
General Application Issues 
 
Geoffrey Fox Indiana University 
 
In the first and last chapters of this book, we have described how parallel computers and 
large-scale simulations have and will have profound impact on many fields. Here we 
assume this motivation and in the application section of the book (Chapters 4 through 8) 
try to answer the following question: 
 I have an application – can and should it be parallelized and if so, how should 
this be done and what are appropriate target hardware architectures; what is known 
about clever algorithms and what are recommended software technologies? 
 Most of the answers to these questions are implicitly described in other parts of 
this book and we attempt to aid the reader's identification of where to go by combining an 
exposition of general principles with several case studies. The latter consists of in depth 
discussions in Chapters 5, 6 and 7 of computational fluid dynamics, energy and 
environmental studies and chemistry. We also present in Chapter 8 a set of 11 short 
discussions of applications illustrating interesting features of their computational 
structure. This is followed by an overview of all the applications here plus those in two 
other books in Section 8.12. This overview discusses algorithmic and software issues in 
each case, and is a possible resource if one wishes to find applications exhibiting 
particular computational features. We also highlight Chapter 16, which has a pedagogical 
description of Poisson’s equation with message passing, HPF and OpenMP programming 
models. This is not a “real” application like the others in our selection but acts as a simple 
prototype for discussing general issues.  

So we now step through the thought processes involved in analyzing a given 
application and in this way illustrate certain general characteristics that are useful in 
classifying the issues involved in parallelizing general applications. We first review the 
same Poisson equation of Chapter 16 and revisit the discussions of Chapters 3 and 9 from 
an application rather than a parallel programming perspective 
 
4.1 Application Characteristics in a Simple Example 
Simple 2D electrostatic problems can be reduced to solving Laplace's or Poisson's 
equation and as described in Chapter 16, this is often solved numerically by finite 
difference methods. These could involve adaptive meshes and hierarchical multigrid 
methods but in the simplest formulation are set up as a regular grid of field values where 
the basic iterative update links two dimensional nearest neighbors as in Figure 4.1. 



 
Figure 4.1: 16 by 16 2-D Mesh with an illustration of basic nearest neighbor update used 

in Jacobi's method of Chapter 16 
If the points are labeled by an index pair (i,j), then Jacobi's method defined precisely in 
equation. (4.1), can be written 

φ New(i,j) = (φ Left + φ Right + φ Up + φ Down ) / 4  (4.1) 
 

corresponding to the stencil given below where the subscript Left corresponds to index 
pair (i-1,j) etc. 

 
Figure 4.2: Stencil for 

Jacobi Iteration of Figure 4.1 
 

Such problems would usually be parallelized by a technique that is often misleadingly  
called "domain decomposition" or "data parallelism". As these terms already have 
particular meaning in the algorithm and parallel programming fields respectively, we can 
use the term block data decomposition, which is essentially the nomenclature used in 
HPF. In this problem, parallelism is achieved by exploiting the feature that we can view 
the problem as an algorithm (4.1) applied to a set of data points. Parallelism is naturally 
found for such problems by dividing the domain up into parts and assigning each part to a 



different processors as seen in Figure 4.3. For problems coming from nature this 
geometric view is intuitive as say in a weather simulation, the atmosphere over California 
evolves independently from that over Indiana and so can be simulated on separate 
processors. This is only true for short time extrapolations – eventually information flows 
between these sites and their dynamics are mixed. Of course it is the communication of 
data between the processors (either directly in a distributed memory or implicitly in a 
shared memory) that implements this eventual mixing. 

 
Figure 4.3 16 by 16 Mesh Divided among 16 Processors with a 2-D grid chopped into 

rectangular sub-domains 
Block data decompositions typically lead to a SPMD (Single Program Multiple Data) 
structure with each processor executing the same code but on different data points and 
with differing boundary conditions. In this figure, the “edge” (case E) processor has a 
mix of conventional and communication boundaries while in the “general” case C, a 
processor is “in charge” of 16 points with communication at the four edges providing the 
necessary boundary data. As described in Chapter 16, one often uses a set of halo grid 
points seen in Figure 4.4, to represent these communicated values. The term ghost is 
often used instead of halo. This type of data decomposition implies the so-called 
“owner’s-compute” rule. Here we imagine each data point as being owned by the 
processor to which the decomposition assigns it. The owner of a given data-point is then 
responsible for performing the computation that “updates” its corresponding data values. 
This produces a common scenario where parallel program consists of a loop over 
iterations divided into compute-communicate phases: 

• Communicate: At the start of each iteration, first communicate any outside data 
values needed to update the data values at points owned by this processor. 

• Compute: Perform update of data values with each processor operating without 
need to further synchronize with other machines. 

This general structure is preserved even in many complex physical simulations with fixed 
albeit irregular decompositions. Dynamic decompositions introduce a further step where 
data values are migrated between processors to ensure load balance but this is usually still 
followed by similar communicate-compute phases. The communication phase naturally 
synchronizes the operation of the parallel processors and provides an efficient barrier 
point which naturally scales. The above discussion uses a terminology natural for 
distributed memory hardware or message passing programming models. With a shared 



memory model like OpenMP, communication would be implicit and the “communication 
phase” above would be implemented as a barrier synchronization. 

 
Figure 4.4: Communication Structure for Poisson equation Example. The circled 

communicated points form the halo or ghost grid points. 
 
4.2 Communication Structure in Jacobi’s Method for Poisson’s Equation 
On a distributed memory machine, the geometrically local structure of the linked entities 
of Figure 4.1, leads to a classic communication structure with the communication volume 
proportional to surface area (in 2D this is the sides of the rectangle) of each sub-domain 
while computation is proportional to volume. Further in this case and most such cases, 
one can usually "block" the communication to transmit all the needed points in a few 
messages. Chapters 3, 7 and 10 explain why this is important to reduce effect of latency 
of messaging system. We can use our current Poisson equation example to produce some 
good rules of thumb to allow estimates of the performance of many parallel programs. 

 
Figure 4.5: Parameters determining performance of loosely synchronous problems. 
 
As shown in Figure 4.5, we characterize the node of a parallel machine by a parameter 
tfloat, which is time taken for a single floating point operation. tfloat is of course not very 
well defined as depends on the effectiveness of cache, possible use of fused multiply-add 
and other issues. This implies that this measure will have some application dependence 
reflecting the goodness of the match of the problem to the node architecture. We let n be 
the grain size – the number of data locations owned by a typical processor. n is 16 in the 
trivial example of Figure 4.3 but in a realistic example would be larger and limited by the 
memory of each processor. For a hypothetical 103 by 103 by 103 3D mesh solved on a 
1000 processor machine, n would of course be 106. Communication performance – 
whether through a shared or distributed memory architecture – can be parameterized as 

Time to communicate Ncomm words = tlatency + Ncomm tcomm   
This ignores issues like bus or switch contention but is a reasonable model in most cases. 
It is dangerous to quote explicit values for these parameters as hardware is always 



improving. Very roughly tlatency has a value around 1µs on shared memory machines 
while it is at least an order of magnitude higher, say 40µs between remote nodes on 
distributed memory architectures. This latency becomes 10-100ms between of a 
geographically distributed metacomputer; this drastic increase in latency explains why 
one cannot easily use such systems for parallel computing and we return to this point in 
Section 4.8.  tcomm is time to communicate a single word and this is in range 0.1 to 0.01µs 
per word. For large enough messages (Ncomm in range from 100 to 1000 or larger), the 
latency term can be ignored and we will set tlatency=0 in the following. We can generalize 
the above problem to Nproc processors arranged in an √Nproc by √Nproc grid with a total of 
N grid points and the grain size n = N/Nproc. 
Then first considering load balance, we can write the sequential execution time 

T(1) = (√N - 2)2 tcalc, where this notes that boundary points are fixed  
and only the (√N – 2) by (√N – 2) array of internal points need to be updated. Further  

tcalc = 4 tfloat is time to execute the basic update equation (4.1) 
The parallel execution time is governed the “interior” processors with n points to be 
updated. Thus 

T(Nproc) = n tcalc, and the speed-up is given by 
S(Nproc)  = T(1) / T(Nproc) = Nproc (1 – 2/(nNproc)1/2)2   

The speedup S(Nproc) is less than Nproc because not all the processors update the same 
number of points. However this load imbalance is a small edge effect decreasing when 
either n or Nproc becomes large. 
More important in this case is the communication overhead, which adds to T(Nproc) a term 
4√n tcomm illustrated in Figure 4.6 for the cases n = 16 and n = 64. The communication 
term is an edge effect proportional to √n which decreases in importance as n increases 
compared with the computation term 4n tfloat. More precisely, we now find the full speed 
up formula: 

S(Nproc) = Nproc (1 – 2/(nNproc)1/2)2 / (1 + tcomm/(√n tfloat))  (4.2) 
 

 
Figure 4.6: Communication Structure for a five-point stencil and two different grain sizes 
 
Realistic values for tcomm/tfloat are in range of 10 to 100, and so the communication 
overhead dominates in equation (4.2). For an intermediate value tcomm/ tfloat = 50, we need 
the grain size n to be greater than 250,000 grid points to reduce communication overhead 
below 0.1. We note that this analysis ignores the possibility available on some computers 



of overlapping communication and computation. One can straightforwardly extend the 
analysis to include the effect of such strategies for performance enhancement. We can 
generalize the above formalism most conveniently using the notation that 

S(Nproc)  = ε Nproc  = Nproc /(1 + f ),  (4.3) 
which defines efficiency ε and overhead f. The communication part fcomm of the overhead 
f  is given in equation (4.4) as 

fcomm = tcomm/(√n tfloat)  (4.4) 
 
Note that in many instances, fcomm can be thought of as simply the ratio of parallel 
communication to parallel computation. This equation can be generalized to essentially 
all problems we will later term loosely synchronous. Then in each coupled communicate-
compute phases of such problems, one finds that the overhead takes the form: 

fcomm = constant . tcomm/(n1/d tfloat)  (4.5) 
Here d is an appropriate (complexity or information) dimension, which is equal to the 
geometric dimension for partial differential based equations or other geometrically local 
algorithms. The most important case in practice is the 3D value d=3 when n1/d is just 
surface/volume in three dimensions. For full matrix problems, one finds the value d=2 
for the best decompositions such as those used in SCALAPACK described in Chapter 20. 
Applying equation (4.3), we find that S(Nproc) increases linearly with  Nproc  as long as 
Nproc is increased with fixed fcomm which implies fixed grain size n, while tcomm and tfloat 
are naturally fixed. This is scaled speedup where the problem size N = n Nproc also 
increases linearly with Nproc. 
The continuing success of parallel computing even on very large machines can be 
considered as a consequence of equations (4.3) and (4.5). Note that the formula for fcomm 
(whose numerical value we could aim to keep around 10% or lower) only depends on 
local node parameters and not on the number of processors. Here we consider the grain 
size n as reflecting the amount of local memory. Thus as we scale up the number of 
processors keeping the node hardware and application size n fixed, we will get scaling 
performance – speedup proportional to Nproc. 
This simple problem is perhaps the one where the parallel issues are most obvious; 
however it is not the one where the parallel performance is easiest to obtain as the small 
computation load of the update equation (4.1) makes the communication overhead 
relatively more important. There is a fortunate general rule that as one increases the 
complexity of a problem, the computation needed grows faster than the communication 
overhead and we will illustrate this below. Jacobi iteration does have perhaps the smallest 
communication for problems of this class. However it has one of largest ratios of 
communication to computation and correspondingly high parallel overhead. 
Note one sees the same effect on a hierarchical (cache) memory machine, where 
problems such as Jacobi Iteration for simple equations can perform poorly as the number 
of operations performed on each word fetched into cache is proportional to number of 
links per entity and this is small (four in the 2-D mesh considered above) for this problem 
class. 
 
4.3 Communication Overheads for More General Update Stencils 
It is instructive to consider in detail how the above analysis is altered as one changes the 
update formula of equation (4.1). Consider first using fourth order differencing to 



approximate ∇2 in Poisson’s equation. Then as illustrated in Figure 4.7, we need to 
communicate twice as many points into halo cells. However the overhead fcomm is not 
changed significantly from its value of equation (4.4) for the computation needed to 
update each point is also doubled and the ratio of communication to computation is 
roughly unchanged. 

 
Figure 4.7: Communication Structure for nine-point stencil 

 
We can now systematically increase the size of the stencil and find how fcomm changes. In 
the case explained below, where the grid points are replaced by particles, this 
corresponds to ratcheting up the range of force between the particles. 

 
Figure 4.8: Communication Structure as a function of stencil size. The figure shows 4 

stencils with from left to right, range l = 1,1,2,3. 
We find that the communication overhead decreases systematically as shown in Figure 
4.8 as the range of the force increases. For a range of l (measured in units of grid 
spacings), one finds in this 2D case, 

fcomm ∝ tcomm/(l √n tfloat)   
This is valid for l which is large compared to 1 but smaller than the length scale 
corresponding to region stored in each processor. In the interesting limit of an infinite 
range ( l→∞) force, the analysis needs to be redone and one finds a result that is 
independent of the geometric dimension 

fcomm ∝ tcomm/(n tfloat)  (4.6) 



which is of the general form of equation (4.5) with complexity dimension d=1. This is 
the best-understood case where the geometric and complexity dimensions are different. 
The overhead formula of equation (4.6) corresponds to the computationally intense O(N2) 
algorithms for evolving N-body problems. The amount of computation is so large that the 
ratio of communication to computation is extremely small. This observation is at the 
heart of the success of special purpose machines such as GRAPE from the University of 
Tokyo [http://grape.c.u-tokyo.ac.jp/grape/].  The one teraflop GRAPE 4 won the Gordon 
Bell prize twice and the GRAPE 5 took the cost effectiveness award in 1999 (at $7 per 
megaflop). The 100 teraflop GRAPE 6 was completed in 2000 and won another Gordon 
Bell award! The modest memory and communication needs of the N body problem are 
some of the reasons enabling these powerful machines, which outperform on this 
problem any of the more general-purpose parallel computers. Of course the specialized 
GRAPE architecture limits the problems to which it is applicable.  
 
4.4 Applications as Basic Complex Systems 
 
Above we already showed how one could discuss the parallel issues for several different 
problems (here particle dynamics and local discretization for partial differential 
equations). This is generally true as the parallel issues depend not on the detailed science 
or numeric algorithm but on overall characteristics of the application. 

 
Figure 4.9: A Simple basic complex system with a set of entities with nearest neighbor 

linkage to at most four others. 
 
So it makes sense to generalize the above discussion in terms of both general principles 
applicable to very many parallel computing problems and special features of the 
particular two-dimensional structure seen in Poisson's equation. It is useful to think of an 
application as a "complex system" or a linked set of entities and this way of thinking can 
relate the parallelelization strategy of seemingly very different problems. In particular, 
many other applications have a similar computational structures to the Laplace or Poisson 
equation of the previous sections.  
Consider first the 2D Ising Model, where the mesh of Figure 4.9 is now not an array of 
discretized field values but a fixed grid of spins with a nearest neighbor connection for 
the interaction (forces) between them. The Ising model has a similar geometric structure 
to equation (4.1) but the physics and numerical procedure show many differences from 
Poisson's equation. The grid points in the Ising model are physically real spins where as 
in the Poisson case, the grid points are artifacts of the numerical procedure. The nearest 
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neighbor local connection in the Ising case corresponds to a physical force law while it 
follows from the differencing approximation to a partial derivative in Poisson's case.  
Further the usual numerical approach to the Ising Model uses a Monte Carlo method 
rather than a differential equation to express the dynamics of the system. Further the 
iterative process is not a perturbative solution to an exact Matrix problem as in Poisson’s 
equation. Rather the iterator counts Monte Carlo sweeps as one accumulates integration 
points to decrease the statistical error, which is inversely proportional to the square root 
of the number of sweeps. However these differences which are so important to the 
underlying science do not affect very much many of the issues that come up in discussing 
appropriate parallelization strategies and the needed hardware and software systems. 
Even closer to our Poisson equation would be an application the solved a simple wave 
equation (or Maxwell's equations) in a two dimensional domain. Here we see an identical 
computational structure with the perturbative iteration in the sparse matrix solution 
replaced by stepping through a discretized time variable. Yet another rather similar 
structure can be found in cellular automata problems. 

  
We can extend this very simple problem is several ways and some of these are 

explored in Chapter 16. For instance finite element problems have a similar mesh that can 
be quite irregular (compared to the uniform geometry of most finite difference problems) 
and this brings load balancing to the fore as an important issue. Particle dynamics 
problems with a short-range force can exhibit similar structure as discussed for Figure 
(4.8) but with a dynamic irregular structure and a variable number of links per entity. An 
obvious and important generalization of the Poisson structure is to higher dimensions 
with three and even four-dimensional structures. Here we have already stated in equation 
(4.5), a general form for the communication overhead.  This equation applied for d=3 
shows an overhead decreasing like n1/3 – slower than for the 2D case discussed in detail 
above. This suggests values like n ≈ 106 are needed in 3D in order to match as good a 
performance as the much smaller n ≈ 104 in 2D. Note that in Chapter 8, we describe two 
physics examples – numerical relativity and computational QCD where the basic mesh is 
four-dimensional. The many partial differential equation applications in Chapters 5, 6, 7 
and 8 also always have a richer structure at each grid or finite element mesh point than 
the single value of Poisson’s equation. For instance QCD has 3 by 3 complex matrices 
representing “gluons” and vectors representing quarks. Computational fluid dynamics is 
usuallyformulated in terms of 5 degrees of freedom at each point. In these examples there 
is much more computation involved in the basic update replacing equation (4.1) but as 
we have explained that actually tends to reduce the parallel overheads as communication 
tend to scale like the number of degrees of freedom at each point. The computational 
update time complexity per point usually increases faster than this. 

  So we have seen that is helpful to consider many problems as linked entities 
arranged in one, two three or higher dimensional geometries. This linkage was "short-
range" (a few links per entity) in the examples we discussed but one of course finds 
examples that span the gamut of possibilities. Particles interacting by a long-range 
gravitational force illustrate a case with many links per entity. This example using the 
simple O(N2

particle) algorithm discussed at the end of Section 4.3 has very different 
properties from the short-range case. In particular the performance of this problem is 
excellent on both distributed and hierarchical memory machines. There are many (of 



order Nparticle) computations for any point stored in cache and even though the 
communication appears heavy in a distributed memory machine, the above analysis 
shows a low ratio of communication to computation. This type of long-range problem is 
found in a variety of fields, which are far from particle dynamics but still have the same 
computational structure. We give one interesting example of an O(N2

particle) algorithm in 
Chapter 8 – the Greens function approach to the simulation of earthquakes. Such partial 
differential equation solvers become integral equations over the domain boundaries with 
the full linkage between the element mesh on the boundary. Some applications involving 
determination of correlation function also have this fully connected structure between the 
points in the computation. 

The N body example can be used to illustrate another important point. Namely a 
given physical problem can look quite different depending on the numerical formulation. 
The natural O(N2

particle) algorithm is often not the best approach to the simulation of 
gravitating particles, and for large problems, one usually adopts the so called fast 
multipole method with O(Nparticle) or O(NparticlelogNparticle) )  behavior. This again shows 
that one needs to choose parallel algorithms carefully; the lowest communication or even 
the lowest communication to calculation ratio may not be the best choice. A simpler 
application illustrating the same issue is Poisson's equation, which can often be solved by 
either iterative local methods such as Jacobi or conjugate gradient, or by the FFT (Fast 
Fourier Transform). In both cases the obvious approach has a simpler complex system 
structure while the fast algorithm has a more complicated tree structure. This emphasizes 
that a computational scientists use their skill to convert a given application into a 
numerical system and it is the structure of the latter that determines the key parallel 
computing issues. 

 
4.5 Time Stepped and Event Driven Simulations 

Above we have noted the rich spatial or geometric structure of applications. Two 
rather distinct simulation methods, time-stepped and event-driven, correspond to different 
temporal structures. Most of the examples in this book correspond to the time stepped 
case where the entities in a complex system are evolved together and synchronized 
globally either by the concept of time or something essentially equivalent like an iteration 
or Monte Carlo sweep. This is of course very reasonable, as it is "how nature works". In 
the early days of parallel computing, there were concerns that the global synchronization 
implied by the time-stepped approach would lead to uncontrollable overheads. This is not 
true, for it can be seen that as described at the end of Section 4.1 for the simplest nearest 
neighbor Poisson equation, global time synchronization is implied by the local 
synchronization of neighboring nodes, either by exchanging messages or the equivalent 
shared memory mechanism. This synchronization mechanism is itself fully parallel (with 
no "hotspots" in proper implementations) and so introduces no serious parallel computing 
overheads. Such efficient synchronization is present in all such problems where there is a 
time or iteration count to provide algorithmic synchronization. Then correct 
implementation of such an algorithm with natural synchronization points, implies that the 
parallel program needs no special additional synchronization. Message passing systems 
like MPI naturally have such synchronization barriers built in but in other programming 
models (such as active messages and OpenMP) require explicit user attention to this 
issue. 



The military makes substantial use of event-driven simulations in the field of 
Forces Modeling and we give an example if this in Section 8.11. Here one tends not to 
simulate systems in terms of their fundamental constructs (atoms, grid-points etc.) but 
rather in terms of macroscopic constructs such as vehicles, mines, battalions etc, in the 
war gaming example. These system components are naturally formulated in terms of 
objects interacting with events, which are queued (often in a distributed fashion) and 
executed either in real time (the natural case when there is "hardware in the loop") or 
according to a global virtual time. Here we do find potentially serious problems with the 
overhead of global synchronization and very ingenious techniques have been developed. 
One important strategy – termed Time Warp – involves simulating the system in terms of 
interacting time stamped events. Block data decomposition is typically used for 
parallelism just as in the synchronous and loosely synchronous case. Now however there 
are no straightforward ways to ensure all events have been received and so 
unambiguously decide to let the simulation proceed in any one processor. The Time 
Warp approach optimistically proceeds with the simulation marching forward in time in 
each processor with whatever events are available. Correctness is guaranteed by 
recording system state from time to time and “rolling back’ to this old (correct) state if an 
event arrives with an earlier time stamp than current processor simulation time. The 
particular minefield simulation CMS application described in Section 8.11 was 
successfully parallelized because the different entities in the simulation are largely 
independent and so there was essentially no synchronization difficulties. 

Currently one of the most powerful parallel event-driven approaches is the 
SPEEDES system from Metron Corporation discussed in Section 8.11 and there are 
overall frameworks like HLA and RTI defined for this field. HLA (High Level 
Architecture) and RTI (Run Time Infrastructure) are object models similar to those 
described in Chapter 13. However no software system for event driven simulations 
enjoys the universal acceptance and relatively clear methodology for getting good 
performance shown by MPI in the time-stepped case. Some recent work at Los Alamos 
National Laboratory [http://www.lanl.gov/orgs/d/simulation.shtml] is potentially of great 
importance. These researchers have shown that some applications traditionally 
approached by event-driven simulations (such as a large scale traffic models) can be 
tackled as loosely synchronous problems with excellent scaling parallel performance. 

Circuit simulation is an interesting application area, which can be tackled by 
either simulation technique. Obviously a circuit has a natural time, which can be iterated 
over with at each step every device component being updated. This approach can be 
inefficient as on most of iterations, only a tiny fraction of the components are active. The 
event-driven approach can then be the most effective approach to circuit simulations as 
one automatically only updates those devices affected by queued events. This analysis is 
clear for sequential machines but the difficult parallelism of event-based systems makes 
the parallel situation less clear. 
 
4.6 Temporal Structure of Applications 

It has been found useful to divide the temporal structure of numerical systems into 
four broad areas 
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• Synchronous:  Here each point can be evolved in synchronous mode as is natural on 
a SIMD machine. The temporal synchronization is on a point-by-point basis. Most of 
the simple examples discussed above are of this type. 

• Loosely Synchronous: Here the temporal synchronization is on a sub-domain basis 
and this is the natural form of SPMD (Single Program Multiple Data) 
implementations such are all HPF and most MPI programs. This is the dominant case 
for today's major applications as essentially any serious geometrical or other 
irregularity converts a problem, which is in its simplest mode synchronous to loosely 
synchronous form. In particular finite element problems, or finite difference codes 
with adaptive meshes are loosely synchronous. Domain decomposition in Chapter 6 
has this structure, as does the fast multipole approach to particle dynamics discussed 
earlier. The simple O(N2

particle) particle dynamics algorithm is however synchronous. 
• Asynchronous: Event driven simulations fall into class, which include those 

problems, which are not formulated in terms of a stepped, time or iterator associated 
with each system entity. As discussed above, asynchronous problems can be very 
hard to parallelize whereas in principle loosely synchronous applications always run 
efficiently if they are large enough. 

• Pleasingly Parallel: The time or iteration evolution structure of a problem can impact 
greatly the appropriate software and hardware architecture. However there is one 
important special case where this is not true -- namely cases where the entities in the 
system are essentially disconnected. Then each entity can be evolved more or less 
separately and there is no significant synchronization overhead whatever the temporal 
differences between the entities. One typically uses a "farm" architecture with worker 
nodes somehow getting given chunks of the simulation (entities) to do as they finish 
their previous assignment. This has very non-trivial application dependent 
implementation issues but such problems will always parallelize well if the problem 
is large enough. Good examples of this problem class come from the Internet where 
both large web servers and the backend of database search engines such as Inktomi 
and Google are of this type. Note this problem class was often termed 
"embarrassingly parallel" in the past. 

 
4.7 Summary of Parallelization of Basic Complex Systems 

So let us take stock of where we are. Problems are set up as computational or 
numerical systems and we have discussed one set of such systems, which consist of a 
space of linked entities. These we termed "basic complex systems" and characterized 
them by their possibly dynamic spatial (geometric) and temporal structure. We have 
noted the difference between the structure of the original problem and that of 
computational system derived from it. We can summarize much of the past experience in 
parallelizing applications by the conclusion 
 Synchronous and Loosely Synchronous problems perform well on large parallel 
machines as long as the problem is large enough. For a given machine, there is a typical 
sub-domain size (i.e. the grain size or size of that part of the problem stored on each 
node) above which one can expect to get good performance. There will be a roughly 
constant ratio of parallel speedup to Nproc if one scales the problem with fixed sub-
domain size and total size proportional to Nproc. 



 Unfortunately although this assertion is probably true in most important cases, it 
has proven very difficult to design and implement productive programming environments 
that allow the user to realize this goal. That is why we need to write this book even 
though in principle success is often guaranteed ……. 
 
4.8 Metaproblems 
 Several applications can be solely discussed in terms of computational systems, 
which fall into the basic complex system type discussed above. However this description 
is often incomplete although it does properly describe key computational modules that 
are part if not all of the complete application. More generally, one finds metaproblems, 
which are built up from multiple modules that each can be classified as basic complex 
systems. Such metaproblems are particularly interesting today, as many of them are the 
natural applications for distributed systems such as computational grids. One tends to run 
basic complex systems on classic shared or distributed memory machines as these have 
the required low latency and high bandwidth communication. Separate modules in a 
metaproblem can often be run on geographically separated machines, as they tend to have 
much less stringent communication requirements that those needed in the simulation of 
basic complex systems. Important examples of metaproblems are: 
• The 3-way linkage of data store, simulation and visualization subsystems forms one 

of the most generic metaproblems, which is seen in many different disciplines. 
Section 8.10 describes an application of this type with their synchrotron light source. 

• Multidisciplinary Applications: As discussed in Chapter 22, there is a growing trend 
in modern engineering to sophisticated system-wide optimization. For aircraft design, 
one might simultaneously optimize over fluid flow, structural, acoustic and 
electromagnetic properties. Each of these corresponds to a separate module in the 
discussion above. The DoD initiative in SBA (Simulation Based Acquisition – 
Section 8.11) would need such metaproblems and we illustrate this type of 
application in Figure 4.10. 

• An early success of the CASA gigabit network was the simulation of a coupled 
ocean-atmosphere metaproblem and there is general understanding that such 
approaches are essential for reliable long-range climate forecasts. 

• The forces modeling community often builds such metaproblems where each 
component is a separate focused simulation. In an example given in Section 8.11, one 
simulation engine is used to describe mine fields and another describes squads of 
vehicles. You can imagine that these simulations have interesting interactions. In this 
field, metaproblems are called federations and the basic simulations are termed 
federates. As mentioned above, this community has recently adopted sophisticated 
software standards (RTI for Run Time Infrastructure and HLA for High Level 
(object) Architecture) to support the federation of multiple event driven simulations. 



 
Figure 4.10. The linked modules in a typical metaproblem. We show three large-scale 
parallel modules which can be expected to execute individually on massively parallel 
systems. The control module is logically separate and may not need high performance 

computing. 
 

Note that basic complex systems often have huge potential for parallelism with a 
complex 3D simulation perhaps exhibiting a billion independent degrees of freedom, 
which are candidates for data parallel systems. Metaproblems are different as one 
typically has but a few independent modules and further the linkage of these modules is 
often timed asynchronously and so naturally supported by different software concepts 
than the data parallel subcomponents. So this way one finds a metaproblem with each 
module using internally MPI, OpenMP, HPF or equivalent while the modules are linked 
together thorough channels using perhaps GridFTP (high performance Grid standard), 
Web Services and SOAP (W3C distributed object and message model), IIOP (CORBA) 
or RMI (Java). We discuss these different software models more completely in terms of 
object-based approaches and problem solving environments in Chapters 13 and 14. 

 
4.9 Conclusion 
 
At the start of this chapter, we posed the problem of understanding the principles 
governing the type of applications that could be parallelized. We addressed this by first 



identifying basic (or “atomic”) complex systems. We discussed their parallelism in terms 
of their spatial and temporal structure which we summarized in Section 4.7 in terms of 
the application characteristics that govern the parallelism. The majority of large scale 
scientific and engineering codes can be parallelized. We illustrated these conclusions 
with examples and a simple performance model given in the earlier sections of this 
chapter. In the last section 4.8, we introduced metaproblems as the general application 
class defined in terms of loosely coupled aggregates of basic complex systems. We noted 
that this type of application was naturally suitable for distributed Grid architectures. This 
rather simplified discussion is complemented by the analysis of Section 8.12, which looks 
at some 50 particular applications and summarizes their computational structure. 
Chapters 5, 6 and 7 and sections 8.1 to 8.11 describe 14 application areas in detail. 
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