports parallel execution as
well as sequential one. The different combinations of the
parallel handlers can create so many different configurations.

Figure 3 : The service execution times of the six handler

configurations containing the five handlers

We chose 6 configurations among them for the

experimental purpose. The first configuration, which is
sequential execution, is to gather the results from the Apache
Axis handler execution structure. The remainders are various
configurations using distributed handler execution. The second
configuration is the exact one with the Apache Axis sequential
execution. It is to evaluate the pure overhead coming from the
distribution and the orchestration. The remaining
configurations are to show the advantage of using
concurrency.

5

The management of the distributed handler execution and
the transportation of the tasks affect the execution time. The
cost coming from the distributed computing is inevitable but
its burden can be reduced by reshuffling the configuration.
Moreover, because of the parallelism between the suitable
handlers, the performance gain can be so immense. In this
section, our interest is to find out the performance benefits
coming from the advantages of the distribution by using our
orchestration mechanism.

The values in Figure 3 illustrate the round trip time of a
service request for 6 configurations. Clients record the initial
time of the requests and calculate the elapsed time when they
receive the responses. Hence, the measurements contain
transportation, management of the orchestration and execution
times of the service including handlers. Every measurement
observed 100 times. Table 8 shows the numerical values of the
results and their standard deviations.

Table 8 : The elapsed time for the service execution and the

standard deviation of the performance benchmark
Configuration
number

Mean value
(msec)

Standard
Deviation

1 4023.02 83.49
2 4052.07 90.52
3 4025.95 92.56
4 2261.08 86.66
5 2250.96 97.11
6 2171.53 86.22

The difference between configuration 1 and 2 is the pure

overhead originating from the handlers’ distribution and their
execution by using the orchestration structure. The first
configuration utilizes Apache Axis handler deployment. The
second configuration distributes the handlers to the individual
processors. They are both sequential. The remaining
configurations show the various parallel executions.
Overlapping parts shows the parallelisms. For example,
Handler A and D as well as Handler B and E are parallel
executions in configuration 3. We observed that the bigger
overlapping execution times of the handlers yield the bigger
performance gain. Therefore, the best results are measured
when all handlers run concurrently. However, processing all
handlers concurrently may not be always possible.

B. Overhead benchmarking
Even though the distribution of handlers provides many

advantages to Web Services, it is not free from the cost.
Positioning a handler away from Web Service endpoint adds a
cost. This cost can be kept in a reasonable range so that the
relocation can be justified. In the remainder of this section, we
will investigate the overhead for a single handler distribution.

For the sake of fairness, the results have been gathered
within the same environments by using the exact parameters.
The only difference is the distribution. Measurement starts
from 1 handler. The number of the handler is increased by 10
in every step. We continue to add the same handler into the
execution path until having 50 handlers. Figure 4 illustrates

how the handlers are deployed in Apache Axis.

Figure 4 : Apache Axis sequential handler deployment to

measure the overhead

The same deployment strategy is applied in the distributed
approach. Figure 5 illustrates the sequential deployment of the
distributed approach for the same number of handlers with the
conventional Apache Axis deployment.

Figure 5 : Sequential handler deployment for overhead

Figure 6 : The changing values of the service execution times and
their standard deviations while new handlers are being added for

Apache Axis and distributed handler approach.

Every measurement is observed 100 times. The service
elapsed times are collected for each step and the average
values are computed. After gathering the values, shown in
Figure 6, the overheads, provided in Table 9, are calculated
with the following formula:

Overhead = (Tdist – Taxis) / N Equation 1

Where, Tdist is the elapsed time of a service utilizing
distributed handler approach. Taxis is the elapsed time of a
service utilizing Apache Axis. N is the number of the handlers

6

in the deployment.

Table 9 : Overheads of a handler distribution for the increasing
number of handlers in the execution path

Number of handlers Overhead (msec)
1 4.54
10 4.61
20 4.55
30 4.51
40 4.49
50 4.50

The distribution cost, which contains transportation and

orchestration time, is very reasonable. Moreover, it is stable
for the increasing number of handlers.

VI. FUTURE WORK
The distribution of the handlers puts many choices in front

of us. Because of the parallelism, the handler orchestration can
be achieved in many ways. However, the throughput cannot be
increased by a randomly selected handler sequence. Having an
agent that intelligently looks for a better handler orchestration
sequence is very interesting. This agent automates the handler
orchestration and adjusts the handler sequence for the best
throughput. Hence, finding out the best handler deployment
configuration is very promising research area, and this will be
the focus of our future work.

VII. CONCLUSION
Orchestration is a significant feature to integrate the

distributed applications. Distributing handlers to have efficient
and effective SOAP message execution requires a well-
organized orchestration. We introduced an orchestration
structure separating description from the execution. The
separation has many benefits. First of all, it contributes to a
very efficient and effective orchestration engine while it is
providing very powerful expressiveness in the description.
Without sacrificing the efficiency, acquiring simplicity is very
appealing.

Secondly, the separation helps us to build static and
dynamic handler executions. The orchestration document
statically describes handlers and their sequences. It can also
create a dynamic handler execution. The execution sequence
can be optimized on the fly and altered via introducing parallel
execution among the appropriate handlers or rearranging the
order. This arrangement must be controlled by policies, which
impose the rules to obey the dependencies.

Finally, conventional handler execution mechanism
employs a service specific handler sequence. In contrast, we
are able to build an individual handler execution sequence for
each message by using the introduced orchestration
mechanism. This grants significant flexibility that every
message may have its specific set of handlers and sequence.

REFERENCES
[1] Web Service Architecture. Available:

http://www.w3.org/TR/ws-arch.
[2] Simple Object Access Protocol (SOAP). Available:

http://www.w3.org /TR/soap12-part1.
[3] Apache Axis. Available: http://ws.apache.org/axis.
[4] Microsoft Web Service Enhancements (WSE). Available:

http://www.microsoft.com/downloads/details.aspx?FamilyId=F
C5F06C5-821F-41D3-A4FE-6C7B56423841&displaylang=en.

[5] Ewa Deelman, et al., “GriPhyN and LIGO, Building a Virtual
Data Grid for Gravitational Wave Scientists” in Proc. 11th
IEEE International Symposium on High Performance
Distributed Computing (HPDC-11 '02), 2002, pp. 225.

[6] C. Berkley, et al., “Incorporating semantics in scientific
workflow authoring”, in Proc. 17th International Conference on
Scientific and Statistical Database Management, 2005.

[7] Oinn, T., et al., “Taverna: lessons in creating a workflow
environment for the life sciences” Concurrency and
Computation. : Practice & Experience. vol.18, Aug. 2006, pp.
1067-1100.

[8] TIBCO Software Inc Inconcert. Available:
http://www.tibco.com.

[9] Aggarwal , B.A., A. Chandra , M. Snir, “A model for
hierarchical vmemory”, in Proc. 19th annual ACM conference
on Theory of computing, New York, 1987, pp. 305-314.

[10] Cao, J., et al., “GridFlow: workflow management for grid
computing”, in Proc. 3th International Symposium on Cluster
Computing and the Grid, Tokyo, 2003. pp. 198-205.

[11] Curbera F, et al., Business Process Execution Language for Web
Services (BPEL4WS). Available:
http://www.ibm.com/developerworks/library/ws-bpel/.

[12] Web Service Choreography Interface (WSCI) 1.0. Available:
http://www.w3.org/TR/wsci.

[13] Aalst, W.M.P.v.d. and A. Kumar, “XML Based Schema
Definition for Support of Inter-organizational Workflow”,
University of Colorado and University of Eindhoven report,
2000.

[14] Web Service Security (WS-Security). Available:
http://www.ibm.com/developerworks/library/specification/ws-
secure.

[15] Web Services Reliability (WS-Reliability). Available:
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrm.

[16] Web Services Notification (WS-Notification). Available:
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn.

[17] Tran, P., Greenfield, P., and Gorton, I., “Behavior and
Performance of Message-Oriented Middleware Systems”, in
Proc. 22nd International Conference on Distributed Computing
Systems, 2002.

[18] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T., “1999 Hypertext Transfer
Protocol -- Http/1.1. RFC”.

[19] J¨ungel, M., E. Kindler, and M. Weber. The Petri Net Markup
Language. Petri Net Newsletter, vol. 59, 2000, pp. 24–29.

[20] XML Schema. Available:
http://www.w3.org/XML/Schema.html.

