	/ Procedia Computer Science 00 (2012) 000–000
	/ Procedia Computer Science 00 (2012) 000–000	
DryadLINQ Programming Models for Scientific Analysis
Hui Li, Yuduo Zhou, Judy Qiu, Yang Ruan, Thilina Gunarathne, Geoffrey Fox
School of Informatics and Computing, Pervasive Technology Institute
Indiana University Bloomington

Abstract
The programming model is a critical factor in determining runtimes. One reason why Cloud is more popular than Grid is that Cloud has several practical programming models. DryadLINQ is a declarative, data-centric language that enables programmers to address the Big Data issue in the Windows Platform. DryadLINQ has been successfully used in a wide range of applications for the last five years. We have conducted extensive experiments on DryadLINQ [1, 2], DryadLINQ CTP [3, 4], and LINQ to HPC [7] in order to identify the classes of scientific applications that fit well. This paper summarized our experiences and abstracts four DryadLINQ programming models that are applicable to a large class of scientific applications, which include pleasingly parallel, hybrid parallel, distributed grouped aggregation, and iterative MapReduce programming models.

Keyswords: Dryad, DryadLINQ, MapReduce, Programming Models, Multi-Core, Aggregation, Iterative MapReduce
Introduction
We are in the era of Big Data. The rapid growth of information in science requires the processing of large amounts of scientific data. One proposed solution is to apply data flow languages and runtimes to data intensive applications [1]. The primary function of data flow languages and runtimes is the management and manipulation of data. Sample systems include the MapReduce [2] architecture pioneered by Google and an open-source implementation called Hadoop [3].
The MapReduce systems provide higher level programming languages that express data processing in terms of data flows. These systems simplify the usage by leaving the complexity of parallel programming such as scheduling, fault tolerance, load balancing and communications to underlying runtime systems. The MapReduce programming model has been applied to a wide range of applications and has attracted enthusiasm from distributed computing communities due to its ease of use and efficiency in processing large scale distributed data.
However, MapReduce has several limitations. First, the rigid and flat data processing paradigm of the MapReduce programming model prevents MapReduce from processing multiple, related heterogeneous datasets. A higher level programming language, such as Pig or Hive, can solve this issue to some extent, but is not efficient because the relational operations, such as Join, are converted into a set of Map and Reduce tasks for execution. For example, the classic MapReduce PageRank is very inefficient as its Join step spawns a large number of Map and Reduce tasks during processing. Further optimization of MapReduce PageRank requires developers to have sophisticated knowledge of the web graph structure. Second, the original MapReduce does not support the iterative applications properly. Simply repetitive application of MapReduce for iterative applications will lead to significant overhead in terms of creating Map and Reduce tasks and reading/writing input/output data. For example, MPI PageRank outperforms Hadoop PageRank by a factor of 10, as Hadoop need materializes intermediate data to local file system and output data to HDFS in each iteration.
Dryad [4] is a general purpose runtime that supports the processing of data intensive applications within the Windows platform. It models programs as a directed acyclic graph of the data flowing between operations, and is able to address some of the limitations that exist in the MapReduce systems. DryadLINQ is the high-level programming language and compiler for Dryad. The DryadLINQ compiler can automatically translate the Language-Integrated Query (LINQ) programs written by .NET language into distributed, optimized computation steps that run on top of the Dryad cluster. Thus, developers do not need to know much about Dryad or even about parallel and distributed computing when writing DryadLINQ programs. For some applications, writing the DryadLINQ distributed programs are as simple as writing a series of SQL queries. In complex cases, developers can port the application programs or user-defined functions into the lambda expression of the LINQ queries.
In this paper, we investigate four important DryadLINQ programming models that can be applied to a large class of scientific applications. These models are: pleasingly parallel, hybrid parallel, distributed grouped aggregation, and the iterative MapReduce programming model. It is important to note that in this paper, “DryadLINQ CTP” refers to the DryadLINQ community technical preview released in December 2010; "LINQ to HPC" refers to the newly released LINQ to HPC Beta 2 released in July 2011; “Dryad/DryadLINQ (2009)” refers to the version released in November 2009; and “Dryad/DryadLINQ” refers to all Dryad/DryadLINQ versions.
Related Work
Hadoop’s Pig Latin [35] is a natural analogue to DryadLINQ. DryadLINQ performs better than Pig when processing relational queries and iterative MapReduce tasks. One main reason for this performance difference is the underlying DAG execution model, which is more expressive and flexible than that of Hadoop. Another reason for the performance difference is that Pig translates relational queries into a set of MapReduce circles for execution without much exploring in regard to the optimization of a queries execution plan. YSmart [36] is another SQL-to-MapReduce translator that outperforms Pig by exploring query correlations.
The hybrid parallel programming combines the inter node distributed memory parallelization with the intra node shared memory parallelization. MPI/OpenMP/Threading is the hybrid programming model utilized in high performance computing. Paper [23] discusses the hybrid parallel programming paradigm using MPI.NET, TPL and CCR (Concurrency and Coordination Runtime) on a Windows HPC server. The results of the experiments show that the efficiency of the hybrid parallel programming model has to do with the task granularity, while the parallel overhead is mainly caused by synchronization and communication.
MapReduce and SQL for databases are two programming models used to perform distributed grouped aggregation. Some systems, such as Hadoop and Oracle, can support the pre-aggregation optimization for user-defined aggregation functions. However, their interfaces for implementing pre-aggregation are not as convenient as those in DryadLINQ [7]. In addition, a full-featured SQL database has extra overhead and constraints that prevent it from performing distributed grouped aggregation for large-scale input data.
Open source Java Twister [44, 45], Twister4Azure [46, 47] and Haloop are Iterative MapReduce frameworks. Twister interpolates between MPI and MapReduce and, when suitably configured, can mimic their characteristics. It can be positioned as a programming model that has the performance of MPI and the fault tolerance and dynamic flexibility of the original MapReduce. Haloop is a modified version of the Hadoop MapReduce framework and dramatically improves the iterative MapReduce by making the tasks scheduler loop-aware and adding various caching mechanisms.
DryadLINQ Programming Models
DryadLINQ
Dryad, DryadLINQ and DSC [6] are a set of technologies that support the processing of data intensive applications in the Windows platform. Dryad is a general purpose runtime that supports the processing of data intensive applications in Windows platform. A Dryad job is represented as a directed acyclic graph (DAG), which is called the Dryad graph. One Dryad graph consists of vertices and channels. A graph vertex is an independent instance of the data processing program in a certain step. Graph edges are the channels transferring data between the vertices. The Distributed Storage Catalog (DSC) is the component that works with the NTFS in order to provide data management functionalities, such as data sets storage, replication and load balancing within the HPC cluster.
DryadLINQ [5] is the high-level, declarative, data flow programming language. The DryadLINQ programming model is based upon the Language-Integrated Query (LINQ) programming model and it takes advantage of the standard query operators as defined within the LINQ and adds query extensions specific to Dryad. Developers can easily apply LINQ operators, such as Join or GroupBy, to a set of .NET data objects. Thus, the DryadLINQ programming model is more expressive and flexible than the MapReduce programming model when processing many semi-structure and un-structure data applications. In this paper, we will investigate the usability and performance of the four DryadLINQ programming models illustrated in Figure 1: a) pleasingly parallel, b) hybrid parallel, c) distributed grouped aggregation, and d) iterative MapReduce.
[image:]
Figure 1: Four programming models for scientific applications in DryadLINQ CTP: a) pleasingly parallel, b) hybrid parallel, c) distributed grouped aggregation and d) iterative MapReduce.
DryadLINQ programming models
3.2.1 Pleasingly Parallel Programming Model
Many pleasingly parallel applications are of the Single Program Multiple Data (SPMD) model. DryadLINQ supports a unified data and programming model in the representation and processing of pleasingly parallel applications. DryadLINQ data objects are collections of strong .NET type objects, which can be split into partitions and distributed across clusters. These DryadLINQ data objects are represented as DistributedQuery<T> or DistributedData<T> objects to which the LINQ operators can apply. DryadLINQ applications can create DistributedData<T> objects from existing data stored on the DSC or convert it from the IEnumerable<T> objects using the AsDistributed() and AsDistributedFromPartitions() operators. Then, these DryadLINQ data objects are partitioned and distributed to the nodes. Developers can deal with these distributed DryadLINQ data objects by invoking the user-defined function within the Select() or ApplyPerPartition() operators. The pseudo code for this programming model is as follows:
Var inputs= inputDataSet.AsDistributedFromPartitions();
//Construct DryadLINQ Distributed Data Objects--inputs
Var outputs= inputs.Select(distributedObject => User_Defined_Function(distributedObject));
//Process DryadLINQ Distributed Data Objects with UDF
We’ve implemented a wide range of pleasingly parallel applications using the above DryadLINQ primitives [7], which include the CAP3 DNA sequence assembly application, high energy physics data analysis application and the all pair gene sequences alignment using the SWG application.

3.2.2 Hybrid Parallel Programming Model
Dryad is supposed to process coarse-granularity tasks for large scale distributed data. It usually schedules tasks for the resources in the unit of compute nodes rather than the cores. In order to increase the utilization of the multi-core Windows cluster, one direct approach is to invoke the PLINQ (parallel LINQ) queries within the lambda expression of the DryadLINQ query. This approach is not only convenient, but, also, efficient as the LINQ query is naturally built within the DryadLINQ query. Another approach is to apply the multi-core technologies in .NET, such as TPL, and the thread pool to the user-defined function within in lambda expression of the DryadLINQ query. The pseudo code for this programming model is as follows. The AsParallel() operator within the code is inherited from LINQ query, which indicates the runtime to run the SPMD program in parallel in each node.
Var inputs= inputDataSet.AsDistributedFromPartitions();
//Construct DryadLINQ Distributed Data Objects--inputs
Var outputs = inputs.ApplyPerPartition(distributedObject => distributedObject.AsParallel().Select(parallelObject=>User_Defined_Function(parallelObject)));
//Process DryadLINQ Distributed Data Object with PLINQ
In the above hybrid model, Dryad handles the parallelism between the cluster nodes, while the PLINQ, TPL and Thread Pool technologies deal with the parallelism on the multi-core of each node. The hybrid parallel programming model in Dryad/DryadLINQ has been proven to be successful and has been applied to data clustering applications [7], such as the GTM interpolation [8], MDS interpolation [8] and Matrix-Matrix Multiplication [6].

3.2.3 Distributed Grouped Aggregation Programming Model
The GROUP BY operator in the parallel database is often followed by the aggregate function, which groups the input records into partitions by keys and then aggregates the records for each group using certain attribute values. This common pattern is called the distributed grouped aggregation. Sample applications for this pattern include sales data summarizations, log data analysis and social network influence analysis [8] [9].
Several approaches exist by which to implement the distributed grouped aggregation. One direct approach is to use the hash partition operator in order to redistribute the records to the compute nodes so that identical records are stored on the same node. This approach then aggregates the records of each group on each node.
The implementation of the hash partition is simple, but caused a large increase in network traffic when the number of input records is large. A common way to optimize this approach is to apply pre-aggregation, which aggregates some of the subsets of the input records and then hash partitions the aggregated partial results across a cluster based on their key. This approach is better than the direct hash partition approach because the number of records transferred across the cluster becomes much smaller after the pre-aggregation operation. Two additional ways exist by which to implement the pre-aggregation: 1) a hierarchical aggregation and 2) an aggregation tree [10]. A hierarchical aggregation usually contains two or three aggregation layers, each having an explicit synchronization phase. An aggregation tree is a tree graph used to guide a job manager in regard to performing asynchronous pre-aggregation for many of the input records subsets. DryadLINQ developers can implement pre-aggregation via a special GroupAndAggregate operator.
Var inputTuples = wordList.Select(word => new Tuple<string, int>(word, 1));
//Construct input tuples using Select
Var wordCount = inputTuples.GroupAndAggregate(t => t.Item1, g => new Tuple<string, int>
(g.Key, g.Sum(x => x.Item2)));
//Perform group and aggregate with optimized pre-aggregation execution plan

3.2.4 Iterative MapReduce Programming Model
Intel’s RMS (recognition, mining, and synthesis) taxonomy [43] offers a way by which to describe a class of emerging applications. The technology underlying these applications is likely to have broad applicability, ranging across computer vision, rendering, physical simulation, (financial) analysis, and data mining. Common computing kernels exist at the core of these applications, which require iterative solvers and basic matrix primitives. These observations suggest that Iterative MapReduce will become an important runtime to a spectrum of scientific, industrial, and societal applications and the kernel framework for large-scale data processing.
Dryad/DryadLINQ can pipeline the execution of iterative MapReduce jobs by using deferred evaluation, and asynchronous vertices processing technologies. In addition, Dryad is able to maintain the data locality for processing vertices during different computation stages of DryadLINQ jobs [4]. In addition, it is able to reuse the static data stored in its memory for multiple iterations [4]. Below is the pseudo code for the iterative Kmeans computation using DryadLINQ. The output centers in each iteration are used as input centers in subsequent iterations. The static data, vectors, are never re-transferred across the network or re-loaded from the disk to memory after the first iteration.
IQueryable<Vector> KMeansStep(IQueryable<Vector> vectors, IQueryable<Vector> centers){
for (int i=0; i<iterations; i++)
 centers = vectors.GroupBy(vector => NearestCenter(vector, centers))
.Select(g => g.Aggregate((x,y) =>x+y) / g.Count());
}
Scientific Applications
We implemented SWG, Matrix-Matrix Multiplication, PageRank, and Kmeans using the DryadLINQ CTP and LINQ to HPC. We evaluated their performances on two Windows HPC clusters. The hardware resources used in this paper are as follows
Table 1. 32 nodes homogeneous HPC cluster TEMPEST
	Compute Node
	TMPEST
	TEMPEST-CNXX

	CPU
	Intel E7450
	Intel E7450

	Cores
	24
	24

	Memory
	24 GB
	50 GB

	Memory/Core
	1 GB
	2 GB

Table 2. 7 nodes inhomogeneous HPC cluster STORM
	Compute Node
	STORM-CN01,CN02,CN03
	STORM-CN04,CN05
	STORM-CN06,CN07

	CPU
	AMD 2356
	AMD 8356
	Intel E7450

	Cores
	8
	16
	24

	Memory
	16 GB
	16 GB
	48 GB

	Memory/Core
	2 GB
	1 GB
	2 GB

Table 3. 230 nodes homogeneous Linux cluster Quarry
	Compute Node
	Head Node
	PG-XX

	CPU
	Intel E5335
	Intel E5335

	Cores
	8
	8

	Memory
	8 GB
	16 GB

	Memory/Core
	1 GB
	2 GB

SWG Pleasingly Parallel Application
The Alu clustering problem [11] [12] is one of the most challenging problems faced when sequencing the clustering because Alus represent the largest repeat families in the human genome. About one million copies of the Alu sequence exist in the human genome. Most insertions can be found in other primates and only a small fraction (~7000) are human-specific. This feature indicates that the classification of the Alu repeats can be deduced solely from the one million human Alu elements. Notably, Alu clustering can be viewed as a classic case study for the capacity of computational infrastructures because it is not only of intrinsic biological interest, but, also, a problem on a scale that will remain as the upper limit of many other clustering problems in bioinformatics for the next few years (e.g., the automated protein family classification for a few million proteins predicted from large meta-genomics projects).
[image:]
Figure 2: DryadLINQ implementation of SWG application
We implemented the DryadLINQ application in order to calculate the pairwise SW-G distances in parallel for a given set of gene sequences. In order to clarify our algorithm, we considered an example with 10,000 gene sequences, which produced a pairwise distance matrix of 10,000 × 10,000. We decomposed the overall computation into a block matrix D of 8 × 8, each block containing 1250 × 1250 sequences. Due to the symmetry of the distances D(i,j) and D(j,i), we only calculated the distances in the 36 blocks of the upper triangle of the block matrix as shown in Figure 2. These 36 blocks were constructed as 36 DryadLINQ distributed data objects. Then, our program split the 36 DryadLINQ objects into 6 partitions, which spawned 6 DryadLINQ tasks. Each Dryad task invoked the user-defined function PerformAlignments() in order to process the six blocks that were dispatched to each Dryad task. One should bear in mind that different partition schemes will cause different task granularities. The DryadLINQ developers can control task granularity by simply specifying the number of partitions using the RangePartition() operator.

4.1.1 Workload Balance for Inhomogeneous Tasks
Low system utilization caused by workload imbalance issue is one of main sources of performance degradation. Workload imbalance issue occurs when scheduling inhomogeneous tasks on homogeneous resources or vice versa. In order to solve this issue, Dryad provides a unified data model and flexible interface for developers to use when tuning task granularity. The following experiments will study the workload balance issue in the DryadLINQ SWG application.
The SWG application is a pleasingly parallel application, but the pairwise SW-G computations are inhomogeneous in CPU time. The task of splitting all of the SW-G blocks into partitions with an even number of blocks still experiences a workload balance issue when processing the partitions on the homogeneous computational resources. One approach by which to solve this issue is to split the skewed distributed input data into many finer granularity tasks. In order to verify this approach, we constructed a set of gene sequences with a given mean sequence length (400) using varying standard deviations (50, 150 and 250). Then, we ran the SW-G dataset on the TEMPEST cluster using a different number of data partitions. As shown in Figure 4, as the number of partitions increased, the overall job turnaround time decreased for the three skewed distributed input datasets. This phenomenon occurs because the finer granularity tasks can achieve the better overall system utilization by dynamically dispatching available tasks to idle resources. However, when the number of partitions continually increases, the scheduling costs become the dominant factor in regard to overall performance.
		
4.1.2 Workload Balance for Inhomogeneous Cluster
Clustering or extending existing hardware resources may lead to the problem of scheduling tasks on an inhomogeneous cluster with different CPUs, memory and network capabilities between nodes [13]. Allocating the workload to resources according to their computational capability is a solution, but requires the runtimes in order to know the resource requirements of each job and the availability of the hardware resources. Another solution is to split the job into many finer granularity tasks and dispatch available tasks to idle computational resources.
We verified the second approach by executing 4,096 sequences for SW-G jobs on the inhomogeneous HPC STORM using different partition granularities. Figure 5 shows the CPU and task scheduling times of the same SW-G job with a different number of partitions (6, 24 and 192). The first SW-G job was split into six partitions. The difference in CPU time for each task was caused by the difference in the computational capability of the nodes. The second and third jobs in Figure 5 clearly illustrate that the finer partition granularity can deliver a better load balance on the inhomogeneous computational nodes. However, it also shows that the task scheduling cost increased as the number of partitions increased.

 Figure 3: Performance Comparison for Skewed Figure 4: Relative Parallel Efficiency of Hadoop and
 Distributed Data with Different Task Granularity. DryadLINQ with Different Task Granularity

Figure 5: CPU and Scheduling Time of the Same SW-G Job with Various Partition Granularities

4.1.3 Compare with Hadoop
As shown in Figures 3 and 4, task granularity is important in regard to the workload balance issue in DryadLINQ. Further, we compared the task granularity issue in DryadLINQ with that in Hadoop. The DryadLINQ/PLINQ SW-G experiments were run using 24 cores per node on 32 nodes in TEMPEST. The input data was 10,000 gene sequences. The number of DryadLINQ tasks per vertex ranged from 1 to 32. The Hadoop SW-G experiments were run with 8 cores per node on 32 nodes in Quarry. Eight mappers and one reducer were deployed on each node. The number of map tasks per mapper ranged from 1 to 32. As shown in Figure 4, when the number of tasks per vertex was bigger than 8, the relative parallel efficiency of DryadLINQ jobs decreased noticeably. This decrease occurred because the number of tasks per vertex was bigger than 8 and the number of SW-G blocks allocated to each DryadLINQ task was less than 12, which is only half of the number of cores in each node in TEMPEST. Dryad can run only one DryadLINQ task on each compute node. Thus the relative parallel efficiency was low for fine task granularity in DryadLINQ.
Hybrid Parallel Programming Model
 We explored the hybrid parallel programming model in DryadLINQ CTP by running the Matrix Multiplication with three algorithms and three multi-core technologies. The analysis and discussion were presented in detail in paper [7]. This paper has a more sophisticated performance analysis of the Fox algorithm using LINQ to HPC and Thread Pool on tree network Windows HPC cluster. The LINQ to HPC invokes inter-node parallelism while Thread Pool supports inner-node parallelism. Our experiments show that it is imperative to evaluate hybrid parallel programming paradigms that may potentially scale up to tens or hundreds of multicore processors.

4.2.1 Fox Matrix-Matrix Multiplication Algorithms

	The matrix-matrix multiplication is a fundamental kernel [12] that can be used to achieve high efficiency in both theory and practice. The computation can be partitioned into subtasks, which makes it an ideal candidate application in hybrid parallel programming studies using Dryad/DryadLINQ. However, there is no one optimal solution fits all scenarios. Different trade-offs of partition granularity largely correspond to computation and communication costs and are affected by memory/cache usage and network bandwidth/latency. We investigated the performance of the Fox/Thread Pool implementation using different numbers of nodes and cores per node. The purpose is to create a timing model for the Fox algorithm implemented with LINQ to HPC on a tree network Windows HPC cluster. The difficulty exists when attempting to model the communication/synchronization overhead when using LINQ to HPC on Windows HPC cluster.
					(Eq. 1)
	The matrix-matrix multiplication is defined as A * B = C (Eq. 1). Figure 6 shows the work flow of the Fox algorithm on a mesh of 2X2 compute nodes. Matrices A and B are split along both rows and columns to construct a matching 2X2 block data mesh. During each step of computation, each process holds a current block of Matrix A by broadcasting and a current block of Matrix B by shifting upwards and then computing a block of Matrix C. We assume that the input sub-matrices A and B already reside in compute nodes that have been decomposed in the two-dimensional fashion, as shown in Figure 6. In addition, we also assume that output sub-matrices C will end up decomposed in the same way. Thus, our timings did not consider overhead of loading of sub-matrices A, B and C.

Figure 6: Work Flow of the Fox Algorithm on a Mesh of 2*2 Nodes
4.2.2 Timing model for the Fox algorithm with LINQ to HPC on a tree network Cluster
This section creates a theoretical analysis of the Fox algorithm with LINQ to HPC. Assume the M*M matrix multiplication jobs are partitioned and run on a mesh of √N*√N nodes. The size of the sub-matrices in each node is m*m, where m=M/√N. The “broadcast-multiply-roll” cycle of the algorithm is repeated √N times. For each such cycle, the time taken to broadcast one sub-matrix A is:

We assume that the broadcast is done as a linear pipeline in our LINQ to HPC implementation. Tstartup is the start-up time of the pipeline per step of the pipe. (Tio+Tcomm) is the cost to transfer one matrix element over cluster. We take Tio into account when modelling communication overhead is because Dryad usually uses NTFS to transfer intermediate data over HPC cluster. Our related experiments results show that the IO overhead makes up 40% of the overall data transportation overhead. Therefore, we must consider the disk IO when modelling the communication overhead. As the process to “roll” sub-matrix B can be done in parallel in a tree network cluster as long as the aggregated requirement of network bandwidth is satisfied by the switch, its overhead is:

Finally, the time taken to compute the sub-matrix product (including the multiplication and addition) is:
2*
The total computation time of the Fox algorithm is:
 				(Eq. 2)
			(Eq. 3)
We define parallel efficiency as the speedup per processing node, shown in equation 4. The measured average is less than 0.5 second. As shown in equation 3, parallel efficiency can be deduced as equation 4 for large matrices sizes.
					 	(Eq. 4)
4.2.3 Performance analysis on Tempest

Figure 7: parallel overhead vs. 1/Sqrt(n) on 4x4 Figure 8: parallel overhead vs. 1/Sqrt(n) on 3x3,4x4,5x5 nodes with 1 core per node. (n is grain size, number nodes with1 core per node. showing universal behaviour
 of matrix elements per node)

Figure 9: the same as Fig 8, but with timings using	 Figure 10: Perpormance of Intel MKL using 1,8,16,24
OpenMPI on Linux cluster. cores per node. Showing parallel overhead

Figure 11: the same as Fig 2, but with timings using Figure 12: parallel overhead vs. 1/Sqrt(n) using 16nodes
different number of cores per node			 1core per node and 16 cores on 1 node. Compare 						 distributed memory parallel with shared memory parallel							 in terms of parallel overhead.
[bookmark: _GoBack]
In order to measure the parallel overhead of our hybrid parallel programing model in LINQ to HPC, we performed a set of experiments using different numbers of compute nodes and cores per node for various matrices sizes. Figure 7 shows the parallel overhead of the Fox algorithm when using different numbers of nodes. The parallel overhead is larger when using more compute nodes due to the involved communication overhead. As shown in Figure 8, the parallel overhead is also larger when using more cores per node with a fixed number of nodes. This overhead is due to the synchronization costs and the memory bandwidth competition of the Threads Pool program. In addition, we implemented the blocked matrix multiply algorithm in order to avoid cache confliction issues for the large matrices. Figure 7 and figure 8 show the dramatic decrease in parallel overhead for the large matrices sizes that occurs due to the computation overhead that become dominant factor in the overall cost.
In order to verify that our theoretical analysis of the Fox algorithm with LINQ to HPC was sound, we ran matrix multiplication jobs in order to measure the parallel overhead using various matrices sizes and numbers of computer nodes. Figure 9 plots 1/e-1 versus 1/Sqrt(n) with e calculated with Equation 4 and a fitting function used to time the sequential program. “n” is the “grain size”, the number of matrix elements per node. The linear behaviour for the small 1/Sqrt(n) (large matrices) shows that the function form of Equation 4 is correct. In addition, it shows that the faster the Tflops (more cores used) is, the larger the linear rising term. Figure 10 also shows parallel overhead versus 1/Sqrt(n) but uses different numbers of compute nodes with 16 cores per node. The results indicate that the parallel overhead coefficient, (Tio+Tcomm)/Tflops, is independent of the number of compute nodes and dependent only upon the “grain size”. Figure 8 and figure 9 indicate that the high performance system that uses a faster Tflops and Tcomm+Tio is sensitive to the especially when processing small matrices sizes.
PageRank Distributed Grouped Aggregation
We studied the distributed grouped aggregation in the DryadLINQ CTP using PageRank with real data. Specifically, we investigated the programming interface and performance of the three distributed grouped aggregation approaches in the DryadLINQ, which included the Hash Partition, Hierarchical Aggregation and Aggregation Tree. Further, we studied the features of the input data that affected the performance of the distributed grouped aggregation implementations.
PageRank is already a well-studied web graph ranking algorithm. It calculates the numerical value of each element of a hyperlinked set of web pages in order to reflect the probability that a random surfer will access those pages. The PageRank process can be understood as a Markov Chain, which needs recursive calculations in order to converge to the final results. An iteration of the algorithm calculates the new access probability for each web page based on the values calculated in the previous computation. The iterations will not stop until the Euclidian distance between the two subsequent rank value vectors becomes less than a predefined threshold.
In this paper, we implemented the DryadLINQ PageRank using the ClueWeb09 dataset [16], which contained almost 50 million web pages. We split the entire ClueWeb graph into 1,280 partitions, each saved as an Adjacency Matrix (AM) file. The characteristics of the input data are described below:
Table 4. Characteristics of ClueWeb09 input data
	No of AM files
	File Size
	No of Web Pages
	No of Links
	Ave Out-degree

	1280
	9.7 GB
	49.5 Million
	1.40 Billion
	29.3

4.3.1 PageRank using Three Distributed Grouped Aggregation Approaches
PageRank is a communication intensive application that requires joining two input data streams and then performing a grouped aggregation over partial results.
First, we implemented PageRank using the hash partition approach that contained three main functions [17]: Join(), GroupBy(), and a user-defined aggregation function. In the Join stage, we constructed the DistributedQuery<Page> objects that represented the web graph structure of the AM files. Then, we constructed the DistributedQuery<Rank> objects each of which represented a pair that contained the identifier number of a page and its current estimated rank value. Next, the program joins the pages within the ranks in order to calculate the partial rank values. Then, the GroupBy() operator hash partition calculated the partial rank values to some groups, where each group represented a set of partial ranks with the same source page pointing to them. Finally, the partial rank values in each group were aggregated using the user-defined aggregation function.
Second, we implemented PageRank using the hierarchical aggregation approach, which has tree fixed aggregation stages: 1) the first pre-aggregation stage for each user-defined aggregation function, 2) the second pre-aggregation stage for each DryadLINQ partition and 3) the third global aggregation stage to calculate the global PageRank rank values.
The hierarchical aggregation approach may not perform well in the computation environment as it is inhomogeneous in regard to network bandwidth, CPU and memory capability due to the existence of its global synchronization stages. In this scenario, the aggregation tree approach is a better choice. It can construct a tree graph in order to guide the job manager to make the optimal aggregation operations for many of the subsets of the input tuples so as to decrease the intermediate data transformation. We implemented PageRank using the aggregation tree approach by invoking the GroupAndAggregate() operator in DryadLINQ CTP [10]
4.3.2 Performance Analysis
We evaluated the performance of the three approaches by running PageRank jobs using various sizes of input data on 17 compute nodes on TEMPEST. Figure 11 shows that the aggregation tree and hierarchical aggregation approaches outperformed the hash partition approach. In the ClueWeb dataset, the URLs are stored in alphabetical order and the web pages that belong to the same domain are likely to be saved in one AM file. Thus, the intermediate data transfer in the hash partition stage can be greatly reduced by applying the pre-aggregation to each AM file. The hierarchical aggregation approach outperforms the aggregation tree approach because it has a coarser granularity processing unit. In addition, our experiment environment for the TEMPEST cluster has a homogeneous network and CPU capability.
Figure 13 provides CPU utilization (left) and network utilization (right) information of the three aggregation approaches obtained from the HPC cluster manager. It is apparent that hierarchical aggregation requires much less network bandwidth than the other two approaches. In fact, it pays off the less network utilization in terms of more CPU overhead that used to reduce the size of intermediate data.

 Figure 11: time to compute PageRank per iteration Figure 12: time per iteration with two aggregation
with three aggregation approaches using ClueWeb09 approaches using different numbers of output tuples
 data on 17 nodes in Tempest (from 100,000 to 1,000,000) while number of input
 tuples fixed as 4.3 billion. Shows DRP effects.

[image:]
Figure 13: Trade-off between CPU (left) and network utilization (right) with different aggregation strategies

In general, the pre-aggregation approaches work well only when the number of output tuples is much smaller than the input tuples. The hash partition works well only when the number of output tuples is larger than the input tuples. We designed a mathematics model in order to theoretically analyze how the ratio between the input and output tuples affected the performance of the aggregation approaches. First, we defined the data reduction proportion (DRP) [18] in order to describe the ratio as follows:

		(1)
Table 5. DRP of different number of AM files of three aggregation approaches
	Input Size
	Naive aggregation
	Pre-aggregation
	Hierarchical aggregation

	320 files 2.3 GB
	1:306
	1:6.6:306
	1:6.6:2.1:306

	640 files 5.1 GB
	1:389
	1:7.9:389
	1:7.9:2.3:389

	1,280 files 9.7 GB
	1:587
	1:11.8:587
	1:11.8:3.7:587

Further, we defined a mathematic model used to describe how the DRP will affect the efficiency of different aggregation approaches. First, we assumed that the average number of tuples for each group is M (M=1/DRP) and that there are N compute nodes. Then, we assumed that the M tuples of each group are evenly distributed on the N nodes. In the hash partition approach, the M tuples with the same key are hashed into the same group on one node, which require M aggregation operations. In the pre-aggregation approaches, the number of local aggregation operations is M/N on each node, which produces N partial aggregated results and needs N more aggregation operations. Thus, the total number of aggregation operations for the M tuples is (M/N)*N+N. The average number of aggregation operations for each record of the two approaches is as follows:

		(2)
	 Usually, DRP is much smaller than the number of compute nodes. Using word count as an example, documents with millions of words may have several thousands common words. As the web graph structure obeys zipf’s law, the DRP of the PageRank input data was not as small as the DRP in regard to word count. Thus, the pre-aggregation approach in PageRank may not deliver performance as well as word count [10]
	 In order to verify the impact of DRP on the different aggregation approaches, we ran PageRank using web graphs of the different DRP values. As shown in Figure 12,when the number of out tuples is smaller than 500k (small DRP), the aggregation tree approach provides the better performance. When the number bigger than 500k (big DRP), the harsh partition provides the better performance.
4.4 Kmeans Iterative MapReduce
We studied the iterative	MapReduce in DryadLINQ using the Kmeans clustering. It is a typical iterative algorithm that aims to partition N observations into K clusters where each observation belongs to the cluster with the nearest centroid. The process of computing the K centroids require that multiple iterations converge.
4.4.1 Kmeans with iterative MapReduce
The Kmeans clustering has been implemented using DryadLINQ and compared its performance with other implementations in paper [7]. In this paper, we implemented Kmeans with LINQ to HPC, and make further experiments to study its performance for iterative computations. We sketch the pseudo code for Kmeans in section 3.2.4. The two input streams IQeruyable<Vector> vectors and IQueryable<Vector> centers were distributed over the cluster via DSC service in advance. We form one group per center that calculated by NearestCenter().The vectors within each group are summed up using Aggregate(). The aggregated values are divided by the size of that group to calculate new centers, which will be used as input centers in next iteration.

4.4.2 Performance analysis
Figure 14 and figure 15 show the comparison of the performance of the different implementation of the Kmeans. Figure 15, it used a fixed number of compute nodes and input data points, while the number of iterations increased from 1 to 16. Both the implementation shows the linear performances, which indicate the constant overhead per iteration of the two implementations. Figure 15 is the relative speedup of Kmeans jobs using fixed iterations and input data points when the number of compute nodes increased from 1 to 16. The relative speedup of LINQ to HPC Kmeans was less than 4 when using 16 nodes, which was smaller than that of OpenMPI. DryadLINQ can chain the execution of multiply LINQ queries by using deferred evaluation technology. In addition, the input and output streams can be pipelined between vertices in consequent iterations. The low relative speedup of the LINQ to HPC Kmeans occurs because of the high overhead of the core LINQ to HPC operations when compared to OpenMPI.

Figure 14: time per iteration with different size of Figure 15: running time with different iterations input data with 8 nodes with 1 core per node with 16 nodes with 1 core per node

Figure 16: relative speed-up with different nodes Figure 17: running time with fixed workload
 with 1 core per node for 10 iterations with different nodes with 1 core per node
4 Discussion and Conclusion
In this paper, we studied four typical programming models (pleasingly parallel, hybrid parallel, distributed grouped aggregation, and iterative MapReduce) for scientific applications using DryadLINQ, DryadLINQ CTP and LINQ to HPC. The Smith Waterman – Gotoh algorithm (SWG) is a pleasingly parallel application that consists of Map and Reduce steps. We implement this application using the ApplyPerPartition operator, which can be considered to be a distributed version of “Apply” in SQL. We studied the hybrid parallel programming model used in paper []. In this paper, we created a timing model for the LINQ to HPC Fox implementation and studied the main factors that effected the parallel overhead of our implementation. PageRank is a communication intensive application that requires joining two input data streams in order to perform the distributed grouped aggregation over partial results. We implemented PageRank using the three distributed grouped aggregation approaches with interfaces provided by DryadLINQ CTP. Finally, we investigated the iterative MapReduce using Kmeans cluster application. To our knowledge, these patterns covered a wide range of distributed scientific applications.
Further, we discussed the issues that affected the performance of the applications implemented within these DryadLINQ programming models. By studying the results of the experiments, we were able to determine that: 1) DryadLINQ CTP provides a unified data model and flexible programming interface for developers, which can be used to solve the workload balance issue for pleasingly parallel applications; 2) porting multi-core technologies, such as PLINQ and TPL to DryadLINQ tasks can increase the system utilization for large input datasets; and 3) the choice of distributed grouped aggregation approaches with DryadLINQ CTP has a substantial impact on the performance of data aggregation/reduction applications.
The industry and community are constantly and significantly lowering the cost of high-end computation technologies that previously were only adopted by giant IT companies such as Microsoft, Google, and IBM. Thus, there is the crisis for closed, private computation technologies. In November 2011, Microsoft discontinued Dryad/DryadLINQ and they announced an end-to-end roadmap for Big Data that embraces Apache HadoopTM. However, as a LINQ provider, the DryadLINQ was the most successful distributed data parallel runtime in the Windows platform. Several features within the DryadLINQ have had a profound impact on the design and implementation of data flow programming languages in the Big Data area.
Acknowledgements
We would like to thank John Naab and Ryan Hartman from at the IU PTI for setting up the Windows HPC cluster, and Thilina Gunarathne and Stephen Tak-lon Wu from the IU CS for providing the SW-G application and data. This work is partially funded by Microsoft.
References
Jaliya Ekanayake, Thilina Gunarathne, et al. (2010). Applicability of DryadLINQ to Scientific Applications, Community Grids Laboratory, Indiana University.
Dean, J. and S. Ghemawat (2004). "MapReduce: Simplified Data Processing on Large Clusters." Sixth Symposium on Operating Systems Design and Implementation: 137-150.
Apache (2010). "Hadoop MapReduce." Retrieved November 6, 2010, from http://hadoop.apache.org/mapreduce/docs/current/index.html.
Isard, M., M. Budiu, et al. (2007). Dryad: distributed data-parallel programs from sequential building blocks. Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. Lisbon, Portugal, ACM: 59-72.
Yu, Y., M. Isard, et al. (2008). DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. Symposium on Operating System Design and Implementation (OSDI). San Diego, CA.
Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu and Geoffrey Fox, Design Patterns for Scientific Applications in DryadLINQ CTP, to appear in Proceedings of The Second International Workshop on Data Intensive Computing in the Clouds (DataCloud-2) 2011, The International Conference for High Performance Computing, Networking, Storage and Analysis (SC11), Seattle, WA, November 12-18, 2011
Introduction to Dryad, DSC and DryadLINQ. (2010). http://connect.micorosft.com/HPC
Ekanayake, J., A. S. Balkir, et al. (2009). DryadLINQ for Scientific Analyses. Fifth IEEE International Conference on eScience: 2009. Oxford, IEEE.
J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh (1997). Data cube: A relational aggregation operator geeralizig group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery (1997).
Malewicz, G., M. H. Austern, et al. (2010). Pregel: A System for Large-Scale Graph Processing. Proceedings of the 2010 international conference on Management of data, Indianapolis, Indiana.
Yu, Y., P. K. Gunda, et al. (2009). Distributed aggregation for data-parallel computing: interfaces and implementations. Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. Big Sky, Montana, USA, ACM: 247-260.
Moretti, C., H. Bui, et al. (2009). "All-Pairs: An Abstraction for Data Intensive Computing on Campus Grids." IEEE Transactions on Parallel and Distributed Systems 21: 21-36.
Batzer MA and Deininger PL (2002). "Alu repeats and human genomic diversity." Nature Reviews Genetics 3(5): 370-379.
Li, H., Y. Huashan, et al. (2008). A lightweight execution framework for massive independent tasks. Many-Task Computing on Grids and Supercomputers, 2008. MTAGS 2008. Austin, Texas.
G. Fox, A. Hey, and Otto, S (1987). Matrix Algorithms on the Hypercube I: Matrix Multiplication, Parallel Computing, 4:17-31
Jaliya Ekanayake (2009). Architecture and Performance of Runtime Environments for Data Intensive Scalable Computing. Supercomputing 2009 (SC09). D. Showcase. Portland, Oregon.
ClueWeb09: http://boston.lti.cs.cmu.edu/Data/clueweb09/
Y. Yu, M. Isard, D.Fetterly, M. Budiu, U.Erlingsson, P.K. Gunda, J.Currey, F.McSherry, and K. Achan. Technical Report MSR-TR-2008-74, Microsoft.
S. Helmer, T. Neumann, G. Moerkotte (2003). Estimating the Output Cardinality of partial Preaggregation with a Measure of Clusteredness. Proceeding of the 29th VLDB Conference. Berlin, Germany.
OpenMPI http://www.open-mpi.org/
J.Ekanayake, H.Li, et al. (2010). Twister: A Runtime for iterative MapReduce. Proceedings of the First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010. Chicago, Illinois, ACM.
Judy Qiu, Scott Beason, et al. (2010). Performance of Windows Multicore Systems on Threading and MPI. Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society: 814-819.
Std. Dev. = 50	31	62	124	186	248	3414.5	3002	3034	2899	3392	Std. Dev. = 100	31	62	124	186	248	5452	4056.5	3392	3408	3700	Std. Dev. = 250	31	62	124	186	248	8626	6582	4336	4382	4592	Number of Partitions

Execution Time (Seconds)

Hadoop -- Tasks per Mapper	1	2	3	4	8	12	16	20	24	32	0.85182927109586903	0.86901195227091477	0.88528210558427878	0.90056565186846627	0.95067431986311157	0.98164454111792032	0.99374708518467947	0.98954660500407243	0.97288392750847863	0.9179930812500432	DryadLINQ -- Tasks per Vertex	1	2	3	4	8	12	16	20	24	32	0.93269999999999997	0.9133	0.89670000000000005	0.89607000000000003	0.73719999999999997	0.78320000000000001	0.66420000000000001	0.54179999999999995	0.45150000000000001	0.34549999999999997	

cn01	cn02	cn03	cn04	cn05	cn06	0.59879680000000002	0.77429760000000003	0.60359680000000004	0.90289920000000001	0.43710719999999997	0	cn01	cn02	cn03	cn04	cn05	cn06	990.06289919999949	1006.7651072	986.18630399999995	504.76230399999992	499.84340479999997	355.50880000000001	
Elapsed Time (in second)

cn01	cn02	cn03	cn04	cn05	cn06	0.65410559999999995	0.67610879999999995	0.77859840000000002	0.30810880000000002	0.29550080000000001	0	cn01	cn02	cn03	cn04	cn05	cn06	249.78399999999999	269.81579520000003	269.63910399999992	142.1718912	137.09370879999989	94.009804799999998	cn01	cn02	cn03	cn04	cn05	cn06	2.2151039999999971	2.2931968000000329	2.3086976000000168	3.4688000000000159	4.4062976000000171	6.365094400000002	cn01	cn02	cn03	cn04	cn05	cn06	257.8178944	254.6684032	253.493504	135.23430400000001	138.6406016	94.259404799999984	cn01	cn02	cn03	cn04	cn05	cn06	6.6299008000000281	8.8606976000000977	7.4098047999999608	11.687500800000009	6.2811904000000141	9.4385024000000026	cn01	cn02	cn03	cn04	cn05	cn06	262.31069439999999	257.5856	255.13149440000001	134.49999360000001	135.4219008	93.884992000000011	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	3.4063103999999949	3.3750015999999601	3.5881087999999872	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	137.20309760000001	135.343808	93.401395200000024	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	21.656192000000029	13.18260479999998	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	136.2813056	93.354598399999958	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	2.730099200000041	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	92.215795199999917	
cn01	cn02	cn03	cn04	cn05	cn06	0.54840319999999998	0.56791040000000004	0.47370240000000002	0.470912	0.50540799999999997	0	cn01	cn02	cn03	cn04	cn05	cn06	44.989798400000012	45.348889599999993	47.531903999999997	23.546892799999998	23.343795199999999	20.8893056	cn01	cn02	cn03	cn04	cn05	cn06	4.1028095999999996	4.2431999999999954	4.2898944000000014	4.1719039999999978	4.2030976000000004	2.9330048	cn01	cn02	cn03	cn04	cn05	cn06	45.832191999999999	45.458099200000007	45.176499200000002	23.62499840000001	23.7812096	20.624089599999991	cn01	cn02	cn03	cn04	cn05	cn06	4.1027071999999976	4.0403072000000009	4.0715008000000097	6.7344000000000008	2.4688000000000021	5.6630015999999994	cn01	cn02	cn03	cn04	cn05	cn06	44.599795200000003	46.33180159999997	45.784806400000001	23.531199999999991	23.71869439999999	21.310604800000011	cn01	cn02	cn03	cn04	cn05	cn06	4.1651968000000146	2.0903040000000042	4.0247039999999856	4.1250048000000099	6.1406975999999958	2.9016960000000012	cn01	cn02	cn03	cn04	cn05	cn06	44.428198399999999	44.350592000000013	44.7239936	24.156287999999989	22.953100800000001	20.9049984	cn01	cn02	cn03	cn04	cn05	cn06	4.1652095999999954	6.0059008000000036	4.1495040000000074	2.953100800000001	2.5625088000000029	8.0031104000000006	cn01	cn02	cn03	cn04	cn05	cn06	44.365798400000017	44.194496000000001	44.302899199999977	23.406207999999989	23.51559679999999	21.045388799999991	cn01	cn02	cn03	cn04	cn05	cn06	2.1216000000000008	4.0560000000000116	4.1339008000000206	6.1563007999999968	6.1563007999999968	2.043699200000006	cn01	cn02	cn03	cn04	cn05	cn06	46.580992000000009	51.635699199999983	47.594393600000018	23.375001600000019	22.796800000000019	21.731711999999991	cn01	cn02	cn03	cn04	cn05	cn06	5.9903103999999976	2.106009599999993	4.149503999999979	3.6718975999999941	3.046899199999983	7.2075904000000151	cn01	cn02	cn03	cn04	cn05	cn06	44.45939199999998	46.331699200000003	46.174796799999967	23.34369280000001	23.468800000000019	20.7177088	cn01	cn02	cn03	cn04	cn05	cn06	2.0904064000000062	6.115097600000011	4.087104000000009	6.1719039999999836	6.0936959999999942	3.946995200000003	cn01	cn02	cn03	cn04	cn05	cn06	45.800998400000033	47.657702400000012	44.692800000000041	23.328102400000009	24.281305599999989	21.045299199999981	cn01	cn02	cn03	cn04	cn05	cn06	6.2555007999999912	2.8236031999999791	2.0903935999999712	4.1405952000000052	2.2030976000000071	2.5741055999999962	cn01	cn02	cn03	cn04	cn05	cn06	43.5702912	50.949299200000041	51.338304000000008	23.140697599999982	23.046899199999981	21.62259199999999	cn01	cn02	cn03	cn04	cn05	cn06	4.0559104000000143	8.9542912000000001	10.155302400000039	2.2187008000000219	6.5624960000000083	5.6006016000000054	cn01	cn02	cn03	cn04	cn05	cn06	47.984998400000002	45.473702399999979	45.316800000000001	23.609408000000009	23.51559679999999	21.388608000000001	cn01	cn02	cn03	cn04	cn05	cn06	4.1651967999999879	2.6207999999999751	2.449203199999999	6.1561983999999921	4.1562111999999729	2.6208895999999982	cn01	cn02	cn03	cn04	cn05	cn06	44.896204800000021	49.482905599999981	51.213491199999957	24.312499199999991	23.906291199999991	21.575807999999991	cn01	cn02	cn03	cn04	cn05	cn06	2.0903935999999712	6.2087936000000372	5.9902080000000524	4.6249983999999777	2.7187072000000398	5.6317952	cn01	cn02	cn03	cn04	cn05	cn06	46.237798399999981	44.459699200000053	45.379289599999993	24.078195200000039	23.85939200000001	21.37300479999999	cn01	cn02	cn03	cn04	cn05	cn06	6.0215040000000482	4.1806975999999167	4.0402047999999704	6.1406079999999861	6.218803199999968	2.7144959999999969	cn01	cn02	cn03	cn04	cn05	cn06	46.206604800000036	45.660902400000062	47.48519680000004	24.703091200000021	24.062502400000021	21.98140160000003	cn01	cn02	cn03	cn04	cn05	cn06	4.009100799999942	5.3820031999999864	6.0215039999999362	3.0625023999999712	2.4530943999999981	5.6786943999999826	cn01	cn02	cn03	cn04	cn05	cn06	44.303488000000002	47.735692800000052	47.5320064	24.45310720000003	23.250009599999981	22.13740799999999	cn01	cn02	cn03	cn04	cn05	cn06	2.9171072000000322	5.9592063999999709	6.0681984000000284	6.6093951999999954	6.1093887999999774	3.6192896000000001	cn01	cn02	cn03	cn04	cn05	cn06	45.411097599999927	45.052505600000018	48.34319359999995	24.1563008	22.984307199999989	21.669401600000011	cn01	cn02	cn03	cn04	cn05	cn06	13.368998400000009	2.1371904000000099	2.5271040000000098	3	2.203200000000038	5.6162047999999887	cn01	cn02	cn03	cn04	cn05	cn06	46.5497984	45.442508799999928	46.907993600000047	25.234304000000009	23.218700799999962	21.85660160000003	cn01	cn02	cn03	cn04	cn05	cn06	4.0403072000000302	9.3598976000000693	5.959001599999965	10.9531904	6.1405952000000052	4.8518015999999866	cn01	cn02	cn03	cn04	cn05	cn06	47.002201600000028	45.926092799999999	46.642803200000003	24.406207999999989	23.828198400000019	21.59139840000001	cn01	cn02	cn03	cn04	cn05	cn06	4.0247935999999509	2.1372031999999308	2.152793599999995	4.2030975999999782	2.296806399999979	5.6007040000000057	cn01	cn02	cn03	cn04	cn05	cn06	48.15659519999997	48.344102400000097	47.875200000000063	25.281305600000049	23.265702400000009	22.527398399999981	cn01	cn02	cn03	cn04	cn05	cn06	4.0715008000000807	6.333593599999972	7.0822015999999621	2.2030975999999778	6.6717952000000187	4.1654015999999938	cn01	cn02	cn03	cn04	cn05	cn06	45.489011199999943	47.283302400000032	46.580403199999978	24.57809919999999	22.906303999999921	21.71609599999999	cn01	cn02	cn03	cn04	cn05	cn06	2.49599999999998	2.1371007999999851	2.1059072000000469	8.7969024000000182	4.1405952000000052	5.6007040000000057	cn01	cn02	cn03	cn04	cn05	cn06	46.284595200000012	49.451699199999887	44.81768959999998	24.39059199999997	24.24999680000008	22.19979520000004	cn01	cn02	cn03	cn04	cn05	cn06	6.3959039999999714	5.9904000000001361	6.1150079999999871	2.468799999999987	4.281305599999996	3.8221952000000101	cn01	cn02	cn03	cn04	cn05	cn06	45.286195199999952	44.974502399999899	53.225894400000023	23.734400000000051	24.06250239999995	22.38700799999992	cn01	cn02	cn03	cn04	cn05	cn06	2.3244032000000061	2.199603199999955	2.5271040000000098	6.5937023999999838	2.531200000000013	1.996902400000067	cn01	cn02	cn03	cn04	cn05	cn06	46.097395200000172	44.584499199999968	45.784793600000057	23.203097599999971	23.609395200000002	21.95009279999999	cn01	cn02	cn03	cn04	cn05	cn06	6.052697599999874	6.6611968000001962	6.3959039999999714	2.1563008000000541	7.2655999999999494	6.0999039999999241	cn01	cn02	cn03	cn04	cn05	cn06	48.04739840000002	48.031999999999933	46.518003199999839	24.156198400000001	23.24999680000008	21.404198400000041	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	13.35939839999992	4.2344064000000117	3.8689024000000241	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	22.796902400000029	22.859391999999961	21.419801600000032	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.3124992000000471	2.4218111999999792	2.028096000000005	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.31249919999993	23.70319360000008	21.716198399999939	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.046899199999981	6.2343039999999519	6.0530048000000507	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.29680640000004	24.859391999999961	22.043788799999898	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.2343935999999762	2.2969087999999829	6.1779072000000479	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.937510400000061	24.140595200000011	22.32459519999998	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.15630079999994	7.2656000000000631	3.9625984000000471	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.874995200000061	25	22.340211199999999	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	4.1874943999999887	2.2344064000000121	18.65839359999995	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.500006399999961	23.421887999999971	21.87220480000008	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.2812032000000499	16.562508800000039	5.7723007999999272	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.15630079999994	23	20.390092800000041	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.2187008000000787	4.2030975999999782	2.3245055999999522	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.609395200000002	23.71879679999995	21.48220160000005	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	4.1561983999999921	2.3281024000000339	6.8018943999999237	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.859404799999989	23.937497600000029	21.01410559999999	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.3905919999999692	6.2969087999999829	3.8221952000000101	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.796902400000029	23.031193599999931	22.23100160000002	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	13.17190399999993	2.2344064000000121	2.0436991999999918	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.515596800000029	23.453094400000051	21.62250240000003	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	4.2030975999999782	22.515596800000029	5.6318976000000021	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.562508800000039	23.281305599999989	21.45089280000002	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.2812928000000738	4.2343935999999758	4.0718080000000327	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.98439680000001	22.671808000000059	21.154598399999941	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.9062015999998048	4.156300799999828	3.0577024000000388	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.453107200000201	23.484390400000169	21.232601599999949	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.765695999999934	2.4531071999999772	6.24019199999998	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.59370239999998	22.499993599999922	21.326208000000069	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.3281024000000343	6.1250047999999397	1.996902399999954	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.10938880000003	23.343705600000021	21.060889599999989	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	4.2031872000000003	5.5851008000000766	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	23.71870720000015	21.263705599999859	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	2.3244928000001441	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	5.9594879999999648	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	21.669311999999991	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	2.1372928000000679	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	20.733401599999979	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	6.5833983999998509	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	20.98300160000008	
16cores,4x4x1	6.9444444444444444E-5	7.2463768115942027E-5	7.5757575757575758E-5	7.9365079365079365E-5	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	7.8424952902656164E-2	8.4236231884057974E-2	8.7828787878787881E-2	9.1763492063492061E-2	9.6277157819809167E-2	0.10363094581172061	0.10671005477466489	0.11130505400796831	0.11873337545228502	0.127	0.13300000000000001	0.14598669212613058	0.15782589891651733	0.18151393851629116	0.21299999999999999	0.23787679921074978	0.30350261890565267	approximation	
6.9444444444444444E-5	7.2463768115942027E-5	7.5757575757575758E-5	7.9365079365079365E-5	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	8.094305555555556E-2	8.4236231884057974E-2	8.7828787878787881E-2	9.1763492063492061E-2	9.6091666666666672E-2	0.10087543859649123	0.10619074074074075	0.11213137254901961	0.11881458333333332	0.12638888888888891	0.13504523809523811	0.14503333333333335	0.15668611111111114	0.17045757575757578	0.18698333333333336	0.20718148148148152	0.23242916666666666	9cores,3x3x1	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	8.1000000000000003E-2	8.5159897512298688E-2	9.0999999999999998E-2	9.8000000000000004E-2	0.10299999999999999	0.11232982716054529	0.11559999999999999	0.12622964996292763	0.13500000000000001	0.1519001688251338	0.1835762059889976	0.21172346686288712	0.25771187073430846	16cores,4x4x1	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	9.6277157819809167E-2	0.10363094581172061	0.10671005477466489	0.11130505400796831	0.11873337545228502	0.127	0.13300000000000001	0.14598669212613058	0.15782589891651733	0.18151393851629116	0.21099999999999999	0.24099999999999999	0.30350261890565267	25cores,5x5x1	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	9.5600000000000004E-2	0.10253583241455333	0.11345	0.12384844969626574	0.13200000000000001	0.14699999999999999	0.161	0.17199999999999999	0.188	0.215	0.25700000000000001	0.28899999999999998	0.35299999999999998	9cores,3x3x1,Dryad	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	8.1000000000000003E-2	8.5159897512298688E-2	9.0999999999999998E-2	9.8000000000000004E-2	0.10299999999999999	0.11232982716054529	0.11559999999999999	0.12622964996292763	0.13500000000000001	0.1519001688251338	0.1835762059889976	0.21172346686288712	0.25771187073430846	16cores,4x4x1,Dryad	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	9.6277157819809167E-2	0.10363094581172061	0.10671005477466489	0.11130505400796831	0.11873337545228502	0.127	0.13300000000000001	0.14598669212613058	0.15782589891651733	0.18151393851629116	0.21099999999999999	0.24099999999999999	0.30350261890565267	25cores,5x5x1,Dryad	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	9.5600000000000004E-2	0.10253583241455333	0.11345	0.12384844969626574	0.13200000000000001	0.14699999999999999	0.161	0.17199999999999999	0.188	0.215	0.25700000000000001	0.28899999999999998	0.35299999999999998	9cores,3x3x1,mpi	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	1.4694380122764361E-2	1.5195787966236773E-2	1.547626503130517E-2	1.5981636649183173E-2	1.5513759202210542E-2	1.5863162968967615E-2	1.6288081329043802E-2	1.7299999999999999E-2	1.9869797650059917E-2	2.1395323332965122E-2	2.3781690741533579E-2	2.8630988423983927E-2	3.605196507151609E-2	16core,4x4x1,mpi	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	2.07E-2	2.1100000000000001E-2	2.12E-2	2.2821200027191901E-2	2.1655252017900528E-2	2.2390348635108914E-2	2.784009920257402E-2	2.2295228274132883E-2	2.2792057083012685E-2	2.3019132179283419E-2	2.7401102266532806E-2	3.9793126740745643E-2	4.9350560462160242E-2	25cores,5x5x1,mpi	8.3333333333333344E-5	8.7719298245614042E-5	9.2592592592592602E-5	9.8039215686274519E-5	1.0416666666666666E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666669E-4	1.851851851851852E-4	2.0833333333333332E-4	2.2548162039872643E-2	2.3370705946199832E-2	2.4057848227130307E-2	2.439429863699738E-2	2.5100000000000001E-2	2.6708454931916314E-2	2.8231874465933338E-2	3.3117165530827775E-2	3.537153084350364E-2	4.1932208935788751E-2	4.7100000000000003E-2	5.6482307043524749E-2	6.3E-2	

Intel MKL 1core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	7434.9442379182146	7952.2862823061623	8131.3055262761627	8169.5174878733724	8274.5837884354423	8356.5459610027865	8280.8237367518886	8404.8097837238893	8395.8608060717379	8385.2871751225302	8523.7188005315311	8526.2596956598973	8444.4623813998896	8535.6028580582752	8495.1074473775298	8475.9704375699057	8542.5130428507964	8492.142365699432	Intel MKL 8 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	27777.777777777781	41994.750656167977	48343.777976723366	52032.520325203252	56016.132646202102	56514.913657770798	58234.295415959263	58541.047335924988	59009.227780475958	60119.63807977875	56029.130096188244	59741.741430275375	61817.670230725947	57542.491061411507	60748.420541065934	58594.644083314262	59548.988830776871	60256.026119210219	Intel MKL 16 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	29850.746268656716	53872.053872053868	62355.658198614321	76054.664289958397	86117.809162934878	85714.28571428571	95410.292072322671	88942.934074524441	91669.28638792834	100836.94665725522	101262.93365794279	99936.383089468509	101046.33781763827	107483.49948099258	100228.66985418583	102272.15980024969	100682.41900116811	107501.31335195068	Intel MKL 24 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	29411.764705882353	72727.272727272721	82568.807339449544	71829.405162738505	83416.750083416744	79236.977256052822	101419.27853341219	100392.15686274511	99454.297407912687	130718.95424836602	102188.09980806142	103908.59891761879	105248.02989293156	106868.14791735634	136537.41125068269	107434.6565946676	102361.63053555989	107044.5284681179	Blocked algorithm 1 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	167.95431642593215	167.98958464575196	168.0170257252735	163.93064709061525	166.99096311703994	166.38018720081897	167.47309682632866	166.68444199973931	167.31378543721468	166.7491602553977	166.79750642364641	166.98965426130513	164.05383364050661	167.16473615053715	167.21163001228783	167.20219196522032	166.87311936363579	166.86191112508877	Blocked algorithm 8 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	1034.8431695176596	1049.1252917879717	1053.0770325849335	1025.5752836356644	776.14514783547099	1048.0789477112685	1021.1901572333632	1024.8665656759417	1053.4256600474012	1050.8696024775722	1032.2428939654662	1022.8823517656417	1050.1151565744642	1052.085447397084	1052.0368766512011	1020.3476057996185	1025.2169919080277	1019.1267326878994	Blocked algorithm 16 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	1214.5222858766847	2063.0235647577292	2040.9867172962399	2049.0637099531109	2045.8303644925027	1520.1276513119931	1496.5180214146931	2042.5297377070679	2075.4910767763013	2092.573341595999	1493.852703530795	2098.9299411013899	2016.6427365891504	1493.7502258113213	2087.494792860211	2046.5557967381369	2087.7297793512262	1553.9105670833151	Blocked algorithm 24 core	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000	18000	2237.1364653243845	2845.9622909996442	3080.2929700869327	2355.8990423638497	2322.4645399146652	1832.9106748802562	2990.0161356264343	1837.2310201386713	3105.980396960485	2688.4430554155324	3092.7487705103736	3128.1764885313773	1838.6791304060368	1852.7534962113418	2356.6337494392083	3076.8121341778542	1845.5136073196684	3131.0944468976959	

384cores,4x4x24	9.2592592592592588E-5	9.8039215686274506E-5	1.0416666666666667E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666666E-4	1.8518518518518518E-4	2.0833333333333335E-4	2.380952380952381E-4	2.7777777777777778E-4	3.65	3.73	3.9482978946092109	4.0576752896668147	4.21	4.4418217931924522	4.8056759679168275	5.3124789452830798	5.91	6.37	7.3341996350837029	8.9443844212716535	11.60735131714384	256cores,4x4x16	9.2592592592592588E-5	9.8039215686274506E-5	1.0416666666666667E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666666E-4	1.8518518518518518E-4	2.0833333333333335E-4	2.380952380952381E-4	2.7777777777777778E-4	2.0543859230383736	2.1778607760138446	2.4129692832764507	2.5587188612099641	2.7297861427224062	2.87	3.2335477177624599	3.41	3.77	4.5999999999999996	5.37	6.72	9.01	128core,4x4x8	9.2592592592592588E-5	9.8039215686274506E-5	1.0416666666666667E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666666E-4	1.8518518518518518E-4	2.0833333333333335E-4	2.380952380952381E-4	2.7777777777777778E-4	0.88922329528113808	0.92644029688266571	1.0202020202020203	1.1691973969631237	1.2597625119386393	1.4210677715662663	1.5500668128702264	1.6954177897574123	1.8882529826354841	2.2468444642389138	2.5808329287768643	3.2096533195494139	3.9028235512863718	5.5965302363896052	16nodesx1core	9.2592592592592588E-5	9.8039215686274506E-5	1.0416666666666667E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666666E-4	1.8518518518518518E-4	2.0833333333333335E-4	2.380952380952381E-4	2.7777777777777778E-4	3.3333333333333332E-4	0.10671005477466489	0.11130505400796831	0.11873337545228502	0.12941573772095549	0.13900000000000001	0.14598669212613058	0.15782589891651733	0.18151393851629116	0.21317097628441301	0.243787679921075	0.30350261890565267	0.36690609230590598	0.45255247640013363	0.65021964972713753	1nodex16cores	9.2592592592592588E-5	9.8039215686274506E-5	1.0416666666666667E-4	1.1111111111111112E-4	1.1904761904761905E-4	1.2820512820512821E-4	1.3888888888888889E-4	1.5151515151515152E-4	1.6666666666666666E-4	1.8518518518518518E-4	2.0833333333333335E-4	2.380952380952381E-4	2.7777777777777778E-4	3.3333333333333332E-4	0.28237260918742257	0.28331675799258971	0.28437894034941946	0.28558276615822442	0.28695859198178919	0.28854611632014815	0.29039827274195007	0.29258724693334393	0.29521410470801568	0.2984248401363121	0.3024384628211465	0.30759916695411382	0.31448068705534649	0.32411593138074557	Aggregation Tree	320	480	640	800	960	1120	1280	110	122	135	149	156	159	165	Hash Partition	320	480	640	800	960	1120	1280	150	157	175	189	201	211	221	Hierarchical Aggregation	320	480	640	800	960	1120	1280	36	48	52	59	65	72	77	

Hash Partition	100000	200000	300000	400000	500000	600000	700000	800000	900000	1000000	1130	1047	957	943	866	816	810	843	831	843	Aggregation Tree	100000	200000	300000	400000	500000	600000	700000	800000	900000	1000000	791	812	822	833	859	870	923	925	930	948	

OpenMPI	240000000	480000000	720000000	960000000	1200000000	13.1	21.1	25.1	29.1	31.3	LINQ to HPC	240000000	480000000	720000000	960000000	1200000000	97.754065060000002	99.755863790000006	99.751377969999993	99.761025359999991	100.14965535	Hadoop	240000000	480000000	720000000	960000000	1200000000	132	139	141.1	143.1	146.1	

LINQ to HPC	1	2	4	6	8	10	12	14	16	28.233247349999999	50.025881400000003	77.45583105	104.82681030000001	137.83468149999999	176.80560785	206.8178073	236.97940475000001	266.91203089999999	OpenMPI	1	2	4	6	8	10	12	14	16	0.96457700000000002	1.9079189999999999	3.7132990000000001	5.4894850000000002	7.1532010000000001	8.866403	10.623078	12.352251000000001	13.972384999999999	Hadoop	1	2	4	6	8	10	12	14	16	39.921919338129456	73.770995904630439	125.80838953132279	177.34758361127473	232.20160762193132	293.13338807532443	346.73229728565877	400.04481562053968	451.48878717804234	

LINQ to HPC	1	2	4	8	12	16	0.99791453376230532	1.5753843626798121	2.0741491296167935	2.8069609358597498	2.8010580941798144	3.1844207685179482	OpenMPI	1	2	4	8	12	16	0.996760957	2.0026292649999999	3.990012224	7.9480783490000002	11.678457290000001	15.62189	Hadoop	1	2	4	8	12	16	1	1.67	3.31	6.12	8.3474511011858912	9.1864406779661021	

OpenMPI	3.4743158000000003	3.4993527000000002	3.5028041000000001	3.4673248999999999	3.4756109000000004	3.5448198	3.4624274000000002	3.4622964999999999	3.4756109000000004	3.4993527000000002	LINQ to HPC	169.81789381999999	97.754065060000002	99.755863790000006	99.751377969999993	99.761025359999991	100.14965535	96.733980549999998	97.855051029999998	99.73213604	97.728412969999994	Hadoop	163	144.63304045091979	146.71402601278487	146.25130602002884	146.36812055955335	147.65719244689984	143.118484736055	147	151	157	

image2.png
Upper triangle

0 1 7
0 0 1 7
1

s oo |1
.
.
p-1 | [Blocks in Iuwermaggi
are not calculated irectly || 3¢

Blocks In Upper Triangle
[sTe]- [u [. [|

|
‘ |
(oriton 1) (Fanivonz) - (raritions)
DryadUiNQ |

m. 0,
DryadLING
vertices.

1000 x 1000 matrix broken down fo 88 blocks

Each D consecativo blocks are mevged toforma
sot of row blocks oach with 8 eloments.

image3.emf
Block

(1,1)

Block

(0,0)

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Block

A(1,1)

B(1,0)

Block

A(1,1)

B(1,1)

Block

A(0,0)

B(0,0)

Block

A(0,0)

B(0,1)

Block

(0,1)

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Block

A(1,0)

B(0,0)

Block

A(1,0)

B(0,1)

Block

A(0,1)

B(1,0)

Block

A(0,1)

B(1,1)

Matrix B Matrix A

Matrix C

Step 0

Step 1

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Preparing

stage

Compute

Node

(1,0)

Compute

Node

(1,1)

Compute

Node

(0,0)

Compute

Node

(0,1)

Compute nodes

Node 1

Node 2

Node 3

Node 4

Block

(1,0)

oleObject5.bin
Block
A(1,1)
B(1,0)

Block
A(1,1)
B(1,1)

Block
A(0,0)
B(0,0)

Block
A(0,0)
B(0,1)

Block
(0,1)

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Block
A(1,0)
B(0,0)

Block
A(1,0)
B(0,1)

Block
A(0,1)
B(1,0)

Block
A(0,1)
B(1,1)

Matrix B

Matrix A

Matrix C

Step 0

Step 1

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Preparing
stage

Block
(1,0)

Block
(0,0)

Block
(1,1)

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Compute Node
(1,0)

Compute Node
(1,1)

Compute Node
(0,0)

Compute Node
(0,1)

Compute nodes

Node 2

image4.png
16—

16—

HA Hierarchical Aggregation
2AP TwoApplyPerPartition

GA GroupAndAggregation

GB GroupBy

AP OneApplyPerPartition

HA-640
24P-640 AP-320

CPU Usage (%)

GA-320 HA-320

HA Hierarchical Aggregation o=
Usage (Bytes/second) 2AP TwoApplyPerPartition =
GA GroupAndAggregation e
GB GroupBy e
AP OneApplyPerPartition e
Ge-540
ap-640
209320

4172011 315.AM 47011 441 AM

4172017 607 AM

47011 73380

GB-640 2AP-640 AP-320 GA-320 HA-320

image1.png
Input Data
Partition
Map
Stage

Input Data
Partition
Map
Stage

Reduce Reduce
Stage Stage
a - b
Input Data Input Data
Partition Partition
Local [M
Aggregation ap
._ Stage
Aggregation Reduce
Tree Stage

