
PDF-OUTPUTJournal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 1»

J Supercomput
DOI 10.1007/s11227-007-0125-5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Runtime support for scable programming in Java

Sang Boem Lim · Bryan Carpenter · Geoffrey Fox ·
Han-Ku Lee

© Springer Science+Business Media, LLC 2007

Abstract The paper research is concerned with enabling parallel, high-performance
computation—in particular development of scientific software in the network-aware
programming language, Java. Traditionally, this kind of computing was done in
Fortran. Arguably, Fortran is becoming a marginalized language, with limited eco-
nomic incentive for vendors to produce modern development environments, optimiz-
ing compilers for new hardware, or other kinds of associated software expected of
by today’s programmers. Hence, Java looks like a very promising alternative for the
future.

The paper will discuss in detail a particular environment called HPJava. HPJava
is the environment for parallel programming—especially data-parallel scientific
programming—in Java. Our HPJava is based around a small set of language exten-
sions designed to support parallel computation with distributed arrays, plus a set of
communication libraries. A high-level communication API, Adlib, is developed as
an application level communication library suitable for our HPJava. This communi-
cation library supports collective operations on distributed arrays. We include Java
Object as one of the Adlib communication data types. So we fully support commu-
nication of intrinsic Java types, including primitive types, and Java object types.

S.B. Lim (�)
Department of Advanced Technology Fusion, Konkuk University, Seoul, Republic of Korea
e-mail: slim@kisti.re.kr

B. Carpenter
OMII, University of Southampton, Southampton SO17 1BJ, UK
e-mail: dbc@ecs.soton.ac.uk

G. Fox
Pervasive Technology Labs at Indiana University, Bloomington, IN 47404-3730, USA
e-mail: gcf@indiana.edu

H.-K. Lee
School of Internet and Multimedia Engineering, Konkuk University, Seoul, Republic of Korea
e-mail: hlee@konkuk.ac.kr

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 2»

S.B. Lim et al.

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Keywords ???

1 Introduction

The Java programming language is becoming the language of choice for imple-
menting Internet-based applications. Undoubtedly Java provides many benefits—
including access to secure, platform-independent applications from anywhere on the
Internet. Java today goes well beyond its original role of enhancing the functionality
of HTML documents. Few Java developers today are concerned with applets. Instead
it is used to develop large-scale enterprise applications, to enhance the functionality
of World Wide Web servers, to provide applications for consumer device such as cell
phones, pagers and personal digital assistants.

Amongst computational scientists Java may well become a very attractive lan-
guage to create new programming environments that combine powerful object-
oriented technology with potentially high performance computing. The popularity
of Java has led to it being seriously considered as a good language to develop scien-
tific and engineering applications, and in particular for parallel computing [1, 6, 7].
Sun’s claims on behalf of Java, that is simple, efficient and platform-natural—
a natural language for network programming—make it attractive to scientific pro-
grammers who wish to harness the collective computational power of parallel plat-
forms as well as networks of workstations or PCs, with interconnections ranging
from LANs to the Internet. This role for Java is being encouraged by bodies like Java
Grande [8].

Over the last few years supporters of the Java Grande Forum have been working
actively to address some of the issues involved in using Java for technical computa-
tion. The goal of the forum is to develop consensus and recommendations on possi-
ble enhancements to the Java language and associated Java standards, for large-scale
(“Grande”) applications. Through a series of ACM-supported workshops and confer-
ences the forum has helped stimulate research on Java compilers and programming
environments.

Our HPJava is an environment for parallel programming, especially suitable for
data parallel scientific programming. HPJava is an implementation of a programming
model we call the HPspmd nodel. It is a strict extension of its base language, Java,
adding some predefined classes and some extra syntax for dealing with distributed
arrays.

2 Related works

UC Berkeley is developing Titanium [13] to add a comprehensive set of parallel ex-
tensions to the Java language. Support for a shared address space and compile-time
analysis of patterns of synchronization is supported.

The Timber [12] project is developed from Delft University of Technology. It ex-
tends Java with the Spar primitives for scientific programming, which include mul-
tidimensional arrays and tuples. It also adds task parallel constructs like a foreach
construct.

Jade [5] from University of Illinois at Urbana-Champaign focuses on message-
driven parallelism extracted from interactions between a special kind of distributed

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 3»

Runtime support for scable programming in Java

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

object called a Chare. It introduces a kind of parallel array called a ChareArray. Jade
also supports code migration.

HPJava differs from these projects in emphasizing a lower-level (MPI-like) ap-
proach to parallelism and communication, and by importing HPF-like distribution
formats for arrays. Another significant difference between HPJava and the other sys-
tems mentioned above is that HPJava translates to Java byte codes, relying on clusters
of conventional JVMs for execution. The systems mentioned above typically translate
to C or C++. While HPJava may pay some price in performance for this approach, it
tends to be more fully compliant with the standard Java platform.

3 Features of HPJava

HPJava is a strict extension of its base language, Java, adding some predefined classes
and some extra syntax for dealing with distributed arrays. HPJava is thus an environ-
ment for parallel programming, especially suitable for data parallel scientific pro-
gramming. An HPJava program can freely invoke any existing Java classes without
restrictions because it incorporates all of Java as a subset.

Figure 1 is a simple HPJava program. It illustrates creation of distributed arrays,
and access to their elements. An HPJava program is started concurrently in some set
of processes that are named through grids objects. The class Procs2 is a standard
library class, and represents a two dimensional grid of processes. During the creation
of p, P by P processes are selected from the active process group. The Procs2
class extends the special base class Group which represents a group of processes
and has a privileged status in the HPJava language. An object that inherits this class
can be used in various special places. For example, it can be used to parameterize
an on construct. The on(p) construct is a new control construct specifying that the
enclosed actions are performed only by processes in group p.

The distributed array is the most important feature HPJava adds to Java. A dis-
tributed array is a collective array shared by a number of processes. Like an ordinary
array, a distributed array has some index space and stores a collection of elements of
fixed type. The type signature of an r-dimensional distributed array involves double

Fig. 1 A parallel matrix addition

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 4»

S.B. Lim et al.

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Fig. 2 The HPJava range
hierarchy

brackets surrounding r comma-separated slots. A hyphen in one of these slots indi-
cates the dimension is distributed. Asterisks are also allowed in these slots, specifying
that some dimensions of the array are not to be distributed, i.e. they are “sequential”
dimensions (if all dimensions have asterisks, the array is actually an ordinary, non-
distributed, Fortran-like, multidimensional array—a valuable addition to Java in its
own right, as many people have noted [10, 11]).

In HPJava the subscripts in distributed array element references must normally be
distributed indexes (the only exceptions to this rule are subscripts in sequential di-
mensions, and subscripts in arrays with ghost regions, discussed later). The indexes
must be in the distributed range associated with the array dimension. This strict re-
quirement ensures that referenced array elements are held by the process that refer-
ences them.

The variables a, b, and c are all distributed array variables. The creation expres-
sions on the right hand side of the initializers specify that the arrays here all have
ranges x and y—they are all M by N arrays, block-distributed over p. We see that
mapping of distributed arrays in HPJava is described in terms of the two special
classes Group and Range.

The Range is another special class with privileged status. It represents an integer
interval 0, . . . ,N − 1, distributed somehow over a process dimension (a dimension
or axis of a grid like p). BlockRange is a particular subclass of Range. The ar-
guments in the constructor of BlockRange represent the total size of the range and
the target process dimension. Thus, x has M elements distributed over first dimension
of p and y has N elements distributed over second dimension of p.

HPJava defines a class hierarchy of different kinds of range object (Fig. 2). Each
subclass represents a different kind of distribution format for an array dimension.
The simplest distribution format is collapsed (sequential) format in which the whole
of the array dimension is mapped to the local process. Other distribution formats
(motivated by High Performance Fortran) include regular block decomposition, and
simple cyclic decomposition. In these cases the index range (thus array dimension)
is distributed over one of the dimensions of the process grid defined by the group
object. All ranges must be distributed over different dimensions of this grid, and if

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 5»

Runtime support for scable programming in Java

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

a particular dimension of the grid is targeted by none of the ranges, the array is said
to be replicated in that dimension.1 Some of the range classes allow ghost extensions
to support stencil-based computations.

A second new control construct, overall, implements a distributed parallel
loop. It shares some characteristics of the forall construct of HPF. The symbols i
and j scoped by these constructs are called distributed indexes. The indexes iterate
over all locations (selected here by the degenerate interval “:”) of ranges x and y.

HPJava also supports Fortran-like array sections. An array section expression has
a similar syntax to a distributed array element reference, but uses double brackets.
It yields a reference to a new array containing a subset of the elements of the par-
ent array. Those elements can be accessed either through the parent array or through
the array section—HPJava sections behave something like array pointers in Fortran,
which can reference an arbitrary regular section of a target array. As in Fortran, sub-
scripts in section expressions can be index triplets. HPJava also has built-in ideas of
subranges and restricted groups. These describe the range and distribution group of
sections, and can be also used in array constructors on the same footing as the ranges
and grids introduced earlier. They allow HPJava arrays to reproduce any mapping
allowed by the ALIGN directive of HPF.

4 Usage of high-level communication library

In this section we discuss extra syntax and usage of high-level communication li-
brary in HPJava programs. Two characteristic collective communication methods
remap() and writeHalo() are described as examples.

The general purpose matrix multiplication routine (Fig. 3) has two temporary ar-
rays ta, tb with the desired distributed format. This program is also using informa-
tion which is defined for any distributed array: grp() to fetch the distribution group
and rng() to fetch the index ranges.

This example relies on a high-level Adlib communication schedule that deals ex-
plicitly with distributed arrays; the remap() method. The remap() operation can
be applied to various ranks and type of array. Any section of an array with any allowed
distribution format can be used. Supported element types include Java primitive and
Object type. A general API for the remap function is

void remap (T [[]] dst, T [[]] src) ;
void remap (T [[-]] dst, T [[-]] src) ;
void remap (T [[-,-]] dst, T [[-,-]] src) ;
...

where T is a Java primitive or Object type. The arguments here are zero-
dimensional, one-dimensional, two-dimensional, and so on. We will often summarize
these in the shorthand interface:

void remap (T # dst, T # src) ;

1So there is no direct relation between the array rank and the dimension of the process grid: collapsed
ranges means the array rank can be higher; replication allows it to be lower.

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 6»

S.B. Lim et al.

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Fig. 3 A general Matrix multiplication in HPJava

where the signature T # means any distributed array with elements of type T (This
syntax is not supported by the current HPJava compiler, but it supports method sig-
natures of this generic kind in externally implemented libraries—i.e. libraries im-
plemented in standard Java. This more concise signature does not incorporate the
constraint that dst and src have the same rank—that has to be tested at run-time.)

As another example, Fig. 4 is a HPJava program for the Laplace program that
uses ghost regions. It illustrates the use the library class ExtBlockRange to create
arrays with ghost extensions. In this case, the extensions are of width 1 on either side
of the locally held “physical” segment. Figure 5 illustrates this situation.

From the point of view of this paper the most important feature of this example is
the appearance of the function Adlib.writeHalo(). This is a collective commu-
nication operation. This particular one is used to fill the ghost cells or overlap regions
surrounding the “physical segment” of a distributed array. A call to a collective oper-
ation must be invoked simultaneously by all members of some active process group
(which may or may not be the entire set of processes executing the program). The
effect of writeHalo is to overwrite the ghost region with values from processes
holding the corresponding elements in their physical segments. Figure 6 illustrates
the effect of executing the writeHalo function. More general forms of write-
Halo may specify that only a subset of the available ghost area is to be updated,
or may select cyclic wraparound for updating ghost cells at the extreme ends of the
array.

If an array has ghost regions the rule that the subscripts must be simple distributed
indices is relaxed; shifted indices, including a positive or negative integer offset, allow
access to elements at locations neighboring the one defined by the overall index.

We will discuss implementation issues of high-level communication libraries in
following section.

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 7»

Runtime support for scable programming in Java

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Fig. 4 Solution of Laplace equation by Jacobi relaxation

Fig. 5 Example of a distributed
array with ghost regions

5 Implementation of collectives

In this section we will discuss Java implementation of the Adlib collective operations.
For illustration we concentrate on the important Remap operation. Although it is a
powerful and general operation, it is actually one of the more simple collectives to
implement in the HPJava framework.

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 8»

S.B. Lim et al.

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Fig. 6 Illustration of the effect
of executing the writeHalo
function

General algorithms for this primitive have been described by other authors in
the past. For example it is essentially equivalent to the operation called Regu-
lar_Section_Copy_Sched in [2]. In this section we want to illustrate how this kind
of operation can be implemented in term of the particular Range and Group classes
of HPJava, complemented by suitable set of messaging primitives.

All collective operations in the library are based on communication schedule ob-
jects. Each kind of operation has an associated class of schedules. Particular instances
of these schedules, involving particular data arrays and other parameters, are created
by the class constructors. Executing a schedule initiates the communications required
to effect the operation. A single schedule may be executed many times, repeating the
same communication pattern. In this way, especially for iterative programs, the cost
of computations and negotiations involved in constructing a schedule can often be
amortized over many executions. This pattern was pioneered in the CHAOS/PARTI
libraries [4]. If a communication pattern is to be executed only once, simple wrap-
per functions are made available to construct a schedule, execute it, then destroy it.
The overhead of creating the schedule is essentially unavoidable, because even in
the single-use case individual data movements generally have to be sorted and ag-
gregated, for efficiency. The data structures for this are just those associated with
schedule construction.

Constructor and public method of the remap schedule for distributed arrays of
float element can be summarized as follows:

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 9»

Runtime support for scable programming in Java

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

class RemapFloat extends Remap {
public RemapFloat (float # dst, float # src) {...}

public void execute() {...}
. . .

}

The # notation was explained in previous section.
The remap schedule combines two functionalities: it reorganizes data in the way

indicated by the distribution formats of source and destination array. Also, if the
destination array has a replicated distribution format, it broadcasts data to all copies
of the destination. Here we will concentrate on the former aspect, which is handled
by an object of class RemapSkeleton contained in every Remap object.

During construction of a RemapSkeleton schedule, all send messages, receive
messages, and internal copy operations implied by execution of the schedule are enu-
merated and stored in light-weight data structures. These messages have to be sorted
before sending, for possible message agglomeration, and to ensure a deadlock-free
communication schedule. These algorithms, and maintenance of the associated data
structures, are dealt with in a base class of RemapSkeleton called BlockMessS-
chedule. The API for the superclass is outlined in Fig. 7. To set-up such a low-level
schedule, one makes a series of calls to sendReq and recvReq to define the re-
quired messages. Messages are characterized by an offset in some local array seg-
ment, and a set of strides and extents parameterizing a multi-dimensional patch of
the (flat Java) array. Finally the build() operation does any necessary processing
of the message lists. The schedule is executed in a “forward” or “backward” direction
by invoking gather() or scatter().

In general Top-level schedules such as Remap, which deal explicitly with dis-
tributed arrays, are implemented in terms of some lower-level schedules such as
BlockMessSchedule that simply operate on blocks and words of data. These
lower-level schedules do not directly depend on the Range and Group classes. The
lower level schedules are tabulated in Table 1. Here “words” means contiguous mem-
ory blocks of constant (for a given schedule instance) size. “Blocks” means multidi-

Fig. 7 API of the class BlockMessSchedule

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 10»

S.B. Lim et al.

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

Table 1 Low-level Adlib schedules

Operations on “words” Operations on “blocks”

Point-to-point MessSchedule BlockMessSchedule

Remote access DataSchedule BlockDataSchedule

TreeSchedule BlockTreeSchedule

Tree operations RedxSchedule BlockRedxSchedule

Redx2Schedule BlockRedx2Schedule

mensional (r-dimensional) local array sections, parameterized by a vector of r extents
and a vector of memory strides. The point-to-point schedules are used to implement
collective operations that are deterministic in the sense that both sender and receiver
have advanced knowledge of all required communications. Hence Remap and other
regular communications such as Shift are implemented on top of BlockMessS-
chedule. The “remote access” schedules are used to implement operations where
one side must inform the other end that a communication is needed. These negotia-
tions occur at schedule-construction time. Irregular communication operations such
as collective Gather and Scatter are implemented on these schedules. The tree
schedules are used for various sorts of broadcast, multicast, synchronization, and re-
duction.

We will describe in more detail the implementation of the higher-level
RemapSkeleton schedule on top of BlockMessSchedule. This provides some
insight into the structure HPJava distributed arrays, and the underlying role of the
special Range and Group classes.

To produce an implementation of the RemapSkeleton class that works inde-
pendently of the detailed distribution format of the arrays we rely on virtual functions
of the Range class to enumerate the blocks of index values held on each processor.
These virtual functions, implemented differently for different distribution formats,
encode all important information about those formats. To a large extent the commu-
nication code itself is distribution format independent.

The range hierarchy of HPJava was illustrated in Fig. 2, and some of the relevant
virtual functions are displayed in the API of Fig. 8. Most methods optionally take
arguments that allow one to specify a contiguous or strided subrange of interest. The
Triplet and Block instances represent simple struct-like objects holding a few
int fields. Those integer files are describing respectively a “triplet” interval, and the
strided interval of “global” and “local” subscripts that the distribution format maps to
a particular process. In the examples here Triplet is used only to describe a range
of process coordinates that a range or subrange is distributed over.

Now the RemapSkeleton communication schedule is built by two methods
called sendLoop and recvLoop that enumerate messages to be sent and received re-
spectively. Fig. 9 sketches the implementation of sendLoop. This is a recursive
function—it implements a multidimensional loop over the rank dimensions of the
arrays. It is initially called with r = 0. An important thing to note is how this func-
tion uses the virtual methods on the range objects of the source and destination ar-
rays to enumerate blocks—local and remote—of relevant subranges, and enumer-
ates the messages that must be sent. Figure 10 illustrates the significance of some

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 11»

Runtime support for scable programming in Java

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

Fig. 8 Partial API of the class Range

Fig. 9 sendLoop method for Remap

of the variables in the code. When the offset and all extents and strides of a par-
ticular message have been accumulated, the sendReq() method of the base class
is invoked. The variables src and dst represent the distributed array arguments.

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 12»

S.B. Lim et al.

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

Fig. 10 Illustration of sendLoop operation for remap

The inquiries rng() and grp() extract the range and group objects of these ar-
rays.

Not all the schedules of Adlib are as “pure” as Remap. A few, like WriteHalo
have built-in dependency on the distribution format of the arrays (the existence of
ghost regions in the case of WriteHalo). But they all rely heavily on the methods
and inquiries of the Range and Group classes, which abstract the distribution format
of arrays. The API of these classes has evolved through C++ and Java versions of
Adlib over a long period.

In the HPJava version, the lower-level, underlying schedules like BlockMessS-
chedule (which are not dependent on higher-level ideas like distributed ranges and
distributed arrays) are in turn implemented on top of a messaging API, called mpjdev.
To deal with preparation of the data and to perform the actual communication, it
uses methods of the mpjdev like read(), write(), strGather(), strScat-
ter(), isend(), and irecv().

The write() and strGather() are used for packing the data and read()
and strScatter() are used for unpacking the data where two of those meth-
ods (read() and write()) are dealing with a contiguous data and the other two
(strGather() and strScatter()) are dealing with non-contiguous data. The
usage of strGather() is to write a section to the buffer from a multi-dimensional,
strided patch of the source array. The behaviour of strScatter() is opposite of
strGather(). It reads a section from the buffer into a multi-dimensional, strided
patch of the destination array. The isend() and irecv() are used for actual com-
munication.

6 Collective communications

In the previous section we described the Adlib communication implementation is-
sues with a characteristic collective operation example, remap(). In this section
we will overview functionalities of all collective operations in Adlib. The Adlib has
three main families of collective operation: regular communications, reduction oper-

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 13»

Runtime support for scable programming in Java

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

ations, and irregular communications. We discuss usage and high-level API overview
of Adlib methods.

6.1 Regular collective communications

We already described two characteristic example of the regular communications,
remap() and writeHalo(), in depth. In this section we describe other regular
collective communications.

The method shift() is a communication schedule for shifting the elements of
a distributed array along one of its dimensions, placing the result in another array. In
general we have the signatures:

void shift(T [[-]] destination, T [[-]] source,
int shiftAmount)

and

void shift(T # destination, T # source,
int shiftAmount, int dimension)

where the variable T runs over all primitive types and Object, and the notation T #
means a multiarray of arbitrary rank, with elements of type T . The first form applies
only for one dimensional multiarrays. The second form applies to multiarrays of any
rank. The shiftAmount argument, which may be negative, specifies the amount
and direction of the shift. In the second form the dimension argument is in the
range 0, . . . ,R − 1 where R is the rank of the arrays: it selects the array dimension
in which the shift occurs. The source and destination arrays must have the same
shape, and they must also be identically aligned. By design, shift() implements
a simpler pattern of communication than general remap(). The alignment relation
allows for a more efficient implementation. The library incorporates runtime checks
on alignment relations between arguments, where these are required.

The shift() operation does not copy values from source that would go past
the edge of destination, and at the other extreme of the range elements of
destination that are not targetted by elements from source are unchanged
from their input value. The related operation cshift() is essentially identical to
shift() except that it implements a circular shift, rather than an “edge-off” shift.

6.2 Reductions

Reduction operations take one or more distributed arrays as input. They combine the
elements to produce one or more scalar values, or arrays of lower rank. Adlib provides
a large set of reduction operations, supporting the many kinds of reduction available
as “intrinsic functions” in Fortran. Here we mention only a few of the simplest reduc-
tions. One difference between reduction operations and other collective operations is
reduction operations do not support Java Object type.

The maxval() operation simply returns the maximum of all elements of an array.
It has prototypes

t maxval (t # a)

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 14»

S.B. Lim et al.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

where t now runs over all Java numeric types—that is, all Java primitive types except
boolean. The result is broadcast to the active process group, and returned by the
function. Other reduction operations with similar interfaces are minval(), sum()
and product(). Of these minval() is minimum value, sum() adds the elements
of a in an unspecified order, and product() multiplies them.

The boolean reductions:

boolean any (boolean # a)
boolean all (boolean # a)
int count (boolean # a)

behave in a similar way. The method any() returns true if any element of a is true.
The method all() returns true if all elements of a are true. The method count()
returns a count of the number of true elements in a.

6.3 Irregular collective communications

Adlib has some support for irregular communications in the form of collective
gather() and scatter() operations. The simplest form of the gather operation
for one-dimensional arrays has prototypes

void gather(T [[-]] destination, T [[-]] source,
int [[-]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the
destination array. In pseudocode, the gather operation is equivalent to

for all i in {0, . . . ,N − 1} in parallel do
destination [i] = source [subscripts [i]] ;

where N is the size of the destination (and subscripts) array. If we are
implementing a parallel algorithm that involves a stage like

for all i in {0, . . . ,N − 1} in parallel do
a [i] = b [fun(i)] ;

where fun is an arbitrary function, it can be expressed in HPJava as

int [[-]] tmp = new int [[x]] on p ;
on(p)

overall(i = x for :)
tmp [i] = fun(i) ;

Adlib.gather(a, b, tmp) ;

where p and x are the distribution group and range of a. The source array may have
a completely unrelated mapping.

7 Application of HPJava

The multigrid method [3] is a fast algorithm for solution of linear and nonlinear prob-
lems. It uses a hierarchy or stack of grids of different granularity (typically with a geo-
metric progression of grid-spacings, increasing by a factor of two up from finest to
coarsest grid). Applied to a basic relaxation method, for example, multigrid hugely

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 15»

Runtime support for scable programming in Java

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

Fig. 11 Laplace equation with size of 5122

accelerates elimination of the residual by restricting a smoothed version of the error
term to a coarser grid, computing a correction term on the coarse grid, then interpo-
lating this term back to the original fine grid. Because computation of the correction
term on the fine grid can itself be handled as a relaxation problem, the strategy can
be applied recursively all the way up the stack of grids.

The experiments were performed on the SP3 installation at Florida State Univer-
sity. The system environment for SP3 runs were as follows:

− System: IBM SP3 supercomputing system with AIX 4.3.3 operating system and
42 nodes.

− CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of shared
memory.

− Network MPI Settings: Shared “css0” adapter with User Space(US) communica-
tion mode.

− Java VM: IBM ’s JIT.
− Java Compiler: IBM J2RE 1.3.1.

For best performance, all sequential and parallel Fortran and Java codes were com-
piled using -O5 or -O3 with -qhot or -O (i.e. maximum optimization) flag.

First we present some results for the computational kernel of the multigrid code,
namely unaccelerated red-black relaxation algorithm. Figure 11 gives our results for
this kernel on a 512 by 512 matrix. The results are encouraging. The HPJava version
scales well, and eventually comes quite close to the HPF code (absolute megaflop
performances are modest, but this feature was observed for all our codes, and seems
to be a property of the hardware).

The flat lines at the bottom of the graph give the sequential Java and Fortran per-
formances, for orientation. We did not use any auto parallelization feature here. Cor-
responding results for the complete multigrid code are given in Fig. 12. The results

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 16»

S.B. Lim et al.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

Fig. 12 Multigrid solver with size of 5122

here are not as good as for simple red-black relaxation-both HPJava speed relative to
HPF, and the parallel speedup of HPF and HPJava are less satisfactory.

The poor performance of HPJava relative to Fortran in this case can be attributed
largely to the naive nature of the translation scheme used by the current HPJava sys-
tem. The overheads are especially significant when there are many very tight overall
constructs (with short bodies). Experiments done elsewhere [9] leads us to believe
these overheads can be reduced by straightforward optimization strategies which,
however, are not yet incorporated in our source-to-source translator.

The modest parallel speedup of both HPJava and HPF is due to communication
overheads. The fact that HPJava and HPF have similar scaling behavior, while ab-
solute performance of HPJava is lower, suggests the communication library of HP-
Java is slower than the communications of the native SP3 HPF (otherwise the perfor-
mance gap would close for larger numbers of processors). This is not too surprising
because Adlib is built on top of a portability layer called mpjdev, which is in turn lay-
ered on MPI. We assume the SP3 HPF is more carefully optimized for the hardware.
Of course the lower layers of Adlib could be ported to exploit low-level features of
the hardware.

8 HPJava with GUI

In this section we will illustrate how our HPJava can be used with a Java graphical
user interface. The Java multithreaded implementation of mpjdev makes it possible
for HPJava to cooperate with Java AWT. We ported the mpjdev layer to communi-
cate between the threads of a single Java Virtual Machine. The threads cooperate in
solving a problem by communicating through our communication library, Adlib, with
pure Java version of the mpjdev. By adding pure Java version of the mpjdev to the
Adlib communication library, it gives us the possibility to use the Java AWT and other

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 17»

Runtime support for scable programming in Java

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

B
&

W
 IN

 P
R

IN
T

Fig. 13 A 2 dimensional inviscid flow simulation

Java graphical packages to support a GUI and visualize graphical output of the par-
allel application. Visualization of the collected data is a critical element in providing
developers or educators with the needed insight into the system under study.

For test and demonstration of multithreaded version of mpjdev, we implemented
computational fluid dynamics (CFD) code using HPJava which simulates 2 dimen-
sional inviscid flow through an axisymmetric nozzle (Fig. 13). The simulation yields
contour plots of all flow variables, including velocity components, pressure, Mach
number, density and entropy, and temperature. The plots show the location of any
shock wave that would reside in the nozzle. Also, the code finds the steady state
solution to the 2 dimensional Euler equations, seen below.

∂U

∂t
+ ∂E

∂x
+ ∂F

∂y
= αH (1)

Here U =

⎛
⎜⎜⎝

ρ

ρu

ρv

et

⎞
⎟⎟⎠, E =

⎛
⎜⎜⎝

ρu

ρu2 + p

ρuv

(et + p)u

⎞
⎟⎟⎠, and F =

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p

(et + p)v

⎞
⎟⎟⎠.

The source vector H is zero for this case.
The demo consists of 4 independent Java applets communicating through the

Adlib communication library which is layered on top of mpjdev. Applet 1 is han-
dling all events and broadcasting control variables to other applets. Each applet has
the responsibility to draw its own portion of the data set into the screen, as we can see
in the figure. That this demo also illustrates usage of Java object in our communica-
tion library. We are using writeHalo() method to communicate Java class object
between threads.

This unusual interpretation of parallel computing, in which several applets in a
single Web browser cooperate on a scientific computation, is for demonstration pur-

Journal ID: 11227, Article ID: 125, Date: 2007-02-26, Proof No: 1

UNCORREC
TE

D P
ROOF

« SUPE 11227 layout: Small Extended reference style: basic file: supe125.tex (GIT) aid: 125 doctopic: OriginalPaper class: spr-small-v1 v.2007/02/23 Prn:26/02/2007; 8:00 p. 18»

S.B. Lim et al.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

pose only. The HPJava simulation code can also be run on a collection of virtual
machines distributed across heterogeneous platforms like the native MPI of MPICH,
SunHPC-MPI, and IBM POE.

You can view this demonstration and source code at http://www.hpjava.org/demo.
html

9 Conclusions and future work

We have explored enabling parallel, high-performance computation-in particular de-
velopment of scientific software in the network-aware programming language, Java.
Traditionally, this kind of computing was done in Fortran. Arguably, Fortran is be-
coming a marginalized language, with limited economic incentive for vendors to pro-
duce modern development environments, optimizing compilers for new hardware, or
other kinds of associated software expected by today’s programmers. Java looks like
a promising alternative for the future.

We have discussed in detail the design and development of high-level library for
HPJava-this is essentially communication library. The Adlib API is presented as high-
level communication library. This API is intended as an example of an application
level communication library suitable for data parallel programming in Java. This li-
brary fully supports Java object types, as part of the basic data types. We discussed
implementation issues of collective communications in depth. The API and usage of
other types of collective communications were also presented.

References

1. ACM (1998) Workshop on Java for high-performance network computing. Concurr Pract Exp 10(11-
13):821–824

2. Agrawal A, Sussman A, Saltz J (1995) An integrated runtime and compiletime approach for paral-
lelizing structured and block structured applications. IEEE Trans Parallel Distrib Syst 6

3. Briggs WL, Van Henson E, McCormick SF (2000) A multigrid tutorial. The Society for Industrial and
Applied Mathematics (SIAM)

4. Das R, Uysal MH, Salz JH, Hwang YS (1994) Communication optimizations for irregular scientific
computations on distributed memory architectures. J Parallel Distrib Comput 22(3):462–479

5. DeSouza J, Kale LV (2003) Jade: A parallel message-driven java. In: Proceedings of the 2003 work-
shop on Java in computational science, Melburne, Australia. Available from http://charm.cs.uiuc.edu/
papers/ParJavaWJCS03.shtml

6. Java for computational science and engineering—simulation and modelling (1997) Concurr Pract Exp
9(6)

7. Java for computational science and engineering—simulation and modelling II (1997) Concurr Pract
Exp 9(11):1001–1002

8. Java Grande Forum home page. http://www.javagrande.org
9. Lee HK (2003) Towards efficient compilation of the HPJava language for high performance comput-

ing. PhD thesis, Florida State University
10. Moreira JE, Midkiff SP, Gupta M, Lawrence R (1999) High performance computing with the array

package for Java: a case study using data mining. In: Supercomputing 99, November 1999
11. Moreira JE, Midkiff SP, Gupta M (2001) A comparision of three approaches to language, compiler and

library support for multidimensional arrays in Java. In: ACM 2001 Java grande/ISCOPE conference.
ACM Press

12. Timber Compiler Home Page. http://pds.twi.tudelft.nl/timber
13. Yelick K, Semenzato L, Pike G, Miyamoto C, Liblit B, Krishnamurthy A, Hilfinger P, Graham S,

Gay D, Colella P, Aiken A (1998) Titanium: a high-performance Java dialect. In: ACM workshop on
Java for high-performance network computing. Concurr Pract Exp (to appear)

	Runtime support for scable programming in Java
	Abstract
	Introduction
	Related works
	Features of HPJava
	Usage of high-level communication library
	Implementation of collectives
	Collective communications
	Regular collective communications
	Reductions
	Irregular collective communications

	Application of HPJava
	HPJava with GUI
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

