Performance Evaluation of MapReduce applications on Cloud Computing Environment, FutureGrid
Subtitle as needed
Authors Name/s per 1st Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail: name@xyz.com
Authors Name/s per 2nd Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail: name@xyz.com

Abstract— In cloud computing, a MapReduce application runs on a virtualized cluster system deployed at the resource provider’s computing infrastructure. This paper describes the result of performance evaluation of two kinds of MapReduce applications running on a Twister runtime in the FutureGrid: a data intensive application and a computational intensive application. For this work, we construct a virtualized cluster systems made of a set of VM instances in the FutureGrid. What we have observed in the experiment is that the overall performance of a data intensive application is strongly affected by the throughput of the messaging middleware since it is required to transfer data in a map task and a reduce task. However the performance of a computational intensive application is associated with CPU throughput. The result of the experiments can be used for selecting a set of VM instances in proportion to 1) how much data are used to process 2) what type of application runs in the FutureGrid. It can be used to identify the bottleneck of the MapReduce application running on the virtualized cluster system with various VM instances. We conclude that performance evaluation according to the type of specific application is essential to choose properly a set of instances for constructing a virtualized cluster system in the FutureGrid.

Performance evaluation; MapReduce application; Cloud computing; FutureGrid

I. Introduction
Cloud computing is designed to provide on demand resources or services over the Internet and with the reliability level of a data center[1]. MapReduce is a programming model designed for processing large volumes of data in parallel by dividing the work into a set of independent tasks[2]. It is a style of parallel programming that is supported by some capacity-on-demand-style clouds such as Google's BigTable, Hadoop, and Sector. In the cloud FutureGrid, virtualization is used to reduce the actual number of physical servers and cost.

In cloud computing, a MapReduce application is deployed at the provider’s computing infrastructure and the application can be composed as a service from other cloud services

[3, 4] ADDIN EN.CITE . A runtime supplies the developers with a programming language level environment with a set of well-defined APIs. It is referred to as Platform as a Service (PaaS). In this respect, a Twister[5] would be considered a PaaS that provides its applications. The FutureGrid plays a role as a resource provider, which has a cloud stack including IaaS, PaaS and SaaS[6].
This paper describes the result of performance evaluation of two kinds of MapReduce applications: one is a data intensive application and the other is a computational intensive application. For this work, we construct a virtualized cluster systems made of a set of VM instances in the FutureGrid. To monitor and measure the performance of nodes in the virtualized cluster system while the MapReduce applications are running on nodes, we use a tool, top command. To take a system snapshot of the cluster system, we write a shell script that extracts information including load average, CPU usage and memory/swap usage from the results of top command.
The result obtained from the experiments leads that it is important to determine a configuration of a virtual cluster system in order to run a MapReduce application efficiently in cloud computing. Eventually we conclude that the appropriate selection of a set of VM instance types increases the overall utilization of resources in the FutureGrid. This approach is the way to identify the relationship between the type of applications and resources allocated for running them.

The paper is organized as follows: Section 2 describes an anomaly of system behavior observed in a virtualized system that motivates this research work. Section 3 describes the related works including brief overview of MapReduce, Twister and the FutureGrid. Section 4 of the paper evaluates the performance and the observations from the result of our experiments. We present our conclusions in section 5.
II. Motivating system behavior

We have observed an anomaly of system behavior as a data intensive MapReduce application runs in a virtualized cluster system that consists of VMs in the FutureGrid. It is caused by having no enough computing resources including CPU and memory capability to run the application and by having an inappropriate configuration of a set of VMs associated with a middleware setting. This section is mainly focused on the resource starvation. Section 4 presents a variety of perspectives on the inappropriate configuration problem with more detailed results.

Figures 1 and 2 shows the snapshot of a virtualized system having resource shortage problem. A buffer value is used to measure the throughput of network I/O between a MapReduce application and a middleware to be used as message broker. Figure 1 shows the buffer value is so low. The buffer value indicates how much of the memory in use. The buffer is currently being used for I/O buffering. Basically an I/O request happens when finishing a Map task and starting a Reduce task. Simultaneously there is no available cache memory in 7 seconds, while the memory usage is sharply high by up to 100 % as shown in the Figure 1. Hence system is still pending caused by little or no memory available. It can exacerbate failures.
[image: image1.png]k byte

1400
1200
1000
800
600
400
200

buffer

—

|

\———‘—_’—/

\
/ \
\

1

3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

—=buffers

Figure 1. Buffer variations in VM
We also observed that the variation of swap area is happened. Figure 2 shows the usage of swap area is sharply increased. It triggers a write burst to a disk and affects the response time of a MapReduce application. Because of the swapping, the system has slowed down, and heavy disk drive activity can be happened. There is still a small amount of free memory.

[image: image2.png]lemm/swap usage(%)

100

80

60

40

20

memory

Y] v

“\J N

\"4 =
——memory usage

———swap usage

1357 91131517 192123252729 3133353739

Figure 2. Memory and swap variations in VM

This observation induces that load balancing is helpful in spreading the load equally across the free nodes when a node is loaded above its threshold level. Though load balancing is not so significant in execution of a MapReduce algorithm, it becomes essential to handle large files in the case of having a limited computing resources in the FutureGrid.

III. Related works

A. MapReduce

MapReduce programs are designed to compute large volumes of data in a parallel fashion. It is a kind of data parallel languages aimed at loosely coupled computations that execute over given data sets. This requires dividing the workload across a large number of machines. Twister provides a systematic way to implement this programming paradigm[2].
MapReduce, introduced by Dean and Ghemawat at Google, is the most dominant programming model for developing applications in cloud computing environment

[2, 7, 8] ADDIN EN.CITE . In a MapReduce application, all map operations can be executed independently. Each reduce operation may depend on the outputs generated by any number of map operations. All reduce operations can also be executed independently. MapReduce is specially well suited to solve embarrassingly parallel problems with no dependences or communication requirements in which it is easy to achieve a speedup proportional to the size of the problem when it is parallelized[2].
Traditional parallel applications are based on a runtime library for message passing such as MPI [9]and PVM[10], that have some programming features of communication and synchronization. The feature provided by a runtime library is a low-level primitive. So it involves a steep learning curve and potentially low programmer productivity. In the perspective of productivity MapReduce API is more well understand than a low-level API like MPI and PVM. In MapReduce, a programmer is able to focus on the problem that needs to be solved since only the map and reduce functions need to be implemented, and the framework takes care of computing the programmer has to deal with lower-level mechanisms to control the data flow, checkpointing, etc. which makes it more powerful, but also more error-prone and difficult to write.
The computation takes a set of input key/value pairs and produces a set of output key/value pairs. The computation involves two basic operations: Map and Reduce[2].

The Map operation, written by the user, takes an input pair and produces a set of intermediate key/value pairs. The MapReduce library groups together all intermediate values associated with the same intermediate Key #1 and passes them to the Reduce function. The Reduce function, also written by the user, accepts an intermediate Key #1 and a set of values for that key. It merges together these values to form a possibly smaller set of values. The intermediate values are supplied to the user's Reduce function via an iterator (an object that allows a programmer to traverse through all the elements of a collection regardless of its specific implementation). This allows you to handle lists of values that are too large to fit in the memory.

B. Twister

There are some existing implementations of MapReduce such as Hadoop [11] and Sphere [12]. Twister is one of MapReduce implementations, which is an enhanced MapReduce runtime with an extended programming model that supports iterative MapReduce computing efficiently[5]. In addition it provides programming extensions to MapReduce with broadcast and scatter type data transfers. These improvements allow Twister to support iterative MapReduce computations highly efficiently compared to other MapReduce runtimes. It uses a publish/subscribe messaging. The following are new features of Twister:
· Static and variable data
· Cacheable Mappers/Reducers 

· Combine step as a Further Reduction
· Uses Pub/Sub Messaging

C. FutureGrid
FutureGrid is a distributed testbed for developing research applications and middleware, which employs virtualization technology to allow the testbed to support a wide range of operating systems. It has been offering a flexible reconfigurable testbed based on dynamically provisioning software to support deploying a specific image to variety of environments composed of virtual machines[6]. A machine image is used as a template when a machine instance is an actual instantiation of the template. FutureGrid provides diverse configurations that have different operating systems and middleware configurations.

IV. Performance Evaluation

A. Experiment Environment

In the experiments, a virtualized cluster system consists of a set of instances that are allocated from a cluster named India, which is one of FuturGrid environments. The image of an instance basically contains Linux 2.6.27 and Java VM 1.6. Each instance provides a predictable amount of dedicated computing capacity that is defined in FutureGrid. Table 1 shows an overview of the types of VM instances to be used in the experiments.

TABLE I. Main specfication of VM instance type
	 Type of

VM instance
	Main HW Features

	
	CPU
	Memory

(Mbyte)
	Disk

	c1-medium
	1
	1024
	7

	m1-large
	2
	6000
	10

	m1-xlarge
	2
	12000
	10

We make a configuration for a virtualized cluster system as testbed and use various configurations that are used to evaluate performance of two types of MapReduce applications. A configuration has various middleware setups. It is used to represent a specific workload. For example, sim-c1-m1 represents an unbalanced load allocation and sim-2-m1 represents a balanced load allocation. Table 2 shows the list of configurations to be used in our experiments except sim-gf14-gf15 and sim-india. The sim-gf14-gf15 is composed of two Linux machines at IU. The sim-india is a multi-core machine having 1,024 cores in 128 nodes in the FutureGrid.
TABLE II. Configuration of virtual cluster systems
	 Type of

VM instance
	Main Features
	Work

load

	
	CPU
	Memory

(Mbyte)
	Location of

NB
	

	km-c1
	1
	1024
	c1-medium
	

	sim-c1-m1-1

km-c1-m1
	3
	7,181
	c1-medium
	unbalanced

	sim-c1-m1-2

km-c1-m1-2
	4
	7,181
	m1-large
	 unbalanced

	sim-2-ml
km-2-m1
	2
	12000
	m1-large
	balanced

	km-xl
	2
	12000
	m1-xlarge
	

We set up a virtualized cluster system of the cloud architecture. To set up the virtualized cluster systems, we deploy images and run the instances. A MapReduce application is implemented on a system using:

· Twister 0.8

· NaradaBroker 4.2.2

· Linux 2.6.x running on Xen

We gather and analyze OS-level performance metrics, without requiring any modifications to Twister, its applications or the OS to collect these metrics. For data collection, we choose a Linux command to be used as a system-monitoring tool, top that provides a dynamic real-time view of a running system, including information about system resource usage and a constantly updated list of the processes which are consuming the most resources. We set a top command as a batch mode, a rate of 1 sample per second, and 1000 samples to gather data about the usage of resources. By using the tool, we get the trace of CPU usage, memory usage and load average while a MapReduce application is running in a specific VM environment. The following describes the restriction of the experiments:
· The applications of which are used follow a MapReduce programming model

· Resource allocation considers in a static way that means how to select computing resources to optimize a MapReduce application running on the nodes

· Performance evaluation is based on the samples, representing a system snapshot of the node, collected from a command top while a MapReduce application is running

B. Experiment: Data intensive application
In this experiment, two different computing environments are evaluated, which are running a data intensive application with various configurations: one is a cluster system composed of real machines and the other is a virtualized cluster computing system. For this work, we construct a MapReduce application is used to transform a data set collected from a music radio site, Last.fm(http://www.last.fm/) that provides the metadata for artists include biography by API, on the Internet. The goal program is to histogram the counts referred by musicians and to construct a bi-directed graph based on similarity value between musicians in the data set.

We compare both environments with application’s performance metrics in terms of elapse time and standard variation. The graph in Figure 3 plots the results using the MapReduce application. In the part of the graph, sim-c1-m1-1 to type sim-2-ml, we see that as the resources of VMs including CPU and memory increase, the elapse time of the application and the value of its standard variation decreases. What we observed is that the number of CPUs has less impact on the elapse time in comparison to the results of sim-c1-m1-2 and sim-2-m1. Though performance degrades as the application runs in the virtualization environment, the performance of sim-2-m1 still provides 80.9% of the average performance of sim-gf14-gf15 and sim-india when running the real computing environment. However the elapse time of type sim-2-m1 is 98.6 % of the elapse time of sim-fg14-fg15.

[image: image3.png]sec

100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00

89.57

6.97

12.19
6.72 6.50 437
1.55 0.83 0.13 "~ 0.25
|| |
sim-c1-m1-1 sim-c1-m1-2 sim-2-m1 sim-gf14-fg15 sim-india

B Elapse time
W Stdev

Figure 3. Elapse time of similarity: 6 configurations - Cluster system(3 types) and Virtualized cluster system(2 types)

Figures 4 and 5 show the load averages as the program runs with different setting of a message broker middleware even if these computing resources have the same virtualized system that consists of 1 c1-medium and 1 m1-large. We consider two middleware configurations: one is that a message broker runs in the node (194) typed with c1-medim. The other is that the message broker runs in the node (196) typed m1-medim. As shown in Figures 4 and 5, the overall workload of sim-c1-m1-2 is less than one of sim-c1-m1-2. In sim-c1-m1-1, the average number of running processes is 3.24 and its maximum number of running process is 4.97. Figure 4 shows the node has been overloaded 224% during the application running time. On the other hand, the average number of running processes is 0.80 and its maximum number of running process is 4.97 in sim-c1-m1-2. During the running time (342sec), the CPU was underloaded 20%.

According to this result, performance of a virtualized cluster system is affected by the middleware configuration depends on the location of the message broker that sends and receives the message to/from application. The gap of performance is caused by CPU and memory capability of the node running the message broker. What we have observed is that the application is more I/O oriented job that needs more memory than CPU power. We can expect more higher throughput when the node typed with c1-medium may be replaced with other node typed with m1-large.
[image: image4.png]3

=1min

===5min
“===15min

©

Yo}

<t (s2) N ~
abeiane peoj

186
96
L6
9/8
L8
908
VL.
9¢€.
104
999
1€9
969
196
9¢s
L6y
9G¥
Ley
98¢
1G€
9le
18¢
e
434
9Ll
Ll
901
LL

9¢

Figure 4. Load average of sim-c1-m1-1(NB running on the node typed with c1-medium)

[image: image5.png]==1min
===5min
15min

\

1.4

1.2

- ®
o
abelane peoj

© <
o O

N
o

o

166
866
G¢6
268
658
9¢8
€61
092
Yx4A
¥69
199
8¢9
G6S
29§
6¢S
961
€9v
(01974
16¢€
¥9¢
LEC
86¢
§9¢
[4%4
661
991
€el
0ol
19

ve

Figure 5. Load average of sim-c1-m1-2(NB running on the node typed with m1-medium)

As shown in Figure 6, the average memory usage is almost 100% of real memory in the node and swap area have the same status during the running time(627sec). The running application is delayed due to the heavy disk I/O caused by high swap value.
[image: image6.png]percente(%)

100
80
60
40

20

memory

| E——

“memory usage

47

93
139
185
231
277
323

369
415
461
507

553
599
645
691
737
783
829
875
921
967

swap usage

—=actual usage of mem

Figure 6. Memory/swap area usage of sim-c1-m1-1(NB running on the node typed with c1-medium)

As shown in Figure 7, the average memory usage is above 80% in the node during the running time. But the average swap area usage is less than 1%. As a result, it can handle the I/O requests from the application.
[image: image7.png]%

100

80

60

40

20

memory

——memory usage

sSwap usage

—actual mem of usage

49

97
145
193
241
289
337
385
433
481

529
577
625
673
721
769
817
865
913
961

Figure 7. Memory/swap area usage of sim-c1-m1-2(NB running on the node typed with m1-medium)
C. Experiment: Computation intensive application
To do performance evaluation of a MapReduce application typed computation intensive, one configuration, xlarge, is added to the configurations of this experiment. In this experiment, we use k-means algorithm with 100,000 data points, which is to organize these points into k clusters. We compare both environments, a virtual cluster computing system and a cluster system, with application’s performance metrics in terms of elapse time and standard variation. As shown in Figure 8, our experiments indicate that the average elapse time can increase by over 375.5% in the virtualized cluster computing system, in comparison with a cluster system, india represented by km-real-india-1. Besides, the elapse time decreases proportional as VM’s CPU capability is added to the virtualized cluster computing system. Furthermore, the standard deviation is less affected by configuration change and the size of input data. In the real cluster system, the value remains vey low at about 1-2% of the variation of elapse time due to the capability of system mainly related with CPU power. In addition, the standard variation in the three configurations of the virtualized cluster computing system remains low at about 2.0-3.78%. A similar trend is observed by in the values of standard deviation of all configurations. Hence we can expect that as the number of available VMs increases, there is a proportional improvement of elapse time.
[image: image8.png]70.00
60.00
50.00
§40.00
30.00
20.00
10.00
0.00

K-means

60.16

46.10

¥ Elapse time

2425

il
[44]
E-N
Jury

" Stdev

km-c1

1.71

a1
e

km-c1-m1

km-2*ml km-x|

km-real-india-1

Figure 8. Elapse time of k-means: 6 configurations - Cluster system(4 types) and Virtualized cluster system(1 types)

Figures 9 and 10 show the load averages as k-means program runs on different middleware configurations that have the same configuration of virtualized cluster system that consists 1 c1-medium and 1 m1-large. In those figures, we observed that the load average pattern of them shows the similar trend. According to this observation, computation intensive program is less affected by CPU capability.
[image: image9.png]K-means:Load average

(100000, 4M/1R)

=1min
===5min
15min

RN

nu < ® N -

abeiane peoj

o

G8.
VASVA
6¢.
104
€19
Sv9
19
689
196G
€9
S0S
Ly
144
Ley
€6¢€
G9¢€
FA%S
60€
18¢
€G6¢
144
161
691
245
€Ll
G8

LS

6¢

Figure 9. Load average of sim-c1-m1-1(NB running on the node typed with c1-medium)
[image: image10.png]K-means:Load average

(100,000, 4AM/1R, c1-m1 with NB in m1

==1min

===5min
====15min

nu < ® N -

abelane peoj

o

¥8.
1S/
0eL
€02
919
619
[44°)
G6S
896
LPS
145"
18¥
09y
€y
90¥
6.€
cse
Gee
86¢
¥k4
1444
YA
061
€91
o€l
601
c8

GG

8¢

Figure 10. Load average of sim-c1-m1-1(NB running on the node typed with m1-large

In addition, Figures 11 and 12 demonstrate that there is no difference in terms of memory and swap area usage between two middleware configurations.

[image: image11.png]Mem/Swap usage

(100,000, 4M/1R,c1*-m1)

K-means

100

)

o
2
S5 ®
= g

o
a
€ @
e =
E o
o o o o
0 © ¥ N

%

196
GZ6
€88
L¥8
662
1G/
G
€19
L€9
685
LvS
G0S
€9¥
Ley
6.€
1€€
G6¢
€G6¢
le
691
L2l
G8

9%

Figure 11. Memory/swap area usage of sim-c1-m1-1(NB running on the node typed with c1-medium)

[image: image12.png]:Mem/Swap usage
(100,000, 4M/1R,c1-m1*)

K-means

100

)

o
2
S5 ®
= g

o
a
€ @
e =
E o
o o o o
0 © ¥ N

%

196
GZ6
€88
L¥8
662
1G/
G
€19
L€9
685
LvS
G0S
€9¥
Ley
6.€
1€€
G6¢
€G6¢
le
691
L2l
G8

9%

Figure 12. Memory/swap area usage of sim-c1-m1-2(NB running on the node typed with m1-medium)

Figure 13 shows the load average of c1-m1 configuration, which is the same configuration of Figure 8, whereas two configurations have different data points. The left hand side of Figure 13 shows the elapse time when k-means runs data for 10,000 points. Finally we observed that the elapse time of the application increases as the size of data increases.

[image: image13.png]sec

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

60.16

km-c1-m1(10,000)

km-c1-m1

H Elapse time
1 Stdev

Figure 13. Elapse time and standard deviation of k-means : 10,000 data point(left) and 100,000 data point(right)
D. Summary of the experiments
 In summary, performance evaluation based on the metrics, load average and memory/swap area usage, according to the type of specific application is essential to choose properly a set of instances in the FutureGrid. Based on the performance evaluation we may choose the configuration of a virtualized cluster system to provide 80% of performance of a real cluster system.

· The performance of the application running on the Twister strongly depends on the throughput of a message broker, Naradabroker.

· The pending of the application is caused by broken pipe between a Twister daemon and a Naradabroker server when Naradabroker has a threshold of the limitation to accept a connection from Twister due to its QoS requirement.

· The capability of Naradabroker in the middleware configuration affects the performance of an application as the application runs in the same configuration computing resource.

V. Conclusion

What we have observed in the experiments is that the overall performance of data intensive application is strongly affected by the throughput of the messaging middleware since it requires to transfer data when a map task sends the intermediate result to a reduce task. When it is close to limit of available memory as a data intensive MapReudce application runs on the specific configuration of nodes, the elapse time is sharply increased and its standard deviation is high. The performance of the MapReudce application is so strongly affected by the configuration of VM. However the performance of computational intensive application is associated with CPU throughput. It is less affected by the configuration of VMs having the same CPU power. The result of the experiments can be used for selecting the proper configuration based on the proposed guideline in cloud computing. It can be used to identify the bottleneck of a MapReduce application running on the resource given VM configuration. When it will be used to extend the information service system associated with the middleware for cloud computing

 References
[1]
M. Armbrust, et al., "Above the Clouds: A Berkeley View of Cloud Computing," EECS Department, University of California, Berkeley Technical Report No. UCB/EECS-2009-28, 2009.

[2]
J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters," Communications of the Acm, vol. 51, pp. 107-113, Jan 2008.

[3]
K. Keahey, et al., "Sky Computing," IEEE Internet Computing, vol. 13, pp. 43-51, 2009.

[4]
L. Youseff, et al., "Toward a Unified Ontology of Cloud Computing," in Grid Computing Environments Workshop, 2008. GCE '08, 2008, pp. 1-10.

[5]
J. Ekanayake, et al., "Twister: A Runtime for Iterative MapReduce," presented at the The First International Workshop on MapReduce and its Applications (MAPREDUCE'10) - HPDC2010, 2010.

[6]
FutureGrid. (2011, FututrGrid Portal. Available: https://portal.futuregrid.org/

[7]
J. Dean and S. Ghemawat, "MapReduce: A Flexible Data Processing Tool," Communications of the Acm, vol. 53, pp. 72-77, Jan 2010.

[8]
K. Morton, et al., "Estimating the Progress of MapReduce Pipelines," presented at the IEEE 26th International Conference on Data Engineering (ICDE), 2010, Long Beach, CA 2010.

[9]
MPI. MPI(Message Passing Interface). Available: http://www-unix.mcs.anl.gov/mpi/
[10]
PVM. PVM(Parallel Virtual Machine). Available: http://www.csm.ornl.gov/pvm/
[11]
J. Urbani, et al., "Scalable Distributed Reasoning

using MapReduce " presented at the ISWC '09, 2009.

[12]
R. Grossman and Y. Gu, "Data mining using high performance data clouds: experimental studies using sector and sphere," presented at the Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas, Nevada, USA, 2008.

