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Abstract.  We describe the architecture of our streaming sensor grid system.  
Using a topic-based publish/subscribe methodology, we are able to build a 
scalable system for managing real-time data streams produced by the California 
Real Time GPS Network.  The architecture is based on atomic, extensible 
elements called filters that receive, modify, and republish 1 Hz GPS data 
streams in our deployment.  Our filter approach can be extended to include 
sophisticated data analysis and event detection applications.   

Keywords:  Real time data streams, global positioning system, sensor webs, 
publish/subscribe middleware, message-oriented middleware. 

1. Introduction 

Recent advancements in sensor technologies such as micro-circuitry, nano-technology 
and low-power electronics have allowed sensors to be deployed in a wide variety of 
environments [1-6]. The trend in this field shows that in the near future thousands of 
sensor nodes will be deployed either individually or as part of sensor networks in a 
large variety of application domains. Environmental monitoring, air pollution and 
water quality measurements, detection of the seismic events, and understanding the 
long-term motions of the Earth crust are example areas where the extent of the 
deployment of sensor networks can easily be seen. Extensive use of sensing devices 
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and deployment of the networks of sensors that can communicate with each other to 
achieve a larger sensing task will fundamentally change information gathering and 
processing [7]. 

Our work on developing a common Grid infrastructure for Geographic 
Information Systems has led us to the conclusion that this new type of data source is 
capable of producing very large amounts of observational data that potentially may 
help us obtain detailed knowledge about the environment we live in. Although the 
most common type of geographic data are kept in various types of data stores such as 
databases, the real-time sensor measurements will become the dominant type of data 
sources and have the capacity to produce tremendous amount of measurements.  This 
data deluge may be more than the traditional systems can handle in normal operation. 
For instance Southern California Integrated GPS Network (SCIGN) [8] has deployed 
250 continuously-operating GPS stations in Southern California whereas several 
hundred non-real time stations are operating elsewhere in the United States. The GPS 
Earth Observation Network System or GEONET in Japan consists of an array of 1200 
GPS stations that cover the entire country with an average spacing of about 20 km [9]. 
These networks are capable of producing terabytes of measurements per year.  

We see an important research problem in investigating appropriate mechanisms 
for managing the real-time data streams that are produced by these devices.  We thus 
conduct systems research into implementing overlay networks to organize and 
transform sensor grid streams and investigate the mechanisms for delivering this data 
to applications.  

 
 

2. Real Time Data Grid Components 

2.1 Filters and Web Services 

Filters in a Sensor Grid context are data processing applications, mostly operating in 
real-time. Similar to filters in electronics, which accept processes and output certain 
types of signals, a real-time software filter accepts transforms and presents messages. 
Depending on the task they are designed to accomplish, filters may be small 
applications such as format converters or very complex applications like simulation 
software. They may be expected to run in real-time by immediately processing and 
presenting the results or in near-real time by accumulating certain amount of data and 
executing the processing afterwards.  

 

 
Fig. 1. Simple Filter concept includes a signal generator unit, actual data processing filter 

unit and the output signal.  
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The filters in our real-time data Grid architecture have three major parts 
corresponding to the three components depicted in Figure 1. The first component is 
the data input unit which is responsible for obtaining the data from the sources. In a 
real-time data Grid the data sources are sensors, or proxy servers which disseminate 
the real-time sensor measurements. The input unit must have the capability to access 
and present the data to the actual filter. The second component is the actual data 
processing unit. And the last component is a data output unit. Depending on the type 
of the Grid or client applications, the output unit may be implemented to support 
various data transfer protocols.  

While designing real-time applications one obvious principle to remember is the 
importance of keeping the data flow from sources to destinations alive. Data 
processing in general requires multiple steps. For instance in a simplistic case, three 
steps would be required: accessing the data, converting them into application specific 
formats, and executing the actual processing. However in real world applications 
many more steps might be required to create a data processing flow. One must 
remember that any kind of interruption at some step of the flow will disrupt the entire 
process and possibly cause major breakdown because in the real-time systems the 
data are likely to be streamed continuously. For this reason it is wise to break down 
the data processing applications into as many small filters as possible and allow them 
to be accessed and controlled through standard interfaces. This approach helps 
creating robust real-time data flows because it allows distribution of the processing 
components and in turn integrating failsafe measures. For instance backup services 
could be used to replace any failed services thus allowing keeping the flow alive. 

We adopt a Web Service approach to create standard control interfaces for the 
filters. Every filter in the system implements the same Web Service interface. The 
Filter Web Service interface provides capabilities such as start, stop and resume. It 
also provides a unique identifier for each filter, which can be useful for creating 
distributed chains. Another important feature of this service is to provide metadata 
descriptions of the filters.  

In the larger picture each domain specific Grid has a specific filter chains. It is 
desirable for the Grid services to have access to the filter-chains at a given time for 
different reasons. For instance at the time of any server failures, it may be expected 
that the Sensor Grid restarts all the filter services in some chains. To be able to do this 
we need to keep metadata about the running, or potentially useful chains. For this 
reason we have developed an XML Schema for describing filter chains, as depicted in 
Figure 2.   

Creating distributed systems requires successful orchestration of multiple remote 
resources. Minimizing human interference in this orchestration is also important for 
fast and accurate operation. However, to do this, the resources must be well defined. 
There must be a standard way for resources to communicate for successful 
integration. Web Services present us with a useful way for defining the service 
capabilities so that coupling the resources can be done automatically. In the filters 
case we also need additional metadata about each filter for creating filter chains. The 
metadata documents should contain unique properties of the filters such as its ID, 
input –output requirements, dependencies and a short description of the processing it 
is responsible for.  
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In Sensor Grid the filters are deployed as Web Services and in most cases run in a 
workflow as part of complex processes. Each filter is designed to execute a particular 
task, which means it accepts and produces certain type of messages. This introduces 
dependencies between the filters. Defining these dependencies in a filter specific 
metadata document is useful for checking if these dependencies are satisfied at the 
time of the deployment. This way the users will see which other filters must be 
deployed as well.  

 
 

 
Fig. 2.  XML Schema for the Filter Chains provides a simple data model for describing a 

collection of filters into a filter chain. 
 
Figure 2 shows the metadata schema for the SensorGrid filters. It should be noted 

that the OGC SensorML [15] specification provides schemas for describing the sensor 
metadata and it could have been used here. However because of the complexity of the 
SensorML schemas and our system’s requirement for providing additional schema to 
describe filter chains, we have decided to create a simple schema instead.   For a 
fuller critique, see [16]. 

As described above, complex data processing tasks require multiple steps. In our 
architecture we use distributed filters for realizing such complex tasks. The standard 
Web Service interfaces for the filters allow remote creation and management of filter 
chains. We provide base classes for creating new filters and filter Web Services, 
which each particular filter extends. The filters are deployed as message sources and 
sinks in a publish-subscribe messaging system which federates the distributed 
resources and allows hierarchical operation of the filters.  

Depending on the type of the processing the filters may be chained in parallel or 
serial modes. If the input data can be processed by different filters at the same time 
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and the results of them are merged after these independent processes are complete 
then the parallel operation is appropriate.    

 

 

Fig.  3. Parallel operation of the filters allows endpoint filter D to aggregate content. 

Figure 3 show the output of the Filter A is shared as input by Filters B and C, 
while the Filter D merges the outputs from both B and C and does the final 
processing. A simple example of this would be a filter that aggregates specific GPS 
sources into a personalized collection for an end user. 

 
 

 

Fig.  4. Serial operation of the filters is the typical use case for GPS data streams. 

However in our implementation, serial operations are dominant. A filter requires 
output from another as input, which also provides its output to the successive one as 
input. Figure 4 show three filters processing sensor messages in serial connection.   
As we will discuss below, both of these scenarios map directly to network-enabled 
publish/subscribe methods. 

2.2 Managing Real Time Data Streams 

To process GPS sensor streams in real-time we have developed several filters as Web 
Services to make real-time position messages available to scientific applications. In 
summary, the core of the system is to implement filter chains that convert or 
otherwise process the incoming data streams.  These filters serve as both subscribers 
(data sinks) and publishers (data sources) for publish/subscribe middleware.  
NaradaBrokering [17] topics are used to organize different data stream sources into 
hierarchies. NaradaBrokering is a general topic-based publish/subscribe system that 
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supports the Java Messaging Service API as well as its own more extensive 
programming interfaces. The software’s brokering scheme allows for multiple brokers 
in a distributed environment to be arranged hierarchically for efficient message 
routing and to operate as a single, logical broker. Currently the filters are being used 
to support 8 networks with 85 GPS Stations maintained by SOPAC [10].    

In our architecture filters are small applications designed to perform simple tasks 
such as transforming or aggregating messages. We have developed an abstract filter 
interface which can be extended to create new filters. A basic filter is consisted of 
three parts: a NaradaBrokering subscriber, a publisher and a data processing unit. The 
entire system is illustrated in Figure 5.  

The abstract filter interface provides subscriber and publisher capabilities. 
Typically a filter subscribes to a specified NaradaBrokering topic to receive streaming 
messages, process the received data and publishes the results to another topic. 
However outputs need not be always published.  For instance, an Archiving Database 
Filter may only receive the station positions to insert into the database.  We use this 
approach to optionally archive the streams, which may be replayed later.  

The first filters we have developed are format converters that present original 
binary messages in different formats since applications require different 
representations of geographic data. Since the data provided by the RTD server is in a 
binary format, we developed filters to decode and present it in different formats. Once 
we receive the original binary data we immediately publish this to a NaradaBrokering 
topic.  Another filter that converts the binary message to ASCII subscribes to this 
topic and publishes the output message to another topic. Another filter application 
subscribes to ASCII message topic and publishes a GML representation of the 
position messages to a different topic. This approach allows us to keep the original 
data intact and different formats of the messages accessible by multiple clients in a 
streaming fashion.  The topic-based approach allows interested data subscribers to 
connect to the system at any point along the chain. 

The GML Schema we developed for messages is based on the RichObservation 
type, which is an extended version of the GML 3 Observation model [13]. This model 
supports Observation Array and Observation Collection types which are useful in 
describing SOPAC Position messages since they are collections of multiple individual 
station positions. We follow strong naming conventions for naming the elements to 
make the Schema more understandable to the clients.  

We used Apache XML Beans [14] for data binding purposes and created an 
application that reads ASCII position messages and generates GML instances. 
SOPAC GML Schema and sample instances are available at 
http://www.crisisgrid.org/schemas.  

Station messages collected from GPS stations have several sub-sections. We have 
developed several filters that simplify or convert the messages since not all the parts 
of a position message are needed by most clients. Figure 5 shows the entire system 
including the GPS networks, proxy server, filters and the broker. The RTD Server is a 
real time proxy server that collects and streams GPS sensor sub-network position data 
on well-defined TCP/IP port numbers. This data typically is encoded in a binary 
format (RYO) and contains several different stations’ data in a single message.  
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Reformatting, de-multiplexing, and analyzing the data is the job of our filter-based 
Sensor Grid system (right side of Figure 5). 

 
 

 
Fig. 5. Real-Time Filters for processing real-time GPS streams.  See text for a full 

description. 

2.3 System Performance 

System tests for various specific cases are documented thoroughly in [19], and we 
summarize here.  Basic tests were conducted with 24 hours of archived data for one of 
the California Real Time Network (CRTN)’s sub-networks (Parkfield).  Stations on 
this network publish data at the rate of 1 Hz.  

First, we demonstrated that the system’s performance for simple GPS message 
transformation is stable for 24 hour periods of continuous operation with up to 1000 
publishers or subscribers.  The actual system has been deployed since August 2006, 
so these tests quantify what we observe anecdotally.  Such results are not unexpected 
but are an effective way for uncovering slow memory leaks and related problems that 
downgrade the system’s performance over time. 

The overhead associated with publication is approximately 5 milliseconds even 
under heavy loads of up to 1000 simultaneous publishers (i.e. ryo2nb filters in Figure 
5).  Multiple subscribers place a longer delay on the system, which is an artifact of the 
underlying brokers rather than our filters.  1000 simultaneous subscribers to a single 
GPS topic introduce a delay of approximately 35-40 milliseconds on each message.   

The limit of 1000 publishers or subscribers is an operating system limit.  By using 
NaradaBrokering’s ability to create logical brokers out of broker networks, we can 
exceed this operating system limit and have tested system performance for up to 1500 
simultaneous publishers or subscribers.  We expect additional scaling.  The current 
CRTN consists of 8 live sub-networks, so we are well able to handle the current 
system demands. 
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Conclusions 

We have presented an overview of our sensor grid architecture for supporting real 
time data streams.  In this paper, we have concentrated on describing the system 
components and metadata models that we use for describing our filter chains.  This 
system can be used to make filter chains of varying complexity.  The simplest filters 
are used to simply reformat the data into alternative formats (that is, convert binary to 
ASCII, convert ASCII to various XML formats, and so on).  Each of these formats is 
associated with distinct topics in the underlying publish/subscribe system.  In addition 
to formatting filters, more sophisticated filters such as event detectors can be 
integrated into the system following our approach.  These filters can be combined into 
filter chains of various types to generate specific outputs. We describe these effort in 
more detail in [18] and [19].  In addition, thorough tests on the scalability and 
performance of this system are more thoroughly described in [19]. 

This research was carried out in part at the Jet Propulsion Laboratory, California 
Institute of Technology, under contract with the National Aeronautics and Space 
Administration. This work was supported by the Advanced Information Systems 
Technology Program of NASA’s Earth-Sun System Technology Office and by NASA 
SENH grant NAG5-13269 (Scripps) and NASA ACCESS grant NNG06GG94A 
(Indiana University). Use of the Geodetics, Inc. RTD software was provided by the 
University of California, San Diego.   
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