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Abstract— Phylogenetic analysis is commonly used to analyze 

genetic sequence data from fungal communities, while ordination 
and clustering techniques commonly are used to analyze 
sequence data from bacterial communities. However, few studies 
have attempted to link these two independent approaches. In this 
paper, we propose a method, which we call spherical phylogram 
(SP), to display the phylogenetic tree within the clustering and 
visualization result from a pipeline called DACIDR. In 
comparison with traditional tree display methods, the 
correlations between the tree and the clustering can be observed 
directly. In addition, we propose an algorithm called 
interpolative joining (IJ) to construct and visualize the SP in 3D 
space. In the experiments, we used the sum of branch lengths to 
quantify the general fit between the clustering and the 
phylogenetic tree in SP and Mantel tests to determine how well 
the same grouping of sequences was preserved between the 
clustering and the SP.  Our results show that DACIDR has a 
classification accuracy that is similar to a phylogenetic tree 
generated using a multiple sequence alignment, while having 
much lower computational cost. 

Keywords—Phylogenetic Tree; Multidimensional Scaling; 
Microbial Communities; Environmental Genomics 

I. INTRODUCTION 
The increasing use of high-throughput DNA sequencing 

techniques to identify microbial communities in the 
environment has led to a dramatic increase in the size of DNA 
sequence datasets. The analysis and visualization of these large 
sequence datasets is a challenge that studies of bacterial 
diversity and those of fungal diversity have generally 
approached in different ways. Studies using bacterial DNA 
sequences typically use clustering approaches such as mothur 
[1], ESPRIT [2], or UPARSE [3] to group DNA sequences 
from a sample into operational taxonomic units (OTUs) based 
on a minimum sequence similarity value (similarity-threshold 
clustering). The differences between OTUs can also be 
visualized using multidimensional scaling [4, 5, 6]. In contrast, 
studies using fungal DNA sequences have typically used 
phylogenetic analysis in order to identify groups of similar 
sequences, to visualize the relationships between sequences, 
and to make inferences about their evolutionary history [7].   

However there are important limitations to both similarity-
threshold clustering techniques and the phylogenetic analysis 
techniques.  Clustering algorithms that use pairwise sequence 
alignment (PWA) are computationally faster than creating 
phylogenetic trees, especially for large numbers of sequences, 
because they do not require multiple sequence alignment 
(MSA). Clustering results also allow the clear visualization of 
extremely large datasets directly. However the clustering 
results cannot infer the evolutionary relationships between 
sequences that phylogenetic trees can. Phylogenetic 
relationships can be important for undescribed taxa that are 
common among fungi. Also, both methods frequently reduce 
the size of the dataset being analyzed: for similarity-threshold 
clustering this reduction is by design through the use of 
consensus sequences representing each OTU, which are meant 
to facilitate the visualization and taxonomic identification of 
the sequences in each cluster; for phylogenetic trees of large 
datasets, this reduction in the number of sequences is 
frequently by necessity to allow the computation and clear 
visualization of the resulting trees. 

Here we propose a combined method to address those 
limitations. For clustering, we use a computationally efficient 
pipeline called deterministic annealing clustering and 
interpolative dimension reduction (DACIDR) [8]. Inside 
DACIDR, a multidimensional scaling (MDS) technique is used 
to visualize sequence similarity among all sequences in a 
dataset as a way to infer clusters of similar sequences directly, 
without the need to define a sequence similarity-threshold (we 
will refer to this method as MDS cluster visualization). 
Because MDS cluster visualization allows the observation of 
sequence similarity of datasets directly, it is a promising 
technique for determining sequence clusters from high 
throughput sequencing. However, it is unclear how accurately 
groups of similar sequences found with the visualization 
correspond with defined taxonomic groups. In order to evaluate 
the taxonomic accuracy of groups identified with MDS cluster 
visualization, a phylogenetic tree was created using maximum 
likelihood based methods on the same sequence dataset. 

As input for MDS cluster visualization and phylogenetic 
analysis, we used sequences from the variable D2 domain of 



the 28S rRNA gene, which is commonly used for taxonomic 
identification of fungi [9].  All sequences were from species of 
arbuscular mycorrhizal (AM) fungi because they exhibit a 
large amount of sequence variation both between species as 
well as within species [10], which can make them challenging 
to analyze [11]. The sequence datasets were derived from a 
combination of: (1) a large-scale AM fungal phylogenetic 
study [11]; (2) additional sequences obtained from GenBank to 
increase the taxonomic coverage of the dataset; (3) 
representative 454 pyrosequences from spores of known AM 
fungal species that were selected using DACIDR [8]. DACIDR 
uses pairwise clustering and MDS for robust and scalable 
sequence clustering and visualization for more than one million 
sequences [12]. The representative sequences are then selected 
from each cluster. DACIDR is parallelized to process large 
datasets on clouds or HPC systems, using MapReduce [13], 
iterative MapReduce [14] and/or MPI frameworks [15]. A 
more detailed description of how the sequences are clustered 
and their biological inference will be presented in later paper.  

To compare the consistency between the clustering analysis 
and the phylogenetic tree, we implemented an algorithm we 
refer to as interpolative joining (IJ) in order to merge the 
traditional phylogenetic tree with the MDS cluster visualization 
into a spherical phylogram (SP). To evaluate how well the SP 
corresponded to the clustering result from the same dataset, we 
used a combination of the sum of branch lengths and Mantel 
tests in our experiments. The different experimental 
approaches generated similar results that show good agreement 
between the taxonomic delineations provided by the clustering 
and those provided by the phylogenetic analysis.  This suggests 
that our proposed clustering technique based on pairwise 
alignment is a highly suitable alternative to phylogenetic 
analysis to study microbial communities. 

The structure of the paper is organized as follows: Section 
II discusses existing methods for phylogenetic tree 
visualization and sequence clustering pipelines; Section III 
discusses the methods we used for our phylogenetic tree 
reconstruction, sequence clustering and visualization; Section 
IV introduces and explains the proposed algorithm for 
interpolating a phylogenetic tree onto the clustering results; 
Section V, presents our experimental results and compares our 
proposed methods to existing tree generation methods; Section 
VI discusses our conclusions and future work. 

II. RELATED WORK 
There are many different existing clustering algorithms, 

such as: greedy heuristic methods and hierarchical clustering 
(both of which are similarity-threshold clustering methods), 
Bayesian and phylogenetically-aware clustering methods, and 
MDS cluster visualization demonstrated in this paper. 

Greedy heuristic methods define seed sequences to 
represent the clusters they find and to compare them with all 
remaining sequences in order to avoid quadratic time 
complexity. CD-HIT [16] and UCLUST [17] are well-known 
heuristic clustering methods. They can be very fast to cluster 
large numbers of sequences, but these algorithms overestimate 
or underestimate the number of clusters since the similarity 
threshold is very sensitive with large datasets. Hierarchical 
clustering also uses a greedy algorithm, but it takes a more 

structured approach to generating clusters by comparing each 
additional sequence to all of the sequences already in the 
cluster [18]. Mothur and ESPRIT are two popular hierarchical 
clustering methods, but they suffer from quadratic time and 
space complexity.  

Other clustering methods, such as CROP [19], or the 
phylogenetically-aware GMYC [20] and PTP [21], do not 
require defined sequence similarity thresholds. Bayesian 
clustering (CROP) uses a probabilistic approach to define 
clusters based on the sequence variation that is inherent in the 
dataset, which also makes it robust to sequencing errors. 
GMYC uses a maximum likelihood approach to determine the 
transition point between sequence changes representing 
speciation events and those representing coalescent events 
within species [22, 23]. PTP is computationally faster than the 
GMYC method while also achieving increased clustering 
accuracy [21]. PTP estimates species clusters using a 
maximum-likelihood phylogenetic tree produced using the 
sequences as a guide instead of the coalescent tree, and 
assumes that each nucleotide substitution has a fixed 
probability of being the basis for a speciation event [21]. The 
PTP method is able to give accurate species determinations 
regardless of the amount of sequence similarity between the 
species being compared.  However both of these methods 
require either multiple sequence alignment or a guide 
phylogenetic tree in order to cluster sequences, and therefore 
are computationally more costly than a clustering algorithm 
like DACIDR that uses pairwise sequence alignment.   

MDS has only been used in cluster visualization in the past 
few years, but there are many existing algorithms. Newton's 
method is a simple solution to minimize the STRESS in Eq. (1) 
and SSTRESS in Eq. (2) [24]. However it uses Hessian to form 
a basic Newton iteration, and the Hessian construction requires 
cubic time complexity. A Quasi-Newton [25] method has been 
proposed to reduce the time complexity of the Newton method 
to sub-cubic by approximating the Hessian. Multi-Grid MDS 
[26] has been proposed to solve the isometric embedding 
problems. The performance was increased dramatically 
compared to other existing methods because it can be 
parallelized. The Scaling by Majorizing a Complicated 
Function (SMACOF) algorithm is one of the MDS algorithms 
that has been shown to be fast and efficient [27]. Another way 
of solving the MDS problem is to treat it as a chi-square 
problem. This can be solved with Manxcat that uses the 
Levenberg–Marquardt (LMA) [28] algorithm, which is a 
popular curve fitting function. However, due to the non-linear 
property of this problem, both of these algorithms could be 
trapped under local optima. Simulated Annealing and the 
Genetic Algorithm have been used to avoid the local optima in 
MDS [17] [18]. However, they suffer from long running times 
due to their Monte Carlo approach. DA-SMACOF [29] can 
reduce the time cost and find global optima by using 
deterministic annealing [30]. But DA-SMACOF assumes all 
weights are equal to one for all input distance matrices. So we 
previously added a weighting function to the SMACOF 
function, called WDA-SMACOF [31]. This uses Conjugate 
Gradient to avoid the cubic time complexity brought about by 
weighting and matrix inversion, so that it can converge under 
O(N2) time. 



The methods used for phylogenetic tree creation have 
become more standardized compared to clustering techniques.  
The most commonly accepted methods are probabilistic 
approaches including maximum likelihood such as RAxML 
[32] and Bayesian methods such as Mr. Bayes [33].  Because 
both of these methods incorporate uncertainty into 
phylogenetic tree construction, they are thought to provide 
phylogenies that are closely aligned with actual patterns of 
evolutionary history. Neighbor Joining is a classic method 
[34], but not as commonly used as the other two methods 
nowadays. 

III. PHYLONENETIC TREE AND CLUSTERING 
In this section, we discuss the methods we used to generate 

the phylogenetic tree as well as the clustering and visualization 
results. Both of these outputs required sequence alignment 
beforehand. We did multiple sequence alignment (MSA) for 
the phylogenetic tree and both MSA and pairwise sequence 
alignment (PWA) for the clustering. We created the 
phylogenetic tree using RAxML, and the clustering result was 
generated using deterministic annealing (DA)  based 
multidimensional scaling (MDS) with the all pair distance 
matrix. Note that DACIDR was applied on a one million 
sequence dataset to identify the clusters and their representative 
sequences used in our experiments. In this paper, we only 
clustered and visualized the representative sequences with a 
few hundred other sequences in order to generate the spherical 
phylogram. 

A. Sequence Alignment 
As mentioned previously, we were using both MSA and 

PWA. MSA is used for three or more sequences and it is 
usually more computationally complex than PWA. It is 
commonly used in phylogenetic analysis so we chose this 
method to generate input for RAxML. PWA aims to find an 
overlapping region of the given two sequences that has the 
highest similarity as computed by a score measure. The overlap 
may either be defined over the entire length or over a portion of 
the two sequences. The former is known as global alignment 
and latter as local alignment. Needleman-Wunsch (NW) [4] 
and Smith-Waterman Gotoh (SWG) [35] are two popular 
algorithms performing these alignments respectively. 

 
Figure 1 Illustration of Sequence alignment 

Figure 1 shows a general sequence alignment with possible 
end gaps (note a local alignment will not result end gaps). We 
consider the region excluding end gaps as the aligned region. 
Pairs of boxes with the same color indicate a match and others 
indicate mismatches. Pairs with one box and one dash indicate 
a character being aligned with a gap. Two parameters 
governing NW and SWG are the scoring matrix and gap 
penalties, namely a gap open (GO) and a gap extension (GE) 
penalty. Alignment algorithms maximize a score measure that 
is calculated as in Figure 2. 

The best alignment algorithm to use may depend on the 
particular dataset and in certain cases it is possible to obtain 
alignments that are optimal from the algorithm’s point of 
view, but have little practical value [36]. 

 

 A T C G 
A 5 -4 -4 -4 
T -4 5 -4 -4 
C -4 -4 5 -4 
G -4 -4 -4 5 

 

GO = -16     GE = -4 

T  C  A  A  C  C  A   - 
T  T  -  -  -  C  T   G   
5    -4   -16   -4    -4    5     -4     -16  
𝑆𝑆 = 5 + (−4) + (−16) + (−4) + (−4)

+ 5 + (−4) + (−16) 
=  −38 

Figure 2 Score of an alignment 

B. All Pair Distance Calculation 
We align each pair of sequences and compute a distance for 

each such alignment resulting an all-pairs distance matrix. This 
serves as the input for remaining algorithms in the DACIDR 
pipeline. It is possible to define different distance measures 
[36] for an alignment and we have chosen percent identity 
(PID) as the distance in this analysis. 

Given the alignment between two sequences, let the 
number of matching pairs in the aligned region be N′ and the 
total number of pairs in the aligned region be N . The PID 
distance, δPID, is then computed as given below. 

𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃 = 1.0 − 𝑁𝑁′
𝑁𝑁

     (1) 

C. Multidimensional Scaling with Deterministic Annealing 
MDS is a set of techniques used in dimension reduction. It 

is used to map original high dimensional data into a target 
dimension space while preserving the proximity observed in 
the original dimension space as much as possible. Given a 
target dimension 𝐿𝐿, the mapping of points in L-dimension can 
be given by an 𝑁𝑁 × 𝐿𝐿 matrix 𝑋𝑋, where each point in the target 
dimension space is represented as the 𝑖𝑖th row in 𝑋𝑋. It is a non-
linear optimization problem and the object function that MDS 
is trying optimize is given as the following: 

  𝜎𝜎(𝑋𝑋) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖≤𝑁𝑁 (𝑑𝑑𝑖𝑖𝑖𝑖(𝑋𝑋) − 𝛿𝛿𝑖𝑖𝑖𝑖)2  (2) 

 𝜎𝜎(𝑋𝑋) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖≤𝑁𝑁 (𝑑𝑑𝑖𝑖𝑖𝑖2 (𝑋𝑋) − 𝛿𝛿𝑖𝑖𝑖𝑖2 )2         (3) 

where w denotes a possible weight, 𝑑𝑑𝑖𝑖𝑖𝑖(𝑋𝑋) is the Euclidean 
distance from point i to j in the mapping and 𝛿𝛿𝑖𝑖𝑖𝑖 is the original 
distance from point i to j. This object function is also referred 
as STRESS or SSTRESS [24]. Note that the original pairwise 
distance matrix, denoted as 𝛥𝛥  must follow three rules: (1) 
Symmetric: 𝛿𝛿𝑖𝑖𝑖𝑖 =  𝛿𝛿𝑖𝑖𝑖𝑖 ; (2) Positivity: 𝛿𝛿𝑖𝑖𝑖𝑖 > 0 ; (3) Zero 
Diagonal: 𝛿𝛿𝑖𝑖𝑖𝑖 = 0. We use WDA-SMACOF [31] for our  MDS 
cluster visualization since it can avoid local optima by using 
DA. DA [30] is an annealing process that finds the global 
optima of an optimization process instead of local optima by 
adding a computational temperature to the target object 
function. By lowering the temperature during the annealing 
process, the problem space gradually reveals to the original 
object function. It uses an effective energy function, which is  



derived through expectation and is deterministically optimized 
at successively reduced temperatures.  

D.  Parallezation of the Pipeline 
We have improved the efficiency of the parallelization of 

the pipeline by using a hybrid MapReduce workflow 
management system [34]. Because all-pair distance calculation 
is a task-independent application, we used Hadoop [37] for its 
parallelization inside the workflow. However, it is well-known 
that Hadoop has a large overhead while running iterative 
parallel applications, such as MDS applications. Therefore, to 
avoid that extra computational cost, we use Twister [14], which 
is an iterative MapReduce framework for parallelization of 
WDA-SMACOF. The detailed parallelization can be found in 
[8] and [31]. Finally, since this entire workflow is written in 
JAVA, it is easy to migrate it to either an HPC cluster or to a 
Cloud environment. 

IV. PHYLOGENETIC TREE DISPLAY WITH CLUSTERING 
As mentioned previously, by using DACIDR, each 

sequence is represented as a point in the target dimension 
space, i.e. the 3D space. Also, by using RAxML, all the 
sequences are represented as leaf nodes in the phylogenetic 
tree. Therefore each leaf node in the phylogenetic tree 
corresponds to a point in the 3D dimension reduction result. 
However, traditional tree display software, such as MEGA5 
[38] and FigTree [39] only display trees separately from the 
clustering result, so it is difficult to observe the relationships 
between the phylogenetic tree and the clustering result.  

 In this section, we proposed a method, called Interpolative 
Joining (IJ) to display an existing phylogenetic tree by using 
the clustered sequences from the same dataset as leaf nodes of 
the tree. This allows for direct visual comparison between the 
phylogenetic tree and the sequence clusters. The generated tree 
can be in either 2D or 3D depending on the target dimension 
and is referred to either as a circular phylogram in 2D or a 
spherical phylogram (SP) in 3D.  In our study, as our target 
dimension is 3D, the generated tree will be referred as SP. 

A. Distance Calculation 
The internal nodes cannot be directly observed because 

they represent hypothetical ancestor sequences, and therefore 
the distances from internal nodes to leaf nodes of the generated 
phylogenetic tree are unknown. By using RAxML, it is 
possible to calculate distance from an internal node to another 
node by using the summation over all the branchs between 

them. For example, in figure 3(a), the distance between point C 
and E can be calculated by summing over branch(C, B), 
branch(B, A) and branch(A, E). This distance calculation can 
generate a pairwise distance matrix for all the nodes based on 
all the branch lengths. However, the sum of branch lengths 
does not work to find the distance between  pairs of leaf nodes 
since the pairwise distances between leaf nodes are already 
known from the MDS cluster visualization results. For 
example, the distance between leaf node C and D shown in 
figure 3(b) is clearly not equal to branch(B, C) + branch(B, D). 
Therefore if the summation over the branches is used for 
defining distances during interpolation, the result will have a 
high bias because different distances were used for leaf nodes. 
Therefore, we chose the distance calculation method used in 
neighbor joining (NJ) algorithm to calculate the distances 
between internal nodes based on the existing distances between 
leaf nodes so that all distances used for visualization are 
consistent. 

The NJ algorithm starts with a completely unresolved tree, 
whose topology corresponds to that of a star network, and ends 
once the tree is completely resolved and all branch lengths are 
known. The core idea of this algorithm is to find a way of 
constructing a tree that follows the balanced minimum 
evolution (BME) criterion, which generates the optimal tree 
topology and minimizes the branch lengths of the tree.  Our 
algorithm IJ used the same strategy to interpolate the 
phylogenetic tree into the MDS cluster visualization result to 
generate a SP that will have a minimum total branch length. 
Nevertheless, if the SP matches the original phylogenetic tree 
better, the sum of all the branches will be shorter. 

The distance calculation used in IJ is similar to the one used 
NJ, and it can be formulated according to the following: 
suppose we have n existing points, denoted as 𝑃𝑃 =
{𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … ,𝑝𝑝𝑛𝑛} .  And a point 𝑝𝑝𝑖𝑖 can be represented as a 
vector [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖] in L-dimensions. The distance between 
two points 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑖𝑖 is denoted as 𝑑𝑑(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖)  and can be 
calculated as Euclidean distance using the following equation: 

 𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖� = �� (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑖𝑖

𝑖𝑖=1
 (4) 

Given any two points 𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 , there are two 
corresponding leaf nodes in the phylogenetic tree. Their parent 
is denoted as a new point �̂�𝑝 that can be interpolated into the 

  

(a) The cladogram of a tree with 5 nodes 

 

 
(b) The leaf nodes of the tree in 2D space 

after dimension reduction 

 

 
(c) The tree in 2D space after interpolation 

of the internal nodes 

Figure 3 The illustration of a phylogenetic tree in a 2D space 



Algorithm 1 Interpolative Joining algorithm 
Input: 𝑃𝑃, 𝑃𝑃�, 𝑇𝑇, 𝑇𝑇� 
For each pair of siblings (𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖) in T 
  Find their parent �̂�𝑡 in 𝑇𝑇� 
  Find point 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑖𝑖 in P 
  For other point 𝑝𝑝𝑘𝑘 in P 
    Compute 𝑑𝑑(𝑝𝑝𝑘𝑘,𝑝𝑝𝑖𝑖), 𝑑𝑑�𝑝𝑝𝑘𝑘,𝑝𝑝𝑖𝑖� using (4) 
  End for 
  Compute 𝑑𝑑(�̂�𝑝,𝑝𝑝𝑖𝑖)and 𝑑𝑑��̂�𝑝,𝑝𝑝𝑖𝑖� using (5) and (6) 
  For other point 𝑝𝑝𝑘𝑘 in P 
    Compute 𝑑𝑑(�̂�𝑝,𝑝𝑝𝑘𝑘) using (7) 
  End for 
  Use (8) as object function and WDA-MI-MDS to    
compute �̂�𝑝 
  Remove 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖 from T 
  Add �̂�𝑡 into T and remove �̂�𝑡 from 𝑇𝑇� 
  Add �̂�𝑝into P and remove �̂�𝑝 from 𝑃𝑃�, 
End for 
Return P 

target dimension space. The distance from �̂�𝑝 to 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑖𝑖  can 
be given in the following equations:  

        𝑑𝑑(�̂�𝑝,𝑝𝑝𝑖𝑖) =
1
2
𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖� 

+
1

𝑛𝑛 − 2
� (𝑑𝑑(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑘𝑘) − 𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑘𝑘�

𝑛𝑛

𝑘𝑘=1
) 

(5) 

Because all of the distances follow three basic rules for 𝛥𝛥 
mentioned in Section III(C), all  distances are symmetric, i.e. 
d�pi, pj� = d�pj, pi�, and d(p� , pi) can be calculated as 

 𝑑𝑑��̂�𝑝,𝑝𝑝𝑖𝑖� = 𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖� − 𝑑𝑑(�̂�𝑝,𝑝𝑝𝑖𝑖) (6) 

The distances from 𝑝𝑝_to all other points, except 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑖𝑖, 
can be obtained using the following equation where 1 ≤ 𝑘𝑘 ≤
 𝑛𝑛 where 𝑘𝑘 ≠  𝑖𝑖 and 𝑘𝑘 ≠  𝑗𝑗: 

𝑑𝑑(�̂�𝑝,𝑝𝑝𝑘𝑘) =
1
2

(𝑑𝑑(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑘𝑘) + 𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑘𝑘� − 𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖�) (7) 

Note that equation (4) is the Euclidean distance calculation 
and equation (5) to equation (7) are the calculation of the 
minimum evolution path for any given two points in P, so that 
for any internal node in the phylogenetic tree, its distance to all 
other points can be obtained using the equations above.  

B. Interpolation 
When the distances from the internal nodes to all other 

points are obtained, we can then interpolate the internal node as 
a point into the target dimension space. The interpolation was 
first introduced into the fields of data visualization and 
clustering to solve the large-scale data problem, also referred to 
as the in-sample and out-of-sample problem [40]. First, the 
original input dataset is split into two parts, one is called the in-
sample dataset, and the other one is referred to as the out-of-
sample dataset. Then a clustering or dimension reduction 
algorithm with a high accuracy can be applied on the in-sample 
dataset to generate the in-sample result. Based on the in-sample 
result, an interpolation algorithm with lower time and space 
cost can be used to generate the result from the out-of-sample 
dataset. The tradeoff of this method is that the interpolation 
algorithm usually has a lower accuracy then the algorithm 
applied on the in-sample dataset. 

In our case, the points in the 3D space that correspond to 
the phylogenetic tree’s leaf nodes are the in-sample data, 
denoted as P, and the points representing internal nodes are the 
out-of-sample data, denoted as 𝑃𝑃�. By using equations (4) to (7), 
the distance of an out-of-sample point �̂�𝑝 to all other in-sample 
points is calculated as the original distance for interpolation, 
which is denoted as �̂�𝛥. After �̂�𝑝 is interpolated to L-dimension, it 
can be represented as a vector 𝑥𝑥� with length L. Nevertheless, 
the in-sample points and out-of-sample points in the L-
dimension can be defined as 𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2} , where 𝑋𝑋1 =
{𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑁𝑁} and 𝑋𝑋2 = {𝑥𝑥𝑁𝑁+1}.  

The distance from �̂�𝑝  to all other points can be obtained 
using equation (1), which is the Euclidean distance in 3D 
space, denoted as d(X). So for each out-of-sample point �̂�𝑝, there 
is a difference between the Euclidean distance in the L-

dimension and the original distance, and the object function is 
given by the following: 

 𝜎𝜎(𝑋𝑋) = �𝑤𝑤𝑖𝑖𝑥𝑥�
𝑖𝑖≤𝑁𝑁

(𝑑𝑑𝑖𝑖𝑥𝑥�(𝑋𝑋) − 𝛿𝛿𝑖𝑖𝑥𝑥�)2 (8) 

The goal of interpolation is to minimize the STRESS value 
for each of the given out-of-sample points so that each out-of-
sample point can be interpolated to a place where the original 
distance differs least compared to the L-dimension distance. 
WDA-MI-MDS is a robust iterative algorithm that can 
interpolate out-of-sample points into the target dimension space 
one by one [31]. For every out-of-sample point, the algorithm 
finds a majorizing function for equation (8), and by using the 
estimated value of 𝑥𝑥� in the previous iteration, it can guarantee a 
non-increasing STRESS value for  �̂�𝑝  as the number of 
iterations increases. Additionally, it can avoid possible local 
optima for the STRESS function by using DA. The detailed 
equations for this algorithm can be found in [31]. 

C. Tree Generation 
Equation (4) and equation (7) give the distance calculation 

formulas for the internal nodes, which are also referred to as 
the out-of-sample points in previous section, and equation (8) 
gives the STRESS value of using interpolation for the internal 
nodes. For each internal node, WDA-MI-MDS can be applied 
to find its location in the target dimension space. However, not 
all internal nodes from the phylogenetic tree were selected only 
based on the leaf nodes. Since in traditional out-of-sample 
problems, the in-sample dataset remains the same during 
interpolation, it is not applicable to use those kinds of 
algorithms for internal node interpolation. Figure 3(c) gives an 
example of how the internal nodes are interpolated during 
neighbor joining. Node A is interpolated based on node E and 
node B, which is also an internal node for the entire 
phylogenetic tree shown in Figure 3(a). 

To solve that problem, we proposed an algorithm called 
Interpolative Joining (IJ). In IJ, the in-sample dataset needs to 



be modified during the interpolation process. Because the out-
of-sample points are interpolated one by one, each out-of-
sample point that is already interpolated is added into the in-
sample dataset and will be considered as an in-sample point for 
subsequent out-of-sample points. To do this, the IJ algorithm 
searches the tree from the bottom up. Every time two leaf 
nodes are found that share the same parent, those two leaf 
nodes are used to calculate the coordinates for the internal 
node. The two leaf nodes will then be removed from the tree, 
and the newly interpolated internal node will be considered a 
new leaf node. This is demonstrated in figure 3(c), point C and 
D are discarded from the leaf node set once node B is 
interpolated. However, these two in-sample points, which 
correspond to the two leaf nodes, will remain in the in-sample 
dataset. Therefore, the total number of nodes for the input 
phylogenetic tree will be decreasing and the size of the in-
sample dataset will be increasing during the interpolation 
process.  

In formal definition, 𝑃𝑃 and 𝑃𝑃� are used in terms of in-sample 
and out-of-sample points in L-dimension; 𝑇𝑇 is the set of leaf 
nodes and 𝑇𝑇� is the set of internal nodes from the phylogenetic 
tree. Therefore 𝑝𝑝𝑖𝑖  is the representation of 𝑡𝑡𝑖𝑖  in the target 
dimension space. For each pair of leaf nodes 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖 that have 
the same parent �̂�𝑡, there is a pair of in-sample points which are 
denoted as point 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑖𝑖  in P that represents them. 
Immediately after �̂�𝑡  is found, the �̂�𝑝  that represents it is 
initialized as a random point and added into 𝑃𝑃� . After �̂�𝑡  is 
interpolated into the L-dimension space, �̂�𝑝 is removed from 𝑃𝑃� 
and added into P. The 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖 will be removed from T, and �̂�𝑡 
is added into T and removed from 𝑇𝑇� . Nevertheless, 𝑃𝑃�  will 
always contain only one out-of-sample point during each 
iteration, where the iteration number equals the number of 
internal nodes in 𝑇𝑇� at the beginning. The detailed process of IJ 
is illustrated in Algorithm 1.  As the calculation of Euclidean 
distance and WDA-MI-MDS is very fast, generating the SP 
with a predefined phylogenetic tree and MDS cluster 
visualization result only takes a few seconds on a single core.  

V. EXPERIMENTS 
The experiments were carried out on BigRed II, which is a 

hybrid cluster with a total of 344 CPU nodes with 32 cores per 
node, and Quarry with a total of 2644 cores with 8 cores per 
node at Indiana University to process the data with the help of 
Twister and Hadoop. The clustering and visualization of the 
sequence datasets were completed using DACIDR. We created 
a maximum likelihood unrooted phylogenetic tree from the 
multiple sequence alignment (MSA) with RAxML (Stamatakis 
2006) using 100 iterations with the general time reversible 
(GTR) nucleotide substitution model and with gamma rate 
heterogeneity (GTRGAMMA). We then used the tree to guide 
the generation a pairwise distance matrix between all 
sequences in each of the two MSA datasets using RAxML.  
These pairwise distance matrices were then used as the 
reference when testing for the effect of alignment technique 
and sequence length on consistency between the clustering and 
the phylogeny. Finally, the IJ was run on a local machine to 
generate a spherical phylogram (SP), which can be displayed 
using a data visualization software called PlotViz3 [41]. 

A.  Obtaining sequences 
 We first downloaded the sequence alignment of AM 

fungal sequences from a recent large-scale phylogeny of AM 
fungi (Krüger et al. 2012) and only retained sequences that 
contained at least a portion of the 28S rRNA gene. We then 
collected two sets of additional AM fungal sequences: (1) 
sequences from GenBank that had confident species 
attribution in order to supplement the species coverage within 
the sequence dataset; (2) representative sequences for known 
AM fungal species obtained from spores using 454 sequencing 
(Roche, Indianapolis, IN) of the variable and phylogenetically 
informative D2 domain of the 28S rRNA gene. We applied 
DACDIR on this dataset to find 126 clusters and then picked a 
representative sequence for each cluster as part of the dataset. 
The additional sequences from GenBank were added to the 
original sequence alignment from [11] using MAFFT [42]. In 
order to evaluate how different sequence lengths affected the 
correspondence between phylogenetic trees and clustering, we 
then created two datasets with sequences that shared the same 
starting location on the 28S rRNA gene: one dataset contained 
longer sequences, and the other contained shorter sequences. 
We first trimmed the MSA and only retained the unique 
sequences that spanned an extended region beyond the D2 
domain (dataset 1, roughly 675 bases long without gaps); then 
from that subset we retained only the unique sequences that 
spanned the 454 sequencing start site and the average end 
position of the 454 sequences (roughly 425 bases long without 
gaps). Finally, we added the representative 454 sequences to 
this trimmed alignment using MAFFT as described above to 
create dataset 2. This gave a MSA for dataset 1 (999nts) with: 
801 sequences from [11] and 505 sequences from GenBank 
for a total of 1306 sequences, and for dataset 2 (599nts with 
454 optimized) with: 514 sequences from [11], 380 sequences 
from GenBank, and 126 representative 454 sequences for a 
total of 1020 sequences. For this phylogenetic comparison test 
we selected a smaller set of sequences that still represents the 
expected range of genetic variability within AM fungi. The 
RaXML took about 4 hours to finish on the first dataset and 7 
hours to finish on the second dataset using 8 cores. And the 
MDS only took a few minutes to finish on the same dataset 
using same amount of cores. 

 
Figure 4 The comparison using Mantel between distances 

generated by three sequence alignment methods and RAxML 
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Figure 5 Maximum likelihood phylogenetic tree from dataset 
2 that is collapsed into clades at the genus level as denoted by 
colored triangles at the end of the branches.  Branch lengths 
denote levels of sequence divergence between genera and 
nodes are labeled with bootstrap confidence values.  454 
sequences from spores that are not part of another clade are 
denoted with the label ‘454 sequence from spore’. Two 
sequences in the Claroideoglomus clade are instead attributed 
to Rhizophagus, and one sequence in the Funneliformis clade 
is instead attributed to Septoglomus (denoted by arrows at the 
blunt end of the colored triangles). This figure is generated by 
FigTree. 

 
(a) Multiple sequence alignment (MSA) result 

 
(b) Smith-Waterman pairwise alignment (SWG) result 

 
(c) Needleman-Wunsch pairwise alignment (NW) result 

 
Figure 6 The screenshots of spherical phylogram for using the 
phylogenetic tree shown in Figure 5 with three different 
sequence alignments. The colors of the branches in these figures 
are as same as the colors of the branches shown in Figure 5. 



B. Sequence Alignment Comparison  
We used the Mantel test in order to evaluate whether 

pairs of experimental treatments retained the same structure 
of sequence differences between them.  

Mantel tests determine whether a correlation between 
the entries contained in two different pairwise distance 
matrices is statistically significant by permuting the distance 
matrices to obtain an empirical p-value for the correlation.  
The treatments consisted of different alignment techniques 
applied to each of the two different length datasets; 
comparisons were then made to the RAxML distance matrix 
from the same dataset. The Mantel tests were performed 
using the vegan package in R (version 3.0.2, R Core Team 
2013), and none of the tests had p-values greater than 0.001, 
suggesting all of the measured correlations were likely 
significant despite the increased type I error (false-positive) 
rate that can occur with Mantel tests [43].  

Figure 4 illustrates the result of the Mantel test applied 
on MSA and the Pairwise Sequence Alignment (PWA) 
which includes both the Smith Waterman Gotoh (SWG) and 
Needle-Wunsch (NW). Using longer sequences (dataset 1) 
consistently resulted in higher correlations between the 
reference distance matrix and either of the pairwise 
alignment techniques. However, both the SWG and the NW 

pairwise alignment methods gave comparable correlation 
values for dataset 1 and for shorter sequences (dataset 2). 
The very high correlations between the RAxML reference 
matrix and the MSA distance matrix used for MDS cluster 
visualization regardless of sequence length are expected 
because the input alignment is identical for both matrices 
and only the distance calculation method is different. Using 
pairwise alignments for the same datasets resulted in lower 
correlations with the RAxML reference matrix, although 
they still provided a reasonably good fit. 

The relationships between genera of AM fungi from the 
phylogenetic tree created with dataset 2 (Figure 5), was 
consistent with the current understanding of AM fungal 
phylogenetic relationships [11], with the exception of 
Racocetra, Scutellospora, and Gigaspora all being assigned 
to the same evolutionary group.  By comparing the 
phylogenetic tree (Figure 5) and the SPs (Figure 6), it is 
possible to visualize the how the branches of the tree 
correlate with the sequences after MDS. If long branches are 
required in the interpolated tree in order to connect points 
that are the same color in the MDS visualization, then the 
tree does not match well with the MDS result. This is 
because the sequences on the same branch of the 
phylogenetic tree are more similar to each other than to 
other sequences in the dataset, and therefore they should be 

 
(a) Sum of branch lengths of the SP generated in 3D space on 

599nts dataset optimized with 454 sequences 

 
(b) Sum of branch lengths of the SP generated in 3D space on 

999nts dataset 

 
(c) Correlation between the distances generated in 3D space and 
RAxML on 599nts dataset optimized with 454 sequences from 

Mantel test 

 
(d) Correlation between the distances generated in 3D space and 

RAxML on 999nts dataset from Mantel test 

Figure 7 The sum of branch lengths and Mantel comparison of three different MDS methods using distance input  
generated from three different types of sequence alignments on two dataset 
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located close to each other in the MDS visualization as well.  
The SPs (Figure 6) show that the points with the same color 
(as color-coded from the genera in the phylogenetic tree, 
Figure 5), generally group together. There are a few points 
in the SPs using pairwise alignments (Figure 5(b) and 
Figure 5(c)) that have longer branches than the points from 
the SP using the MSA.  This is consistent with the fact that 
the SP generated from the MSA has a better correlation with 
the phylogenetic tree than the SPs generated from the 
pairwise alignments (Figure 7(c) and Figure 7(d)). However, 
the SPs also verify that using pairwise alignments for the 
MDS generally gives a good fit with the interpolated 
phylogenetic tree.  

C. MDS method comparison 
The different methods of MDS affected how well the 

phylogenetic tree projected using IJ matched the sequences 
in 3D. WDA-SMACOF is a robust MDS method that can 
reliably find the global optima, whereas EM-SMACOF can 
be easily trapped under local optima. The LMA usually had a 
result that was very similar to EM-SMACOF (Figure 7). The 
normalized STRESS value for each different input using the 
different methods was from 0.021 to 0.023, which suggests 
the distances after dimension reduction have a high similarity 
to the original distances, and therefore sequence differences 
were preserved well during MDS; WDA-SMACOF always 
had the lowest STRESS value compared to the other two 
methods. 

We used the summation over all the branch lengths of the 
phylogenetic tree in the SP and correlations from the Mantel 
test to evaluate the differences between these three 
dimension reduction methods. As mentioned before, the 
points of the dimensional reduction that connect to the same 
branches of the SP should be shorter if they match the tree 
better, which will result in a lower sum of branch lengths. 
WDA-SMACOF had a much lower sum of branch lengths 
compared to both LMA and EM-SMACOF (Figure 7 (a) and 
(b)). This is because the clusters naturally appeared when the 
STRESS value became lower, but LMA and EM-SMACOF 
were trapped under the local optima, so there are some points 
from very small branches of the tree could still be far away 
from each other in the 3D space and not clustered. In 
contrast, WDA-SMACOF can reliably find the global optima 
so that these points from very small branches are always 
converged into clusters. This is why there were not any 
excessively long branches for the SP plots generated by 
using WDA-SMACOF (Figure 6). From the Mantel test 
correlations (Figure 7 (c) and (d)), although WDA-SMACOF 
performs better than the other two methods, it shows very 
little difference between the three. 

From Figure 7, the sum over branch lengths is a more 
sensitive measurement than the Mantel test while evaluating 
the SPs. However, it also has a higher variance than the 
Mantel test because it was calculated after IJ. On the other 
hand, the Mantel test is more robust and shows very little 
differences while comparing the dimension reduction 
methods. Therefore, we use both the sum of branch lengths 
and pairwise correlations from the Mantel test to demonstrate 

that the interpolated phylogenetic trees closely fit the MDS 
using WDA-SMACOF, even with pairwise alignments.  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed a method called Interpolative 

Joining (IJ) that can be used to project existing phylogenetic 
trees onto a MDS cluster visualization result in order to 
generate spherical phylogram (SP), which is much more 
efficient that traditional displaying method.  

Unlike traditional clustering methods that require a 
similarity-threshold, the WDA-SMACOF used by DACIDR 
for MDS cluster visualization uses the full range of genetic 
variability contained in a dataset when determining 
taxonomic groups because it considers each sequence 
separately, yet it is still computationally fast.  This allows a 
more natural clustering approach given the inherent 
variability in the sequence dataset than is possible when 
using similarity-threshold clustering. In addition, because 
the taxonomic groups delimited by the clusters visualized by 
MDS matched those from the phylogenetic tree so closely 
for AM fungi, computationally slower clustering methods 
such as GMYC or PTP that use phylogenetic relationships 
to guide cluster generation may not be required for studies 
of genetically diverse fungi.  In addition to that, WDA-
SMACOF can robustly find global optima and be scaled for 
large datasets [31]. Together these characteristics make 
DACIDR a promising option for determining taxonomic 
groups from the increasingly large environmental sequence 
datasets that are generated by high throughput sequencing.  

Overall, even with the genetically diverse AM fungal 
DNA dataset, we found that the clusters identified by WDA-
SMACOF in DACIDR using pairwise sequence alignments 
accurately defined different taxonomic groups in a way that 
is in close agreement with a phylogenetic tree generated 
independently from a multiple sequence alignment of the 
same dataset.  Therefore in our future work, the clustering 
and visualization using DACIDR appears able to replace the 
traditional phylogenetic method for the taxonomic analysis 
of large fungal sequence datasets in studies where either: 1) 
evolutionary relationships are not of primary interest, or 2) 
the sequences represent taxonomic groups that are poorly 
defined in existing sequence databases, which is common 
when obtaining sequences from environmental samples.  

For future improvements to this method, instead of just 
displaying the representative or consensus sequences from 
each cluster found from the original input dataset, it is 
possible to display the tree with entire dataset in the 3D 
space with the help of IJ. Also the interpolation algorithm 
used in DACIDR could also be improved to help identify 
the sequences that are poorly defined. Furthermore, it would 
be interesting to construct the SP using distances that are 
first calculated in a higher dimensional space, such as 10D, 
and are then interpolate the tree into 3D space. This could 
result in a higher accuracy since a higher dimension space 
could retain more information from original space. The 
software to generate SP is available on demand. 
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