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Abstract: Cyberinfrastructure has closely tracked commercial best practices for over a 
decade. However, we believe there is still much to learn about correct strategies for 
building distributed systems for collaborating scientists and related communities.  In this 
perspectives paper, we review the current state of Cyberinfrastructure and opportunities 
that we see if Cloud Computing strategies are adopted. In summary, Cloud Computing is 
the use of Web Services to control the life cycle of virtual machines and virtual data 
stores to create a flexible, user-controlled infrastructure.  Huge commercial investments 
into Cloud infrastructure ensure that these systems will dominate large-scale computing 
hardware and software in the next decade.  Furthermore, open source Cloud software is 
making it possible for organizations such as universities and research laboratories to 
build open-architecture clouds for scientific computing and other uses.  We illustrate the 
applicability and potential advantages of Cloud Computing to Cyberinfrastructure 
through two sample projects. 
 
Introduction 
This perspectives piece summarizes our views on the next generation of 
Cyberinfrastructure generally and Spatial Cyberinfrastructure specifically.  We have 
been involved in a number of relevant projects, including the NASA-funded QuakeSim 
project (1,2), the USGS-funded FloodGrid project (described here), and the NSF-funded 
PolarGrid project (www.polargrid.org).  Our lab has developed Cyberinfrastructure 
software to support these distributed spatial applications, building on our general 
investigations of Cyberinfrastructure architectures (3).    Applications include Geospatial 
Information System (GIS) Grid services based on Open Geospatial Consortium 
standards (4) and real-time streaming Global Positioning System processing 
infrastructure (5,6). We take a very broad view of the problems that Cyberinfrastructure 
(CI) must support.  Computing and data storage are just two aspects; we also need to 
manage real-time data streams, integrate third party capabilities (such as map and data 
providers), and build interactive user interfaces that act as Science Gateways (7). As we 
discuss in this paper, we believe the current CI deployments need to provide a broader 
scope of capabilities to their user community. We believe that Cloud Computing 
approaches (discussed below) can offer this infrastructure.  
 
Other contributors to this special issue have offered definitions of Cyberinfrastructure 
and detailed examples, so we will only briefly summarize. Cyberinfrastructure (CI) is 
generally the hardware, software, and networking that enables regionally, nationally, and 
globally scalable distributed computing and collaboration.  Such systems are also called 
Grids. In the US, the NSF-funded TeraGrid (8) and the NSF/DOE Open Science Grid (9) 
are examples of national-scale infrastructure.  The important characteristic of these 
centers is that they provide Web Service interfaces that allow remote, programmatic 
access for running science applications on large clusters and supercomputers, 
managing files and archives, and getting information about the state of the system. 
These interfaces are typically built as Web services.  Prominent examples of software 
used to provide these services include the Globus Toolkit (10), Condor (11), and gLite 
(glite.web.cern.ch).  Higher-level capabilities can be built on these basic services.  
Examples include workflow composing tools (12,13), which compose basic services into 
higher order applications; and science gateways (7), which provide user interfaces to 
services that are suitable for a broad range of users (researchers, students, and the 
general public).  This service-oriented approach is generally compatible with, for 
example, the Open Geospatial Consortium’s suite of service specifications, particularly 
the Web Feature Service and Web Map Service.  Ideally, one may build higher-level 
applications out of a toolbox of third party services backed up by persistent 



Cyberinfrastructure; we have termed this the “Grid of Grids” approach (3).  We take here 
a heterogeneous view of Cyberinfrastructure: it could include GIS services provided by 
state and local governments as well as Globus services on the TeraGrid.   
 
Scientific research enabled by this infrastructure is called E-Science.  We use E-Science 
broadly to include Economics, Social Sciences, Mathematics, Computer Science, and 
Engineering fields as well as Physics, Astronomy, Chemistry, and the Life Sciences. 
This still is actually a limited view, as many formerly non-computational academic fields 
(the arts and humanities, for example) have an increasing demand for digital data 
management, processing, and analysis, so we also have E-Humanities, and generally E-
MoreOrLessAnything. Also, of course, synchronous and asynchronous collaboration are 
essential to any intellectual endeavor. An important desirable outcome of CI efforts is 
greater openness of data and reproducibility of science.  This is the vision set out by the 
well-known Atkins report (14).   
 
Unfortunately this comprehensive CI vision has not yet been realized. The current 
flagship deployments of Cyberinfrastructure in the US are dominated by the 
requirements of traditional high performance computing users.  Arguably the NSF 
DataNet program will address the data-centric needs of Cyberinfrastructure, such as 
long-term storage and preservation of observational and experimental data and their 
pipelines, but this program is in its infancy.  In this paper, we argue for the adoption of 
Cloud Computing approaches to CI, which we believe will offer a broader approach to 
infrastructure. We note that Cloud Computing-like infrastructure is of particular interest to 
Spatial CI applications, which provides important use cases that help clarify what 
capabilities an end-to-end CI deployment should provide. As discussed by Wright and 
Wang in their introduction to this special issue, spatial CI can be both computationally 
intensive and data-rich.  Its applications are particularly visible to the general public 
through Web interfaces (gateways and services) and have a broad applicability to many 
domains (disaster and emergency management, environmental planning, social 
sciences, etc).  We illustrate these requirements through two small projects, Flood Grid 
and the Polar Grid Portal.  First, however, we will review Cloud Computing. 
 
Cyberinfrastructure and Cloud Computing 
Cloud Computing, as a marketing term, is usually left poorly defined.  However, because 
of its potential value to research computing infrastructure, academic surveys and initial 
investigations exist (see for example 15, 16), which the reader should consult for more 
information.  We will focus on two specific aspects: Cloud Computing to provide 
infrastructure and Cloud Computing to provide runtime management.   
 
Infrastructure: At the lowest and simplest level, clouds may be defined as Web services 
that control the life cycles of virtual machines and virtual storage.  The very well known 
Amazon and Microsoft Azure cloud systems fall in this category. Xen (www.xen.org) is a 
popular technology for virtualizing server farms and data centers based on Linux; 
Microsoft similarly has Hyper-V for Windows Server 2008-based systems.  Through Web 
services and virtualization, users can create and control their own computing resources.  
These may be bare-minimum installations but more usefully the virtual machines can 
come with software packages preconfigured.  For example, one may imagine checking 
out a virtual machine or cluster that comes pre-configured with geospatial software 
needed for a particular problem.  
 



Less well known than the virtual machine but at least as important is the virtual block 
storage device.  The best example of this is Amazon’s Elastic Block Store, which can be 
attached to a virtual machine to provide additional file space. These attached file 
systems don’t need to be empty. As Amazon’s public data sets illustrate 
(aws.amazon.com/publicdatasets/), we can create libraries of public and community data 
sets (files or databases) that can be checked out from the Cloud by individual users.  
Additionally, the major Cloud vendors all have very scalable but flat database 
technologies as part of their infrastructure. Examples include Google’s BigTable, 
Microsoft Azure’s Table Service, and Amazon’s SimpleDB.  These lack the full 
functionality of relational databases but work very well as Cloud spreadsheets. 
 
Although we have focused on commercial cloud infrastructure, it is possible to set up a 
cloud using Open Source software on existing server farms and clusters.  Example 
software includes Eucalyptus (19), Nimbus (17), and OpenNebula 
(www.opennebula.org).  Production academic cloud installations based on these and 
related technologies are becoming available.  The NanoHUB project at Purdue 
University is one of the most prominent (18).  
 
Virtualization does come with a price: virtual machines (particularly those that use 
hypervisor-like approaches such as Xen) introduce significant communication overhead 
and cannot support the fastest network connections such as Infiniband. This will effect 
closely coupled parallel applications built with the Message Passing Interface (MPI), 
which commonly run on the NSF TeraGrid. We review these overheads in (24); more 
extensive investigations are currently submitted for review. Other virtualization 
approaches that do not use a hypervisor, such as OpenVZ (www.openvz.org), will have 
smaller overheads (20).  In any case, the largest scientific parallel problems will continue 
to run on very large clusters built with custom architectures such as those funded by the 
NSF’s Track 1 and Track 2 programs, but many other computations are better suited for 
running on Cloud resources, as we discuss next.  
 
Runtime management: Although one may want to use a Cloud to outsource 
infrastructure at the operating system level, it is also desirable to have higher-level tools 
that can harness the computing power of entire Cloud installations. The idea is that the 
Cloud provides some specific suite of capabilities on top of its infrastructure, and the 
Cloud user does not drill down to the underlying operating system.  Apache Hadoop is a 
relevant example of this. Hadoop is an implementation of two ideas promulgated by 
Google: the Google File System and Map-Reduce (22). Strictly speaking, Hadoop and 
its competitors don’t need to run on Cloud infrastructure, but the two are a good match 
(see for example Amazon's Elastic Map Reduce, aws.amazon.com/elasticmapreduce/). 
Map-Reduce and its competitors (prominently, Microsoft’s Dryad (23)) are designed to 
solve the world’s largest data-file parallel problem: search. Map-reduce is essentially an 
approach for managing computing tasks in distributed environments that is works very 
well for certain classes of parallel problems: those associated with fragmentable data 
sets. Although it can be applied to a wide range of problems (21), it generally is 
designed to support data-file parallelism; that is, we need to apply an operation or a 
sequence of operations to huge input files that can be split into smaller fragments. In 
contrast, traditional parallel programming, based around the Message Passing Interface 
(MPI), is memory parallel rather than file parallel.  
 
The notion of file parallelism can also be extended to network streams and other 
standard input/output mechanisms.  Processing and mining sensor streams in a large 



sensor Web are obvious applications for stream data parallelism in Spatial CI.  Although 
not supported by Hadoop, this is an intended feature of Dryad and has been explored by 
research groups (24, 25). 
 
The relevance of both Cloud infrastructure and runtimes to Spatial CI should be clear, 
and we will next look at relevant examples.  
 
Case Study #1: Flood Grid 
Floods are one of the most common and expensive natural hazards in the United States, 
affecting communities at various levels. To facilitate and improve flood planning, 
forecasting, damage assessments, and emergency responses, the USGS-funded 
FloodGrid project provides an integrated platform for inundation modeling, property loss 
estimation, and visualization. Rather than centralizing all capabilities onto a specific 
platform, we have developed this system following open service architecture principles, 
packaging functionalities as Web Services and pipelining them as an end-to-end 
workflow.  Integration is achieved via a simple Web interface requiring minimal user 
interactions. This is an example of a relatively simple Science Gateway.  As we review 
here, even this simple system combines real-time data services, computational services, 
GIS information and data services, and several data models. We build some of these 
services and leverage third party providers for others. We may consider this to be 
analogous to a Web 2.0 mash-up. FloodGrid is a collaboration between the Polis Center 
at IUPUI and the Community Grids Laboratory at IU. 
 
The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) (26) from the U.S. 
Geological Survey (USGS) provides simulations for a variety of environmental and 
hydraulic models. The Flood Grid pilot study focuses on inundations of the White River 
at Ravenswood area in Indianapolis, using the 2D hydraulic model, FaSTMECH (27), 
calibrated for the region. Real-time forecast data of the Nora station 
(http://www.crh.noaa.gov/ahps2/hydrograph.php?wfo=ind&gage=nori3) provided by the 
National Weather Service (NWS) Advanced Hydrologic Predication Service (AHPS) 
serve as initial conditions of the simulation. The Computational Fluid Dynamics General 
Notation System (CGNS) (28) bridges the computation model and its environmental 
surface-water applications by providing a standard data format and the framework for 
exchanging data in that format. Hence the main data stream of Flood Grid studies are in 
the format of CGNS files. A complete Flood Grid study consists of web services for flood 
monitoring, simulation, damage estimation, and visualization. Figure 1 outlines the 
service stack in such a workflow.  

The real time river data monitoring service constantly monitors the NWS real-time 
forecast of the Nora station, and starts recording both the flow gauge and the river stage 
data up to 6 days into the future once a pre-defined flood condition is met. These pre-
defined conditions are determined for a particular study area by model calibration. 
During a flood study, the CGNS input process service infuses such information as initial 
conditions into the pre-calibrated regional model represented by a CGNS file. The 
updated CGNS file is in turn fed to the flood simulation service as the input to perform 
the FaSTMECH simulation, which stores computation results by once again updating the 
given CGNS file. The CGNS output process service parses the FaSTMECH simulation 
results and generates curvilinear grids in ASCII files. The grid file generation service 
further consumes these files to produce rectilinear flood depth grids using nearest 
neighbor clustering techniques. The loss calculation service overlays the generated flood 
grids with parcel level property data and calculates percentage damages using the 

http://www.crh.noaa.gov/ahps2/hydrograph.php?wfo=ind&gage=nori3�


Hazards U.S. Multi-Hazard (HAZUS-MH) (www.fema.gov/prevent/hazus) analysis from 
Federal Emergency Management Agency (FEMA). Finally the map tile cache service 
visualizes the study results in Google Maps.  
 
The core flood simulation service wraps the FaSTMECH FORTRAN computation 
program under the Swarm job scheduling service framework (29).  Swarm provides a set 
of Web Services for standard computation job management such as submission, status 
query, and output retrieval. The simulation service is deployed on the TeraGrid Gateway 
Hosting Service at Indiana University Bloomington. Flood damage estimation and 
visualization services are developed with Visual Basic .NET, and deployed under 
Internet Information Services (IIS) by the Polis Center at Indiana University Purdue 
University at Indianapolis.    
 
All Flood Grid services are orchestrated into asynchronous workflows under both the 
.NET framework and Business Process Execution Language (BPEL) modules. The 
distributed and complex system is however presented to users via a web interface. 
Figure 2 depicts the layout of this interface on the left, with the corresponding screenshot 
on the right. Upon registration, a user can request running a new study or review an 
earlier one in the flood studies control center. Execution statuses of each service in the 
study workflow are also displayed under this section. For a completed study, simulation 
results are visualized with Google Maps displaying flooded regions and damaged parcel 
properties that are obtained from regional Web Feature Services. Detailed analysis 
reports are available in the damage estimation section, calculated using HAZUS-MH. 
The map overlay section enables mash-ups with other online geospatial services such 
as county parcel maps and demographic maps from Social Assets and Vulnerabilities 
Indicators (SAVI) Community Information System (www.savi.org).   
 
Flood modeling, simulation, forecasting, hazard analysis and disaster management 
require specialized knowledge, and each are usually well understood only among 
domain experts. As we have illustrated in this short summary, much of this information 
and expertise are distributed among several stakeholder groups. If each capability is 
taken separately, it is difficult to solve important problems such as determining the 
damage costs to property caused by a particular flood. However, through programmable 
service interfaces and an open-service architecture, we are able to integrate these into a 
single tool suitable for on-demand usage. The Flood Grid project brings together 
specialists such as hydrologists, environmentalists, and hazard analysts with a common 
platform to seek comprehensive solutions for general flood studies. Under this 
framework, discrete information pieces can be conveniently assembled into workflows, 
shared among communities, and made intuitive for the general public. The Flood Grid 
project demonstrates wide range collaborations from federal, state, and regional 
agencies, and delivers a Cyberinfrastructure over highly heterogeneous and distributed 
computation resources. 
 
Although not explored in the current system, it is possible to greatly increase FloodGrid's 
computing requirements.  FaSTMECH computations are on the order of minutes to 
hours for typical inputs but are limited to a particular area for which we have a model 
mesh.  Increasing the number of models to cover more areas of interest is an obvious 
way to increase computational requirements.  More interesting, perhaps, is partially 
automating model calibration.  FaSTMECH has a large number of input parameters that 
must be narrowed down to reproduce known historical data.  This is currently a manual 
process performed by a USGS hydrologist.  Guided parameter space studies may help 



speed calibration by running many different scenarios and comparing them to historical 
data. There are well known parallel algorithms for doing this (30), but as we discussed 
previously, this is also an excellent use of Cloud Computing runtime environments.  
 
We map the Flood Grid infrastructure requirements to Cloud Computing infrastructure in 
Table 1.  An important requirement for Flood Grid’s infrastructure is reliable service 
hosting to make sure that the services illustrated in Figure 1 are persistently available, 
with redundancy and load balancing.  It is certainly possible to have these capabilities 
without using virtualization, but virtualization can be used to build redundancy into the 
fabric of the infrastructure rather than placing this burden on the developers.  Clouds 
would also be useful as providers of standard data libraries through virtual block stores. 
For Flood Grid, the central piece is a validated CGNS input mesh that models a 
particular section of a river.  Although only one such model was available to us for the 
study, one can envision a library of calibrated models for different geographic areas.  
Similarly, standard GIS data sets (parcel and demographic information) can also be 
delivered in this fashion, coupled to the Web Feature Service that provides them. That 
is, one does not need to rely upon a third party Web service with its own reliability 
concerns.  Instead, local governments can provide virtual images of their data and 
software that can be instantiated by other developers on a Cloud as needed. Finally, we 
note that the system could make use of pre-configured virtual machines that include 
FasTMECH, Swarm, and all supporting software.  
 
Case Study #2: Polar Grid: Online SAR Image Post-Processing 
In this case study, we examine a common Spatial CI problem: image processing. We are 
motivated by the extremely important problem of glacial melting and the need to 
determine the underlying rock bed beneath the Greenland and Antarctic glaciers.  
Detailed knowledge of the rock beds is needed to build more accurate models than are 
currently available for glacial motion.  From the point of view of Spatial CI, these are 
examples also of data-parallel computing and are well suited for Cloud Computing 
runtimes discussed previously.  The Polar Grid project described here supports the 
Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas.  
 
The sub-glacial terrain images acquired from Synthetic Aperture Radar (SAR) reveal ice 
sheet thickness and the details of internal ice layers over vast areas beneath the 3 KM-
thick Greenland ice sheet (31). CReSIS collected and processed approximately 25 TB of 
raw data using Polar Grid resources during the 2008-2009 campaigns.  Raw and initially 
processed data sets are equivalent to NASA CODMAC data products 0 and 1, and can 
be managed by a single group as a one-time exercise since there are generally no 
optional processing steps that need to be explored.  However, higher-level data products 
require human interaction. Improving the SAR image qualities in post-processing is the 
essential step for any SAR image application. One main image quality issue is speckle 
noise inevitably generated by SAR. The speckle noise usually appears as random 
granular patterns, which can reduce the image resolution and give the image a fuzzy 
appearance. Applying proper filters will enhance the image quality and improve the 
interpretation of sub-glacial structures. SAR image processing is computationally 
intensive; it is necessary to develop a scalable parallel Cyberinfrastructure for SAR 
image post-processing. In this pilot project, we implement the Web Service that gives 
users the access to testing the three basic filters. 

 
The system architecture is shown in Figure 3. Image processing is done by Matlab 
scripts, which are complied as a standalone executables by Matlab Compiler.  The 



standalone executable uses the Matlab Compiler Runtime (MCR) engine and can be 
deployed royalty-free on servers such as TeraGrid clusters and Cloud Computing 
resources.  The Computing Service Server contains multiple MCRs in a computing 
cluster.  
 
The computing service is exposed as a Web Service to the web developer. The Web 
Service has the following parameters: dataset, filter, filter parameters, output image size 
and image name. The response from web service server returns an image-URL, which 
can be included in web interface. Users select the dataset, filter and filter parameters 
through a Web interface. The images with different parameters can be compared side by 
side, and also the ground track of SAR image is display on Google Map, in which user 
can trace and check the SAR image along the ground track (Figure 4).    
 
The advantage of the system design relays on the separation of Matlab computing 
service and Web Service server. Depending on the complexity of computing task, 
computer server can have one or more MCRs, the job scheduler can assign the request 
to the available MCRs. The MCRs can be distributed dynamically on a virtual on-
demanding cluster, yet exposed to the web developer using the same interface. Another 
advantage of this design is that it clearly separates the roles of the Matlab developer and 
the web developer, since they are from two different knowledge domains.  
 
We summarize mappings of the Polar Grid project's prototype infrastructure to Cloud 
Computing requirements in Table 3. As before with FloodGrid, we need persistent, fault 
tolerant Web service hosting environments, which should be provided by the Cloud 
infrastructure providers rather than the Polar Grid developers.  We likewise need to 
make standard SAR data sets available.  The particular problem to note here is the size 
of the data: it is prohibitive (unlike FloodGrid) to move the SAR data for image 
processing on some remote cluster, so we must instead keep the computing power near 
the data.  On the other hand, the SAR files are data-file parallel and so are good 
candidates for Cloud runtime tools.  In the PolarGrid case, we need to extend the 
runtime engine (Hadoop, et al) to manage the filters shown in Table 3. These filters are 
compiled binaries that must be run on a compatible operating system (that is, one with a 
specific version of the Linux kernel), so virtualization can greatly expand the amount of 
resources available to us, compared to conventional systems.  Virtualization also is 
useful for ensuring that the filter images have exactly the right dependencies (particularly 
the correct version of the MCR).   
 
Conclusions  
In this paper, we have discussed Cloud Computing, which we believe can provide a 
comprehensive approach to Cyberinfrastructure.  Current Cyberinfrastructure 
deployments, such as the NSF TeraGrid, focus on the requirements of parallel 
computing.  This provides valuable resources for many scientific problems, but it is not 
optimal for many other fields’ computing, data, and hosting requirements.  We have 
proposed that Spatial CI, when viewed in its broad context, provides many motivating 
scenarios for adopting Cloud Computing. We illustrated this through two small projects, 
Flood Grid and the Polar Grid portal. Our key point is that Clouds provide more control 
over the environment to developers through virtualization.  This allows, for example, 
developers to install and control their own software libraries without worrying about 
version conflicts with developers on unrelated projects.   
 



Computing on clouds is another important topic.  Although performance of classic, 
closely coupled MPI programs degrades on virtual machines, there is a large number of 
what we dub data-file parallel applications (and generally, problems that have low 
communication-to-computation ratios) that are very well suited for Cloud-based systems.  
Finally, we note also the potential importance of data virtualization through virtual block 
storage systems such as Amazon’s Elastic Block Store and its open architecture 
spinoffs.  These can be used to disseminate public and community data sets directly to 
computing.  Although there are many interesting provenance and other metadata and 
security problems that need to be explored, we believe this is an interesting alternative 
to simply putting data online or into an online data base. 
 
Large commercial vendors dominate Clouds, but there is a growing collection of open 
source software that can be used to build research clouds.  The challenge over the next 
several years for core Cyberinfrastructure research will be to investigate and document 
open architecture Cloud systems.  By “open architecture”, we mean providing 
documented, reproducible best practices for building and running academic Clouds to 
support research.  Concurrently, much work needs to be done on providing production 
quality Cloud facilities to support Spatial CI and other fields that will benefit.   
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