Research and Creativity Statement

Judy Qiu

Current Research
Recent years have witnessed the rise of the Big Data concept, which covers a wide spectrum of data ranging from sensor and scientific instrument data, to high-level human perceivable data like documents and web pages. This topic is important because almost every field of science is now data driven. It is convenient to explain my research in terms of the hardware and software systems needed to support data-enabled science. Both simulation and data analysis are important approaches to science but the data area has particular interest at the moment with “data science” “big data” and “data intensive” important ideas. 

Everyone knows about the four V's of big data (Volume, Velocity, Variety, Veracity). More and more often, the bottleneck in scientific discovery is in data analysis. Scientists are forced to create their own ad hoc solutions --- a lack of scalable analytic capabilities means that large-scale experimental and simulation results cannot be fully and quickly utilized. Moreover, the scientists lack dynamic insight into their analyses, unable to modify the experiment or simulation on the fly.

My research is motivated by many of the primary software tools used to do the large-scale data analysis required by these applications were born in the cloud. My work up to now with (5-year) future plans evolves around my CAREER project. It also explains the integration of research, education and outreach that is a key feature of my plan. The major goal of the project Data-Enabled Discovery Environments for Science and Engineering (DEDESE) is to perform fundamental computer science research in Innovative Cloud-HPC Programming Models and Data Intensive Applications. My research is to clarify which applications are best suited for clouds; which require HPC and which can use both effectively. This will enable thoughtful planning of national Cyberinfrastructure. 

The thrust of my work lies in new Programming Environments and Runtime for Data-Enabled Science with main research activities:
1) Design, Analyze, and implement a next generation Iterative MapReduce using a Map-Collective model where independent maps are followed by user customizable collective operations;
2) Design, Analyze, and Implement a higher-level programming model that compiles to an iterative MapReduce runtime;
3) Evaluate the many different storage models and find the integrating interoperable principles and implementations.
4) Design, Analyze, and implement a fault tolerance model that supports checkpointing between iterations for robustness and individual node failure without compromising performance by configurable settings;
5) Evaluate my research with real workloads, applications, and simulations with real applications from cloud-based bioinformatics through exascale data analytics;

My research is integrated with education and two further important activities described in my broader impact section:
6) Integrate research with education from undergraduate students to graduate students;
7) Develop new curricula in cloud and distributed computing and proactively support adoption of such curricula in other universities with a cloud repository and classes, workshops and tutorials.

I list publications in my resume which are divided into Book Chapters (B1..6), Journals (J1..9), refereed Conferences and Workshops (CW1..37), Other (O1..4) and Technical Reports (R1..7). As well as 60 research contributions, I have 3 education publications (J8, CW6, CW35).
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According to Google Scholar hindex is 17 with a total of 1487 citations (February 2015). Citations per year from Google are given in figure. They are nicely certifying the outside interest in my recent research. I was honored by the “Many-Task Computing on Grids and Supercomputers” workshop at the last SC12 supercomputing conference. My paper from 2009 (CW26) with follow up journal article (J7) was cited as paper with greatest impact in cloud area and I gave an invited keynote talk.

Further my own work has demonstrated that clouds are particularly suitable for data intensive problems as these do not require high performance of tightly coupled tasks but rather loose coupling and support of large scale “Collective” operations such as broadcasts and the reduction operations made popular by MapReduce.


Research
Introduction
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We term the system in figure 1, as a DEDESE or Discovery Environments for Data-Enabled Science and Engineering and my research plan focuses on some of their key innovative features in shaded layers. The validation involves building a full system with the other capabilities shown in figure but in areas like workflow, portals and security I do not intend novel research but rather use of best practice. 
Looking at highlighted layers we can summarize the overarching challenge for my research is to build a DEDESE capable of handling the incredible increases in dataset sizes while solving the technical challenges of portability with scaling performance and fault tolerance using an attractive powerful programming model. Further, these challenges must be met for both computation and storage. Dataset sizes are typically expanding faster than Moore’s law, demanding cost effective parallel data analysis techniques. Sequence data analysis in genomics and proteomics is used to validate this research: a challenge as the growth of the DNA sequencing data has recently been much faster than the growth of the computing power. DNA sequencing throughput doubles every 5 months, whereas the computing power per Moore’s law is doubled every 18 months. My research is based on the hypothesis that clouds and cloud-like environments including MapReduce will prove very important for science – data analysis in particular – by providing both cost effectiveness and powerful parallel programming paradigms as already demonstrated. On the other hand HPC clusters spanning up to exascale capability will continue to be critical and so a key challenge is portability not just as systems scale up in size but also between HPC and Cloud systems.  HPC systems are important not just as hosts for observational data analysis but because of the growing challenge of analyzing results of supercomputer simulations and working with Oak Ridge, we include this as an application to motivate and validate this research. Another synergy between HPC and clouds is common challenges in fault tolerance and storage. Clouds may change but the importance of large-scale energy-and-cost-efficient data centers is likely to remain and provide technology and infrastructure opportunities that the proposed research will exploit. 

I have contributed to three new books in primary research area of MapReduce and data intensive computing for bioinformatics. One is a text book (B1) titled “Distributed and Cloud Computing: From Parallel Processing to the Internet of Things” published in October 2011 by Morgan Kaufmann Publishers. The other book (B2) is called “Data Intensive Distributed Computing” by IGI Global Publishers. I am the co-editor with Professor Andy Li of Florida of a new book “Cloud Computing for Data-Intensive Applications” that just published by Springer in 2014 (B3). I have finished a special issue with Dr. Dennis Gannon on Data Intensive eScience for the Distributed and Parallel Databases journal. I have edited two special issues on “Emerging Computational Methods for the Life Sciences” with Professor Ian Foster and others O1, O4) with one other being prepared.
We now describe current research progress divided by the topics shown in the figure: Iterative MapReduce, Storage, Fault Tolerance, High-level Programming models and validating applications. I list my publications in the particular topic areas below. My resume lists all publications including those aimed more broadly at my research interests starting with my thesis topic, an extensive period of research on multicore systems and now on broad issues in cloud computing. (B4, B5, J9, CW26-37, R7) before 2010 and (B1, B3, J3, J4, J7, CW11, CW12, CW20, CW23, R2) in 2010 and after (while I was on the Indiana University faculty).
Iterative MapReduce
MapReduce has become popular in recent years due to its attractive programming interface with scalability and reliability in processing big data problems. Recently several iterative MapReduce frameworks have emerged to improve the performance on many important data mining applications.  Utilizing local memory on each compute node to cache invariant data, we are able to accelerate iterations of MapReduce execution. These extensions of Iterative MapReduce are illustrated by Haloop, Pregel, Spark and Twister from my SALSA laboratory. They are attractive as they interpolate between the traditional tightly coupled MPI jobs typical of supercomputers, and the more loosely coupled information retrieval and pleasingly parallel (“map only”) applications typical of clouds and high throughput systems. Publications in the broad Iterative MapReduce area are (CW3, CW10, CW14, O2, R4, R5)
HPC Twister
Over the last 2 years we have extended the original Twister paper (CW22) – now with 228 citations – in several ways including a version for Azure described in the next subsection. We generalized MapReduce to Map Collective and are looking on both HPC and Azure/Amazon platforms at the Collective algorithms that get best performance in each case.

We have collaborated with faculty David Crandall looking at clustering algorithms using Twister and discovered that these problems involve mammoth data transfer distinct from those usually studied with MPI. Taking K-means Clustering as an example, the centroids data are required to be broadcasted to all the Map tasks in each iteration and every local copy of the new centroid data generated by each Map task must be transferred in the shuffling stage. 

Here we add new features in Twister to improve the performance of broadcasting and shuffling Collectives in iterative MapReduce. We introduce a pipeline based chain broadcast method that reduces the broadcasting time by 99% from the level with naïve sending method to the level comparable with MPI broadcasting when broadcasting 1 GB data to 125 nodes.  Further we provide a new local reduction mechanism which can reduce shuffling data to the ratio of. For a K-means Clustering application with runs 10000 Map tasks with 500MB data output per Map task on 125 nodes, we can reduce intermediate data from 5 TB to 62.5 GB. 

Publications on HPC Twister are (CW4, CW7, CW8, CW9, CW17, CW22, J1)
Twister4Azure – Iterative MapReduce for Windows Azure Cloud
Twister4Azure is an iterative MapReduce framework for Azure cloud that extends the MapReduce programming model to support data intensive iterative computations. Twister4Azure enables a wide array of large-scale iterative data mining and data analysis applications to utilize the Azure cloud platform in an easy, efficient, and fault-tolerant manner. Twister4Azure architecture utilizes the scalable, distributed, and highly available Azure cloud services as the underlying building blocks and employs a decentralized control architecture that avoids single point failures. Twister4Azure takes care of almost all the Azure infrastructure (service failures, load balancing, etc.) and coordination challenges, and frees users from having to deal with the challenges of cloud services.

Our research on Twister4Azure focuses on 1) designing efficient, yet user friendly programming models for data intensive iterative computations, 2) overcoming the data storage and transfer bottlenecks in cloud environments, 3) optimizing the task scheduling to get the maximum efficiency out of the compute resources, 4) providing framework managed fault tolerance ensuring the eventual completion of the computations, 5) providing good scalability and efficiency for the computations. Currently Twister4Azure provides users with an easy to use intuitive programming model extending the MapReduce programming model. Twister4Azure also supports novel collective communication primitives improving the efficiency and the usability of the commonly used iterative computation patterns.Twister4Azure supports multi-level data caching and cache aware task scheduling, minimizing the data transfer bottlenecks, and significantly improving the performance of the computations. Twister4Azure optimizes the intermediate data transfers and data broadcasts by utilizing multi-medium and multi-algorithm approaches. Twister4Azure has minimal management & maintenance overheads and provides users with the capability to dynamically scale up or down the amount of computing resources. 

For MapReduce type and pleasingly parallel type applications, Twister4Azure executing on shared cloud infrastructure, performs comparable or better compared to the traditional MapReduce run times (e.g. Hadoop, DryadLINQ) executing on traditional dedicated compute clusters. Twister4Azure consistently outperforms traditional MapReduce frameworks for Iterative MapReduce computations. With the public release of Twister4Azure, we are noticing several outside users starting to use Twister4Azure to perform their computations on Azure cloud.

Publications on Twister4Azure are (J1, CW9, CW18, R3)

Interoperation with Different Storage Models
Realistic DEDESE must understand value of and use as required several different approaches to data storage. These include traditional parallel file-systems (Lustre, GPFS), SQL data-bases, distributed file systems supporting data-parallelism (Google File Systems, HDFS, Cosmos), federated file-systems (GFFS) , distributed storage systems (SRB/iRODS), memory key-value stores (e.g., Redis), document-oriented databases for storing, retrieving and managing document-oriented data (e.g., CouchDB, MongoDB), Object-Stores (e.g., Amazon S3 and OpenStack Swift), and NOSQL constructs such as BigTable/HBase, Cassandra and HYPERTABLE.

Our current research has focused on storage needs for fault tolerance. To support task level recovery functionality, we must store the intermediate results of Mappers and reducer in each iteration. In normal Cloud environments, a distributed file system or object store is a naturally choice for the storage requirement. But in HPC, local disk space is very limited and we have to use parallel file system, such as Lustre, GPFS or PVFS, as the underlying storage system. Under such circumstance, the bandwidth of the central parallel file system becomes bottleneck for the thousands of checkpointing file IO requests from Mappers. We resolve the challenge by introducing Twister IO staging server, Twister File Service, into the Mapreduce system to delegate all IO request from Mappers. Due to large amount of data movement is inevitable in this design, we take advantage the high speed underlying network infrastructure to accelerate data movement. RDMA technology, with its high bandwidth and low latency features, is adapted by us to reduce the data movement speed by up to 5 times compared to traditional Ethernet, which makes our design feasible and applicable for Big Data application in large scale clusters.
Currently we are still working on further improve the TFS (Twister File Services) performance and researching the best placement of TFS in HPC clusters. This is a recent focus of work and the only publication is (O3).

Fault Tolerance
The project motivation of Twister fault tolerance is to reduce the computational time and energy cost by providing Twister with task level fault tolerance in HPC environment. Each iteration of Big Data jobs like Kmeans, will take several hours or even a day to complete. Hence it’s unfeasible to drop intermediate results of each iteration and restart the job when failures, including node level (hardware) and task level (software) failures, occur in the computing cluster, with limited computing time and energy consumption.
 
We described our research in the storage support for fault tolerance in the previous section. Further work of Twister fault tolerance includes supporting node level failure recovery and comparing our work to the state-of-the-art of iterative Mapreduce fault tolerance implementations. This research has just started and has no publications yet.
Higher Level Programming Models
This is an area for future research and currently I have with my students just done initial studies. Sawzall, Pig Latin, and DryadLINQ are existing higher-level programming models that can be supported by the MapReduce runtime. They offer a data-analysis oriented interface similar to the popular Matlab but naturally capable of powerful MapReduce implementations. I am researching extensions of this type of approach to cover popular scientific data analysis functions as the original work had an emphasis on information retrieval. The approach will support compiling to Iterative MapReduce, which should give substantial performance gains as data defined in data parallel language can be kept in memory for re-use. Lessons can be learnt from past and current HPC languages such as HPF, Chapel and PGAS, where the latter is nearer the basic (Iterative) MapReduce programming model. A second set of developments in the area of graph processing with Google’s Pregel extension of MapReduce is well known. Parallel languages are known to require major efforts so this needs to be a long-term activity. Initially we will support the simplest case where the data analysis like MDS and Clustering are treated as user defined functions and not programmed directly in the data parallel language. We intend to start this research in 2013.

Validation of Research on Applications
Apache HBase for indexing health and network science data
A large portion of health data is generated and stored in text format. To handle the storage and analysis of these ever-growing text data, a scalable and reliable infrastructure is needed. This project investigates the HBase system as an option for such purpose. We propose to store text data with HBase, and build inverted index as HBase tables to support search. Furthermore, large scale parallel data analysis can be completed over the text data or index data based on the MapReduce framework provided by HBase and Hadoop.

The ClueWeb09 data set is used to verify our proposed solution, and experiments are carried out in an HPC cluster on FutureGrid. Our initial results on sample data sets reveal some interesting characteristics of the text data, as well as some features of HBase MapReduce for supporting parallel data analysis. Our preliminary work has been published in a position paper at the 1st HPCDB workshop in SC11, and its application in an example search engine has been demonstrated in the 2012 Science Cloud Summer School. In future work, we plan to test our framework on larger data sets to verify its scalability, and apply it on more types of data sets, especially health data, to support more sophisticated data analysis. The publication here is (O3).

We have just started work with the Truthy project, which supports analysis of large scale (TBs) of social networking data collected through Twitter’s streaming access application program interface (API). We are extending HBase with customized indexing techniques to support efficient query evaluations and measurements and will demonstrate the effectiveness of these indexing techniques and compare their performance with other existing storage options. We hope to generalize them to achieve a framework that is widely applicable to other NoSQL database systems such as Cassandra, as well as other types of scientific applications.

Bioinformatics and Cheminformatics
This involved work with Seattle’s Children Hospital and the Bioinformatics and Biology (Medical School) faculty at Indiana University. I also have worked with Professor Haixu Tang and Professor David Wild on linking Twister based parallel algorithms to Bioinformatics and cheminformatics data. We developed both applications of Twister and workflows involving Twister and MPI. Several papers have been produced in both computer science and biology/cheminformatics areas. The papers here are broadly in three areas: Computer Science (algorithms) (B4, J4, J6, CW2, CW3, CW15, CW16, CW19, CW20, CW24, CW25, CW26, R1); Bioinformatics/Biology (J2, CW4, CW7, CW8, CW13, CW27) and Cheminformatics (J5, CW21).

Other Applications
We have started on a collaboration with Oak Ridge National Laboratory on using our technologies to support their simulations and one of my PhD students spent last summer there as an Intern. We have one paper from this collaboration (CW1). General papers on use of cloud technologies in scientific applications are (R4-R6). With Virginia Tech we investigated using cloud technologies to support a Network Science service CINET (CW5) with capabilities spawned on demand.

Research Impact
In summer 2012, Indiana University has hosted a virtual conference with other 9 sites of university. This conference introduces state-of-the-art cloud technologies and applications to graduate students and professionals across the nation. 
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Figure 2: Science Cloud Summer School 2012

We have presented our research work and developed hands-on tutorials for two national workshops around the areas of data and clouds with the Great Lakes Consortium Virtual School of Computational Science and Engineering (VSCSE) and these are summarized in table below.
Table 1: Data Enabled Science Courses and Workshops
	VSCSE 2012 Science Cloud Summer School “MapReduce Day”

	In summer 2012, I organized and hosted “MapReduce Day” in a week long program of Science Cloud Summer School for the Great Lakes Consortium Virtual School of Computational Science and Engineering (VSCSE). We developed hands-on tutorials for both Sandbox and FutureGrid environments. Two hundred computer science graduate student participants were from Indiana University, Louisiana State University, Michigan State University, Pennsylvania State University, Princeton University, Rutgers University, University of California Los Angeles, University of Michigan, University of South Carolina, University of Wisconsin.

	VSCSE 2010 Big Data for Science

	In summer 2010, I organized and hosted the Big Data for Science tutorial which reached two hundred computer science graduate students in Arkansas, Illinois, Indiana, California, Michigan, Pennsylvania, Iowa, Minnesota, and Texas. 5 additional presenting sites were linked from Seattle, IBM Almaden, SDSC San Diego, John Hopkins and Univ. Florida. As part of new approaches to scientific computing, the course covered several MapReduce-related technologies such as Dryad, Hadoop, and Twister and their application to several biomedical applications. The course also covered how clouds, multicore, and grid technologies can enhance scientific discovery in both simulation and rapidly expanding data analysis with experiences on FutureGrid. In particular, we developed hands-on tutorials and offered at VSCSE and at TeraGrid’10.



We hosted MapReduce Day for the Science Cloud Summer School. A complete list of presentations and tutorials is archived online. We demonstrated several software tools that we have released as open source projects. We extended our open source Iterative MapReduce environment Twister with new communication primitives and demonstrated on kernel and production bioinformatics applications. Twister4Azure is a decentralized runtime on Microsoft Azure Cloud to explore portability of our iterative MapReduce framework. Both of them support large-scale data mining and data analysis applications including using Kmeans, Pagerank, and Multi-Dimensional Scaling algorithms. Our recent IndextedHBase project involved extending Apache Hbase (Open source Google Bigtable) to allow fast indexing with a web search demonstration exhibiting the scalability of NOSQL combined with the performance of SQL indexed search. We expect to extend this to index Twitter data with SOIC Truthy project. On-demand public or private clouds are an important environment for dynamic provisioning software. Our SalsaDPI framework automates complicated setup and installation progress so that domain scientists can focus on their field of problems and run their applications on clouds. SalsaDPI pre-packages software in VMs and installs them on the fly, which allows one-click access to software programming on rich, customizable, and scalable cloud environments. We are exploring these features in our massive online course platform where instructors can conveniently assemble course materials (slides, videos and VMs) and students can do customized experiments from the repository.

Diversity Initiatives
Considerable education and outreach activity has been achieved through my development of a strong minority oriented Research Experience for Undergraduates (REU) program. For the past three years, I have hosted a total of 25 HBCU (Historically Black Colleges and Universities) REU students as part of Indiana University HBCU STEM (science, technology, engineering and math) Summer Scholar Institute. These students were recruited through ADMI (Association of Computer and Information Science/Engineering Departments at Minority Institutions) and A4RC (Alliance for Advancement of African-American Researchers in Computing). They’ve actively engaged in faculty-mentored research with my group on life science, polar science and cyberinfrastructure projects. I am proud that one of our HBCU students Keenan Black's poster on "Data Point Visualization and Clustering Analysis" won first place in 2010 STARS Celebration Conference, and was highlighted in Indiana University STEM Initiative website . I will continue my commitment to minority students in research. Further I would like to work with the Academic Alliance (AA) for the National Center for Women in Information Technology, which represents 175 institutions to share the results of this project and procedures for adoption by the Alliance faculty. This would be a collaboration with Maureen Biggers.

Undergraduate Research 
I have mentored two undergraduate students for an academic year. The research project was centered on a digital library portal that archives scientific publications with customized indexing and search functions. Four undergraduate students enrolled in my distributed systems class in spring 2011. This expands the activities with HBCU STEM described above. The mentoring opportunities will provide a path for student investigation of DEDESE and distributed systems at a level of understanding appropriate for undergraduates. REU students are explicitly funded in my NSF CAREER grant but I will also exploit other programs to increase the number of students who can be involved. Currently I fund four undergraduate students for the course builder project.




Teaching Statement

Judy Qiu

I am committed to the integration of education with research innovations of computing to create a curriculum as a mind-changing exploration that attracts many future engineers and scientists. In particular, my idea is to build a national and international educational resource in distributed computing with cloud computing as a major focus. 

The NSF recently announced “a long-term strategy to address national big data challenges, which include advances in core techniques and technologies; big data infrastructure projects in various science, biomedical research, health and engineering communities; education and workforce development; and a comprehensive integrative program to support collaborations of multi-disciplinary teams and communities to make advances in the complex grand challenge science, biomedical research, and engineering problems of a computational- and data-intensive world.”  Due to alignment of clouds with data intensive applications my educational plans are strongly aligned with this vision. More broadly, the knowledge gained from my research, and corresponding tools, will be integrated into the CSCI-649 and CSCI-534 courses described below. The transition of the research into the graduate classroom is a key goal, including future special-topics seminars on the growing literature of Programming Environments and Runtime for Data-Enabled Science as exemplified by the workshops in the table below. 

Recently I received a Google Award to develop a new online course on Cloud Computing that combines Google’s course builder techniques with Cloud platforms. In fall 2013, I will offer CSCI-434 Distributed Systems course at Indiana University with an online Cloud Computing MOOC session for hundreds of thousands of students around the globe.

Curriculum Development
I have introduced two new curricula at Indiana University. CSCI-649 and CSCI-534 involve Clouds for Data Intensive Sciences and Distributed Computing. I taught CSCI-343 this semester, which is a core undergraduate course on Data Structures. These courses have been taken by over 254 PhD, masters, and undergraduate students in Computer Science. In addition, we have developed hands-on tutorials for two national workshops Big Data for Science 2010 and Cloud Computing for Science 2012 with the Great Lakes Consortium Virtual School of Computational Science and Engineering (VSCSE) with 500 participants. 

CSCI-B649 Course: Cloud Computing for Data Intensive Sciences (Fall 2011, Fall 2010)
This topics course offers to graduate students cloud computing programming models and tools to support data-intensive science applications. These include virtual machine-based utility computing environments such as Amazon AWS and Microsoft Azure. The class covers MapReduce for information retrieval, and scientific data analysis. The projects were performed on FutureGrid and carefully chosen to include different aspects of the cloud architecture stack from top-level biology and large-scale graphics applications, optimization of MapReduce runtimes, Cloud storage, to low-level virtualization technologies. A sample syllabi and homework are included in Appendix I.

CSCI-B534 Course: Distributed Systems (Fall 2012, Spring 2012, Spring 2011) 
This is motivated by the Internet and the data deluge for science with the emergence of data-oriented analysis as a fourth paradigm of scientific methodology. The content of B534 covers the design principles, systems architecture, and innovative applications of parallel, distributed, and cloud computing systems. These include supercomputing clusters, service-oriented architecture (SOA), computational grids, P2P (peer-to-peer) networks, virtualized datacenters, and cloud platforms. The programming project for B534 class is a "platform" building bottom up, giving a stack with virtualization and dynamic provisioning capabilities to support the OS and science applications. Additional class topics include Data-Parallel File System; Queues: Publish Subscribe based queuing system. Later topics will be added to cover the complete "OS of OSs at Internet scale".

Future Course Development 
Funded by Google, we explore the idea of customized courses where a MOOC using Google Course Builder offers a repository of 10-20 minute lessons (‘songs’) drawn from the Course Builder library that are assembled as a playlist into ‘albums’ (units, modules, courses). This is similar to the ‘Playlist’ that is a popular feature in YouTube and popular music repositories. The customization will be explored using material from Indiana University (IU) to form a repository of lessons from which courses can be prepared. Our initial efforts will be aimed at Minority Serving Institutions, allowing their students access to a state-of-the-art education for an area of the workforce believed to offer many jobs over the next few years. 

The initial test course will be offered at Elizabeth City State University (ECSU) with collaboration between Professor Judy Qiu (IU) and Professor Linda Hayden (ECSU). It will involve a module on cloud computing and remote sensing. We will learn from this initial ‘Customized MOOC’ how to scale to other Minority Serving Institutions, starting with those in ADMI (The Association of Computer/Information Sciences and Engineering Departments at Minority Institutions). This concept was illustrated by the Indiana University Summer 2011 Cloud Workshop offered to ADMI faculty based on Qiu’s course and led by IU PhD student Jerome Mitchell, an ECSU undergraduate student. 

We suggest multiple targeted courses built from this repository of shared customizable lessons, together with a modest amount of additional specialized material (clouds and remote sensing for the ECSU module). The MOOC repository will initially be populated from the July 2010 Big Data for Science summer school and the July 2012 Summer School on Cloud Computing for Science which are already recorded on video and being moved to Course Builder. More will come from Prof. Qiu’s existing cloud and distributed systems classes. In the future, instructors would have access to a vast array of topics presented by renowned lecturers from all over the world. The interface would also allow for further customization by editing the videos in order to cut material not needed for a particular customization. Existing YouTube videos will be included as possible lessons (after editing). Editing functionality should be intuitive and user friendly so anyone can create their own courses, edit the text in the lessons if they want to, and save the video in their new course. We will integrate Google Forms to create assessments that can be inserted between lessons as activities.

All lessons will support use of social media among the students and mentors in our MOOC offerings, with each tightly knit group (e.g. students at one MSI) encouraged to use a single set of tools (e.g. Google Drive and Facebook one group; Google Docs and Skype another). We will encourage other faculty to include cloud modules in their courses and contribute back to the repository with lessons describing different ways clouds are important outside core computer science. We also propose to conduct user experience-based research in the design phase of developing the customization interface. Other research issues include experimenting on support of cloud lab sessions with a mixture of client appliances and backend clouds. 

Student Advising 
I have benefitted from work with many excellent hard-working students, who have interacted with me and helped shape and promote my research program. Details are in my resume. In summary I am PhD advisor for 4 students; I am part of 12 PhD research committees; I have supervised 25 independent study courses spread over PhD and Master’s students, 25 HBCU STEM students and 6 undergraduate research internships.


Appendix I
(Supplementary document for curricula development)
A sample syllabi and homework for CSCI-B649 Course: Cloud Computing for Data Intensive Sciences is included as below. The course webpage illustrates the structure of course. In this course, students choose their topic of interest for term projects under the supervision of instructor. Each programming homework is well planned, carried out and archived. Code is saved to SVN.
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Design of projects for B649
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Each student group chooses their own topic of cloud technology and applications 
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A Sample Report from Students
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Appendix II

Supplementary document of book contributions 
This is a newly published textbook by Morgan Kaufmann Publishers October 2011 on “Distributed and Cloud Computing” with Kai Hwang as lead author. Sample pages included below are from several sections in Chapter 6 and Chapter 9 based on Twister and SALSA lab projects. Additional contribution is providing solutions for homework problems of Chapter 5 and Chapter 6. 
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Cloud Computing for Data Intensive Sciences
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Materials Calendar Summary

Class Information

Graduate Level Course, Fall 2011
Time: MW 4:00pm to 5:15pm
Place: Lindley Hall Room 008
Bloomington, IN 47405

E-mail list: fall2011b649@oncourse.iu.edu

office Hours

Instructor: Prof. Judy Qiu

Tuesday 2:45 to 3:45pm (or by appointment)
Lindley Hall Room 201D

AL: Stephen Wu
Monday 3:00 to 4:00pm
Lindley Hall Room 201H

Prerequisites
General programming experience with windows or Linux using Java, C#, or C++, scripts is required. Parallel and cluster
computing background is a plus although not required.

Objectives
This course will offer to students programming models and tools of cloud computing to support data intensive science
applications. Students will get to know the latest research topics of cloud platforms and have the opportunity to understand
some commercial cloud systems through projects using FutureGrid resources.

Scope and topcis

Several new computing paradigms are emerging from large commercial clouds. These include virtual machine based utility
computing environments such as Amazon AWS and Microsoft Azure. Further there are also a set of new MapReduce
programming paradigms coming from Information retrieval field which have been shown to be effective for scientific data
analysis. These developments have been highlighted by a recent NSF CISE-OCI announcement of opportunities in this area.
This class covers many of the key concepts with a common set of simple examples. It is designed to prepare participants to
understand and compare capabilities of these new technologies and infrastructure and to have a basic idea as to how to get
started. Particularly, the Big Data Workshop Website covers the background and topics of interest as below.

Projects

Hadoop (Big Data Workshop hands-on)
Iterative Mapreduce (Twister samples)
Dryad/DryadLINQ project

Evaluation

Participation (20%).

Homework assignments (20%), including surveys, in-class presentations and reports.
Projects (50%) , including three small projects (10% each) and a term project (20%).
Quizzes (10%).

Academic Misconduct

Plagiarism and cheating undermine the academic environment. Students who cheat undermine their own education, the self-
esteem that comes with true mastery, and the academic mission of the University. The regulations governing student
academic conduct and the procedures that must be used in handling violations of those regulations are covered in the Code of
Student Rights, Responsibilities, and Conduct. (Part ILA. defines academic misconduct, and Part IV.B. explains the procedures
for handling cases of academic misconduct; these two sections are reprinted each semester in the Registrar publication
Enrollment and Student Academic Information, under the heading "Academic Misconduct Policy.”

1U Academic Misconduct Policies

Policy for Late Assignments or Projects

Assignments and projects are due at the beginning of class unless otherwise noted. You have one free late submission for up
to 24 hours. For other late submissions, the grade will be reduced by 20% for each 24 hours late. No submissions will be
accepted after 48 hours of due time.
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Class Schedule (Tentative)

lLectures  [Topics L erature [Assignments
lLecture 1 « Course introduction « The Fourth Paradigm: |Assignment #0 (due
[august 29, « Data Intensive Sciences Data Intensive [sept. s5th)
1 « Data Center Model Discovery
« Current Clouds with Infrastructure, o The Data Center as a * Cloud System
Platform and Software as a Service Computer Stack Correction
« Above the Cloud
« Distributed System and
Cloud Computing (in
preparation)
lLecture 2 « Course Projects and Study Groups « Hadoop [Project #0 Part1(due
[september « Parallel programming/MPI vs. « Overview of FutureGrid [Sept. 19th):
5. 7 MapReduce/Hadoop « Tutorial on using
« Introduction to FutureGrid FutureGrid « Hadoop word
+ Using FutureGrid count
lLecture 3 « Virtualization Technologies and tools . Xen Project #0 Part2 (due
[september « Build your own images to run on a bare . KVM [sept. 26):
12, 14 cluster
« Build your own images to run on academic * Hadoop word
cloud (e.g. Eucalyptus) count on VM
« Hadoop word
count on
Eucalyptus
lLecture 4 [Literature review « MapReduce [assignment #1 (due
[September |MapReduce/Hadoop/DryadLINQ/Twister « Hadoop ept. 26)
l19, 21 « DryadLINQ
. « Review papers
o Twister
lLecture 5 « MapReduce and data parallel applications |« mpiBIAST
[september + Hadoop « CloudBAST
[6, 28 « Building All-to-All Blast using Hadoop « CloudBurst
* AzureBlast
* TwisterBLAST
lLecture 6 « Iterative MapReduce and EM algorithms « Pregel [Project #1 (due Oct.
[october 3, 5[« Twister * Twister l17th):
« Parallel data mining algorithms using o Twister Kmeans
Twister « Hadoop Blast
lLecture 7 « MapReduce and data parallel applications |« Dryad: Distributed data
|october 10, | DryadLING -parallel programs from
2 « Dryad sequential building
« Building Pairwise distance Calculation blocks
using DryadLINQ/Dryad  Distributed Data-
Parallel Computing
Using a High-Level
Programming Language
o All-Pairs: An
Abstraction for Data-
Intensive Computing on
Campus Grids
« Cloud Technologies for
Bioinformatics
Applications
lLecture 8  [Design your own project - Call for Proposals for | ¢ Hadoop [assignment #2 (due
[october 17, fterm projects « DryadLINQ [oct.31st):
L5 * Twister
« Hadoop « Eucalyptus « Project proposal
* DryadLING/Dryad « Nimbus
« Twister « Sector/Sphere
« Eucalyptus (advanced topic)
« Nimbus (advanced topic)
« Sector/Sphere (advanced topic)
« Virtual Appliances (advanced topic)
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lLecture 9 | Data mining algorithms « Paralellized Variational [Project #2 (due Nov.
[October 24, EM for Latent Dirichlet [7th):
be « Clustering by Deterministic Annealing Allocation
(DAC) o Blei's LDA * Twister K-means
« Multi Dimensional Scaling (MDS) implementation
« Latent Dirichlet Allocation (LDA) « Variational LDA Latent
Dirichlet Allocation
« Modern
Multidimensional
Scaling: Theory and
Applications
* GTM: The generative
topographic mapping
« Deterministic Annealing
for Clustering ,
Compression,
Classification,
Regression, and Related|
Optimization Problems
lLecture 10  [MapReduce on Multicore/GPU * Multi-Core
foctober 31, Programming
November 2|+ Multicore/GPU architecture « Programming Massively
« Concurrent threading vs. parallel parallel Processors: A
processes programming Hands-on Approach
« Performance Issues « Parallel Computer
Works!
Lecture 11 |« Google BigTable [The Chubby lock service for ~[Project #3 (Due Nov.
INovember « Google Sawzall foosely-coupled distributed ~ [p1th):
[7,9 « Hadoop HBase ystems
« Hadoop Hive « Hadoop/Twister
« Hadoop Pig « BigTable Pairewise
« sawzall distance
« HBase Calculation using
* Hive SWG
. Pig
lLecture 12
INovember  [Midterm Review of term projects
14, 16
lLecture 13 * Amazon EC2 and Microsoft Azure * Amazon EC2
INovember « Discussion of their applications « Azure
[21, 23
lLecture 14 [Building Data Intensive Life Sciences [Assignment #3 (Dec.
INovember [applications using Azure, EC2, Eucalyptus, I5th):
[28. 30 INimbus and FutureGrid with comparison of
loud/MapReduce and MPI technologies  Final Project
report (including
code and
archives)
lLecture 15 « Project Presentations
IDecember 5|
[7
lLecture 16 * Final Exam
IDecember
2
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Individual Assignment

Name lProject #0 Part 1 lProject #0 Part 2
[L_|akheel,Nabeel Ahamed [ code [ report
2 Bhaskar, Bina [ code [¥ report
handrasekaran,Kaushik___|* code [¥ report
lt_Ichen,Peng [ code [¥ report
5_|Chen, Xiaoyang [ code [¥ report
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23 lshankaran,Nitya [ code [¥ report
24 lsharma,Ritika [ code [¥ report
25 Shraff,Prerna Rajiv [ code [¥ report
26 [Teng,Fei [ code [¥ report
27 fruncay,Doga [ code [¥ report
28 Vadivelu,Magesh Khanna ¥ code [¥ report
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Higher Level PigLatin
Languages #12 Large scale IP filtering using Apache Pig and case study (Kaushik, Nabeel)

MapReduce and Iterative MapReduce (Hadoop, Dryad, Twister)
#1
#4 Agent-based Model Simluation with Twister (Bingjing, Lilian)
#5 Genetic Algorithms by using MapReduce (Fei, Doga)
#8 Implementation of Classifier Tool in Hadoop Environment (Shivaraman, Magesh)
#10 Matrix Multiply with Dryad (Hui, Xiaoyang)
#15 K-means Clustering (Prajakta, Swathi)

Cloud Cloud Infrastructure
Infrastructure #2 Security in Cloud Computing (Bina, Anand)

Cloud Storage
#3
Cloud #6
Storage &
#g FrequentWord Combinations Mining and Indexing on Hbase (Hemanth, Santhosh)
#11
#13 Analysis of Lucene Index on Hbase in an HPC Environment (Prerna, Anand)

Virtualization
#14
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Using Map-reduce to Support MPMD

Peng Chen and Yuan Gao
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Group #4

Agent-based Model Simulation with Twister

Bingjing Zhang and Lilian Weng
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Group #5

Genetic Algorithms by using MapReduce
Fei Teng and Doga Tuncay
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Group #8

Implementation of Classifier Tool in
Hadoop Environment

Shivaraman Janakiraman and Magesh Khanna Vadivelu
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Matrix Multiplication with Dryad

Hui Liand Xiaoyang Chen

- Fundamental kernel algorithm used by many applications
- Examples: Graph Theory, Physics, Electronics
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K-means Clustering

Prajakta Purohit and Swathi Gurram
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Group #2

SECURITY IN CLOUD COMPUTING

Bina Bhaskar and Anand Mukundan

« National Database of Vulnerabilities lists over a
hundred potential hypervisor flaws for one particular
virtualization technology.

Veluslenfion Laver _

Resource  Resource  Resource  Resource
sice Slice Sice. Sice

Virtual Machines.

Physical Hardware

Figure 1. Arohiteoture of hardware virtualzation with Virtual Machines

Tmage courtesy: http:/lpage joyent com/rs/joyent/images/Joyent_Security_Whitepaper_Final 20101001 pdf
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Cloud Storage System
A Survey

Nitya Shankaran and Ritika Sharma

= Analyzing different types of storage that cloud systems provide.
- Object storage
- Block storage
- Relational Database storage (RDS)
- Distributed File systems etc.

= Research on architecture of different cloud storage systems.
- Amazon S3 (Object storage)
- Google File System (Distributed File System Storage)
- HDFS (Distributed File System Storage)
- Microsoft SQL Azure (Relational Database Storage)

= Performance Analysis and Evaluation of each system.
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Group #6

Performance Evaluation on Hadoop Hbase
Abhinav Gopisetty and Manish Kantamneni
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OpenStack Compute

- vignesh Ravindran
- Sankarbala Mancharan
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he World of Virtual Resour?eish'aring

Dhairya Gala and Priyank Shah

B4 Joomlal”

The Grid appliance is a plug-and-play virtual machine ~appliance
intended for Grid computing to execute many long-running
simulations concurrently in resources across virtual machines that can
be dictributed across the world.
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GRID APPLIANCE — THE WORLD OF VIRTUAL RESOURCE SHARING
By Dhairya Gala (dmgala@indiana.edu) and Priyank Shah (prishah@indiana.edu)

Problem Definition:

‘The Grid appliance is 2 plug-and-play virtual machine appliance intended for Grid computing, to execute
many long-running simulations concurrently, in resources across virtual machines that can be distributed across
the world.

Our workiincludes:
+ Configuring Twister Appliance environment by packaging Twister Iterative MapReduce along with the Grid

Appliance framework.

« Running distributed applications over the configured Twister Appliance Virtual network

Running distributed applications over the standard cluster.

+ Evaluating the computational performance of the two environments against various parameters such as
applications, data size and number of nodes.

« Commenting onits feasibility and real world applicability based on the performance results obtained.

Note: We have used FutureGrid Eucalyptus virtual machines for setting up both the environments.

Survey:

To begin with, we read a few paper’s talking 2bout Grid Appliznce environment and Twister iterative
MapReduce framework. The self-configuring Grid appliance environment has been in the cloud computing arena
for a while now, but we could not find any study which compares this cloud appliance of a pool of resources with
any other environment like a standard grid or a cluster.

“This motivated us to do the study of the kind we have done in this project wherein we compared the Grid
appliance environment with 2 standard cluster environment to evaluate the performance of the first and
commenton it

Architecture Design:

Grid Appliance:
‘The Grid Appliance is a self-configuring virtual, physical, and cloud appliance that is used to create ad-hoc
pools of computer resources both within 2 local-area and across wide-area networks. It is used primariy to

execute high-throughput, long-running jobs and to create virtual clusters for education and training.

B Joormial
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We observe that the time taken for execution in Grid Appliance environment is more as compared to the
time taken in the standard cluster environment, for same evaluation parameters. But the increase in time is not a
significant one, which helps us conclude that the virtualization cost is not that high while using the Grid Appliance
environment.
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Figure 4: Performance of MapReduce applications on Grid Appliance and Standard cluster environment
(Graph 2~ Number of nodes v/s Execution Time)

‘The above graphs show the time taken for execution, in Grid Appliance environment and Standard cluster
‘environment for Kmeans Clustering Algorithm (left graph) and PageRank Algorithm (right graph), when the data
size is kept constant and the number of nodes used are varied.

As expected, in both the environments, the time taken for execution is decreased as the number of
compute nodes is increased. Thus, we observe that grid appliance behaves as any other environment running
distributed applications would
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Figure 5: Speed-up charts

The above graphs show speed-up chart for WordCount application in both Grid Appliance environment
and standard cluster environment.

Speed up s calculated as Ty/Tywhere:

Tiis execution time of sequential algorithm, and

T, is execution time of parallel algorithm with n nodes
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6.2 Parallel and Distributed Programming Paradigms 351

Reduce worker i, already notified of the location of region i of all map workers,
femote procedure call o read the data from the respective region of all map workers. Since:
workers read the data from all map workers, all-to-all communication among all map
‘workers, which incurs network congestion, oceurs in the network. This issue is one of
jor botlenccks i increasing the performance of such systems [50-52]. A data transfer
was proposed to schedule data transfers independently [551,
10 11 comespond 1o the reduce worker domain:
and Grouping When the process of reading the input data is finalized by a reduce
2 the data s initially buffered in the local disk of the reduce worker. Then the reduce.
groups intermediate (key, value) pairs by sorting the data based on their keys,
by grouping all occurrences of identical keys. Note that the buffered data is sorted
jped because the number of unique keys produced by a map worker may be more
R regions in which more than one key exists in each region of a map worker (see
64).
function The reduce worker iterates over the grouped (key, value) pairs, and for each
Key, it sends the key and corresponding values to the Reduce function. Then this function
it input data and stores the output results in predetermined fils in the user's program.

Clarify the interrelated data control and control flow in the MapReduce framework,
Shows the exact order of processing control in such a system contrasting with dataflow

Compute-Data Affinity

e software framework was first proposed and implemented by Google. The first

ion was coded in C. The implementation takes advantage of GFS [53] as the underly-
MapReduce could perfectly adapt itself to GFS. GFS s a distributed file system where
divided into fixed-size blocks (chunks) and blocks are distributed and stored on cluster

earler, the MapReduce library splits the input data (files) into fixed-size blocks, and
s the Map function in parallel on each block. In this case, as GFS has already stored
set o blocks, the MapReduce framewark just needs (o send a copy of the user's program
he Map function to the nodes’ already stored data blocks. This is the notion of sending
toward data rather than sending data toward computation. Note that the default GFS

s 64 MB which is identical 10 that of the MapReduce framework.

Twister and terative MapReduce

1o understand the performance of different runtimes and, in particular, to compare MPI

[43,44,55,56]. The two major sources of parallel overhead are load imbalance and

dion (which is equivalent to synchronization overhead as communication synchronizes.

it [threads or processes] in Categories 2 and 6 of Table 6.10). The communication over-
ce can be quite high, for two reasons:

reads and writes via files, whereas MPI transfers information directly between nodes
the network.
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6.2 Parallel and Distributed Programming Paradigms ~ 353 ‘

T L [Comn

(s) Twister for Horaiive MapReduce programming

Publsub broker network

et MapReduce programming paradigr for repeated MapRedce executons.

6.1 Performance of K Means Clustering in MPI, Twister, Hadoop, and DryadLINQ
uce approach leads to fault tolerance and flexible scheduling, but for some applications the per-
degracaton compared to MP is serous, as ilustrated in Figure 6.8 for a simple parallel K means.
g, Hacoop and DryadLING are more than a factor of 10 slower than MP for the lergest data
o even e poorlyfor smaler data sets. One could use many communicafion mechanisms in
pReduce, but Twister chose a publish-subscribe network using a distributed set of brokers, s

inSecton 5.2 with similar performance achieved with ActieMQ and NaradaBrokering.
-

4pReduce pair is teratively executed in long-running threads. We compare in Figure 6.9
it thread and process structures of 4 parallel programming paradigms: namely Hadoop,
 (also called MapReduce++), and MPL Note that Dryad can use pipes and avoids
witng according to the original papers [26,27]
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Performance of K means clustering for MPI, Twster, Hadoop, and DryadLING.
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FIGURE 6.9

Thread and process structure of four parallel programming paradigms at runtimes.
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BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS

e references for core technologies have been given throughout this chapter, and here we give
additional useful references. Most of the (opics are o new that there arc few comprehensive

nts, and links for major commercial clouds are changing at this time of rapid evolution;
recommend checking major sites for latest links. A sample s [104-108]. A very good introduction
cloud computing in business and technology is given in the lecture notes by Chou [109]. Various
services are treated in [110-115]. Arguments about the benefits and opportunities of
computing are treated in [110,116-120]. Cloud technology for HPC was studied in
73,121-127). Distributed programming paradigs for cloud applications are treated in [26,28].
ions of clouds to data-intensive computing are discussed in [25,41-43,74,75].
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In an optimistic anaiysis, the GOCS of the three cloud service models are in the range of 50 per
60 percent. The laas model performs befter than the Paas and Saa$ models. This is atributed

to improved eficiency, scalabilty, and security messures. The PaaS and l22S models have simiar ek
performance. The Paa$ model i siightly higher in performance than the laaS mode, thanks to si
improvements by providers of PaaS in the areas of effciency and scalabilly. Howevr, the ranking of
Paas$, and Saa$ models varies with specific applications. Benchmark experiments are needed o1
cloud performance.

9.2.5 Benchmarking MPI, Azure, EC2, MapReduce, and Hadoop

Several detailed benchmarking studies of cloud system have been conducted [23-29] on HPC
cations. Some of these conclusions may be a litle misleading as they use technologies such as
sage-passing interface (MPI), which is usually unsuitable for clouds, rather than, say, Maph
whose features we discussed in Chapter 6. Other studies [15,30-38] have taken a more fo
look at scientific problems which, as we discussed in Section 6.2.6, work well with clouds.
of the latter results on the performance of Twister were discussed in Section 622 and are
repeated here,

9.25.1 Competitive Cloud Performance

Our understanding is that clouds offer competitive performance and pricing for applicatons
programming paradigms that are well suited to cloud environments. For these cascs, one
from the obvious utility computing feature of clouds, and for PaaS, one can also benefi from
form features such as Azure Table/Amazon SimpleDB which are not available on tradiional
clusters. Performance-relevant problems with clouds include the bandwidth and cost of

data to them; performance degradations in 1/O which impact latency and bandwidth of MPE
consequences of virtualization that negatively impact the affinity between compute and storge
between different compute instances [39). Traditional large-scale simulations—often requiting
latency, high-bandwidth communications and clever data decomposition schemes—perfom
poorly on clouds.

“The costs of various implementations were examined [41] on Amazon EC2 with the co
that compute costs dominated over storage but that costs are sensiive o partcular Amazon
types (Table 6.13). This sensitivity appears in many studies and suggests thal the first step
major cloud activity is to optimize the instance types used. Another astronomy application
Tooked at Amazon EC?2 for the Nearby Supernova Factory (SNfactory) anlysis environment
relies upon a complex pipeline of serial processes that execute various image processing il
in parallel on ~10 terabytes of data. This paper found that careful attention was needed 0 Use
rage effectively on EC2 while the original Linux cluster application needed modificaton 1
with failures present on clouds. Note that cloud-optimized environments such as MapReduee]
failure tolerance built in.

9.2.5.2 MPI versus MapReduce Performance
Now we describe & set of performance measurements from the SALSA group at Indiana U
comparing MPI, MapReduce, and master-worker approaches on clouds and traditional platforms
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programming models suited for clouds. Most of the current studies have looked at test
problem, but we can highlight two papers that examine complete applications. Moniage
Science-grade mosaics of the sky (o a community composed of both professional and
astronomers and can naturally be implemented as a service in the cloud,

9.3 ENABLING TECHNOLOGIES FOR THE INTERNET OF THINGS

In ubiquitous computing, the Internet of Things (10T) provides a network of sensor- or
connected devices that can be uniquely identified and located in the cyber-physical space. This
mostly wirelessly connected as a self-configuring network of radio-frequency tags, low-cost
or e-labels. The concept s attributed to original auto-ID tracking in 1999. The term “ToT"
RFID technology with today’s IPv6-based Internet technology. All things (objects) have IP:
which can be uniquely identified. The IP-identifiable objects are readable, recognizable I
addressable, and/or controllable via the Internet, aided by RFID, WiFi, ZigBee, mobile netw
GPS. The IoT enabling technologies are covered in this section for object tagging, wircless
and locating positions. Interesting ToT applications are presened in Section 9.4

9.3.1 The Internet of Things for Ubiquitous Computing
As intrduced in Chaptr 1, the IoT i & natural extension of the Inemnet. Th foundaton of
5 radio-frequency identicaiion (RFID) This enables th discovery of (agged objects und
evices by browsing an IP address or searching for a database eniry. Whercas RFID is &
amocba of the pervasive computing world,the ToT presents a vision of the future. In the

century, computers leamed 10 do s insructed. In the twentieth century, computers leamed
T the twenty.first century, computers want o leam how to percive by sensing and un
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9.6 BIBLIDGRAPHIC NOTES AND HOMEWORK PROBLEMS

Wide coverage of the principles and paradigms of cloud computing are provided in (8}, Clou
design and secarity issues are covered in [70]. Buyya, et al. 9] have introduced a market-
cloud computing framework. Basic cloud rescarch can be found in [1,34,59-62.69-71.94. C
‘compuing applications are studied in [28.33,48,56,59.61,63,67,68.93]. Scieace and research cl
re studied in [13,15,19-23,30,35-39,52.64,76,79]. Trust models for clouds are proposed
[12.24,82], Cloud support for ubiquitous computing and mobile applications can be found
[6:8.16.73] Public clouds are covered in 6.8.31.34,48,65] and private clouds in [11.72). Clood
ups are studied in (18,88], Google's experences on MapReduce and BigTuble are reparted i [14)

‘Bryant introduced the DISC paradigm in [5]. The SGI Cyelone was reporte in 3]. Data color
nd cloud watermarking are studied in [42], Grid and cloud performance, simvlation, and bene
Sadies can be found in [9,25,33.50:51,67,68.75,89,9093]. For science clouds and applicatons,
ersare referted (o FutureGrid [30], Grid’5000 [35), Magellan (56, Open Circus and Open Ci
Testbed [64], Science Clouds [76], Sky Computing [43], and Venus.C [79). Amazon beneh
resls are reported in [31,32.75.80]. Cloud securiy i trested in [12.42.54.55,57,70.83). Opea
<Satem support or cloud computing can b found in (60,62.72] Parallel benchmarks and pef
evaluation of clusters, MPPs, and distibued systems can be found in Hyang and Xu (41].

“The Intemet of Things was treated in [45,73,78]. RFID is trested in [2.81,91,92], Mterl
scnsors and Zighee technologies can be found in [73] and GPS i (78] Supply chain man
i reated in (911, The CPS material s based on [17.47.85]. Online sacial networks are ind
i [4.7.53.86]. Social network analysi is given in [10,29,40,42.46,49.53,58,82.84]. Facehook
reporied in [23,26.27). Twiter is reported in [16,42,66,77]. P2P technology for trust manage
‘and socil networking can be found in [12.24,43.51,54]. Kleinberg analyzed large-scale see
networks in (4] Reed assesed clouds, many cores, and clustes in [69)
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