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Abstract: Traditional techniques in building science portals and gateways are 
being challenged by new techniques such as Web 2.0 and Cloud Computing.  
This paper discusses some of our efforts to evaluate these techniques as we 
evolve the QuakeSim architecture.  We believe that architecturally both 
traditional and newer approaches for Gateways are very similar, thus giving us 
a path for moving to hybrid approaches. In this paper, we specifically evaluate 
techniques for building interactive user interfaces that rely on remote services; 
architectural approaches for managing massive job submissions that can 
include both parallel and serial jobs; and an architectural prototype for building 
component based containers compatible with emerging standards.  

1 Introduction: Gateways in Transition   

Science gateways and portals have been developed by numerous groups to 
support scientific communities and provide them with Web accessible user 
interfaces to data and applications.  In the United States, for example, the 
TeraGrid Science Gateway program [1] includes over 25 registered projects.  
Although often initially targeted at research communities, the greatest success 
for many of these gateways has been to support educational users [2].  

The QuakeSim gateway [3] is designed to provide several capabilities to users, 
including 

 Access to real-time and archival Global Positioning System (GPS) data; 

 Services for analyzing GPS time series data streams using RDAHMM 
[4]; 

 Services for analyzing deformation properties of faults using 
Okada-based methods [5] and GeoFEST [6]; 

 Services accessing the QuakeTables fault model database [7]; 

 KML-generating services for rendering application inputs and outputs; 
and 



 Web user interfaces for interacting with the above services.  

Gateways are commonly built following the service-oriented architecture 
approach [8]. The key idea of this approach is to break the gateway’s 
functionality into a set of well-defined Web services. The strength of this 
approach is its flexibility, allowing multiple user interfaces to be built and also 
allowing multiple backend services for data and application management to be 
integrated into the system. 

User-interface components function as clients to these network services.  
This approach also enables a modular approach to user interface design, as 
client components can be relatively self-contained and aggregated using 
containers.  Commonly these user interfaces are Web portals, but desktop 
applications and workflow composers [9][10][11][12] are also popular.  The 
various approaches are not mutually exclusive if implemented correctly with 
services.  Client components to these services can be built using a number of 
approaches.  Portlets are a popular approach for Web portal-based gateway. 

The service layer also acts as an abstraction and buffer layer over multiple 
backend resources.  For example, application management services and 
user interfaces can be designed and built to run applications on test-bed 
resources for initial testing. Following testing, the service implementations can 
be changed to use high performance computing facilities.  By keeping the 
service’s invocation interface unchanged, the user interface components can 
remain unchanged.  

Many of the founding implementation assumptions of science gateways 
discussed above are currently being challenged.  Science gateways 
themselves are typically built out of “enterprise” standards (such as Java 
portlets), but the innovations in Web computing have been driven by insurgent 
technologies such as AJAX and social networking. As we have demonstrated 
previously, science gateways will benefit from the adoption of both Web 2.0 
technologies and development approaches [13].  Gateways have also been 
built on a foundation of Grid computing middleware and high end computing at 
academic computing centers.  Cloud computing is challenging this conception 
of middleware [14], and for-fee computing and storage services provide an 
alternative to computing grids such as the TeraGrid [15], Open Science Grid 
[16], and the Enabling Grids for E-Science (EGEE) project [17].   

We believe however that the overall service architecture remains the same in 
any case, even if the components of the architecture diagram get relabeled or 
(more likely) become hybrids.  Cloud services create virtual machines and 
clusters that themselves can host Web services.  Portlets as a specification 
don’t preclude AJAX-style interactivity, and while this particular component 
standard is probably growing obsolete, the general component-container 
model is not and is being replaced by gadget/widget containers such as 
iGoogle and Facebook. The Open Social Application Programming Interface 



(API) [19] makes it possible for additional container developers to make 
applications that are compliant with massively used social networking sites 
such as MySpace, LinkedIn, and Orkut.  It remains to be seen how the 
current non-interoperability between the Open Social and the Facebook APIs 
[20] will be resolved, and internationalization with popular non-English social 
network sites is also uncertain.  API details aside, the general capabilities of 
these social networking sites should be useful for providing simple sharing 
mechanisms for scientific datasets and online capabilities among collaborators 
and with general audiences.   

This paper reviews some of the advanced features and future developments 
for the QuakeSim portal as we adjust to changes from Web 2.0 and Cloud 
computing.  In Section 2 we examine different strategies for increasing 
interactivity in map-based user interfaces to GPS station data.  In Section 3, 
we describe the architecture for both single and massive job submission and 
management in Grid resources, with a path towards Cloud computing 
interoperability.  In Section 4, we describe the architecture for an open source 
gadget container that we will use as the next generation of the QuakeSim 
portal. We conclude the paper in Section 5.  

2 Components for Realtime and Archived GPS Data Analysis 

This section describes updates and improvements to the QuakeSim GPS 
access and RDAHMM analysis portlets and services. In brief summary, we use 
the Geospatial Resources Web Service [22] developed by the NASA REASoN 
project [21] to access historical GPS data, which are then analyzed with the 
RDAHMM application via network services.  This analysis is updated daily 
and is accessible via a web map interface. The map interface can be used to 
explore state changes in GPS networks.  We have also developed a real-time 
GPS infrastructure in collaboration with the REASoN team that is also 
analyzed with RDAHMM. Analysis results are published every thirty minutes. 
Earlier versions of this work are described in more detail in [4][18].  

New features described here include a state change summary service for the 
archival data and a movie generation service that can display the time 
evolution of the overall network state.  All user interfaces are built with 
interactive maps, since we need to make these services as interactive as 
possible. We evaluate different strategies for improving interactivity and 
response time. 

2.1 Daily RDAHMM – Plot of Number of Stations with State Changes 

Extending our previous work on Daily RDAHMM Analysis (DRA) of the 
archived GPS data collected at 442 GPS stations in California, we have added 
a new function to the DRA Service for plotting the number of stations with state 
changes on each day from January 1, 1994 (the earliest GPS data records 
available) to the current date. The plot provides a comprehensive view of all 



stations’ states in the time interval and can help analyze the relationship 
between stations’ state changes and geological events. For example, on 
1999-10-16, when the Hector Mine Earthquake happened at Barstow, 
California, there were 22 stations changing their states around that area in our 
analysis.  

The relationship between the plotting function and the DRA service and portlet 
is shown in Figure 1. After performing daily RDAHMM Analysis on all stations, 
the DRA service generates a file containing information about the number of 
stations with state changes on each day between 1994-01-01 and “today”, and 
calls the plotting service to draw the plot, which is integrated and presented in 
the Daily RDAHMM portlet. 

 

Figure 1 shows plot of the number of stations with state changes. 

2.2 Daily RDAHMM – Station State Change Video Maker Service 

In addition to the plot of state change numbers, we have added a station 
state change video maker service to the service architecture of DRA, as shown 
in Figure 2. After the daily RDAHMM analysis is performed on all stations, the 
video maker service is called by the DRA service to generate a video that 
shows a movie of all stations’ dynamic state changes through the whole time 
between 1994-01-01 and the current date, which can then be downloaded 
from the DRA portlet. This video is updated every day, and Figure 3 shows a 
sample frame of the movie. 

Figure 2 also gives the workflow of the video maker service: 

1. Draw a series of pictures for a recent time range, such as 2 months, 
with one picture per day. Each picture shows the map of California, with 



markers in different colors for all stations, indicating their state change 
information on the corresponding day; 

2. Generate a video of this time range from all these pictures with encoder; 

3. Merge this newly created video with a stable historical video to get a 
complete video for the whole history since 1994-01-01. E.g., merge the 
newly created video for the time between 2008-08-01 and 2008-09-06 
with the video for 1994-01-01 to 2008-07-31. We generate the complete 
video in this way in consideration of performance: merging two videos is 
much faster than creating a new one from the pictures; 

4. Periodically update the historical video to a more recent date. The 
archival data sets for the current data are not all immediately available 
from GRWS, so we use a two-week buffer. This eliminates false state 
changes caused by stations not yet reporting.  

 

Figure 2 Workflow of Station State Change Video Maker Service 

 



 

Figure 3 Screen capture of a generated movie of GPS stations’ state changes between 1994‐01‐01 

and the current date.    Data is obtained from the REASoN project’s Geophysical Resources Web 

Service.    Push‐pin icons represent GPS station locations. The color of the stations indicates the 

stations’ state. 

2.3 Daily RDAHMM – Results Analysis Service Performance 

As described in [4], every day the RDA service goes through all the California 
GPS stations, obtains their latest available position data, performs an 
RDAHMM evaluation on each station, analyzes the evaluation results and 
stores their state change information and missing data information into a XML 
formatted result file.  The DRA portlet can retrieve this file and present the 
evaluation results with interactive Google maps by analyzing the content of the 
file. An example is shown in Listing 1.  



 

Listing 1 Example summary file for results of Daily RDAHMM processing.   

To serve the DRA portlet, we created a Daily RDAHMM Result Analysis 
Service to analyze the XML result file generated by the DRA service, and 
answer queries about stations’ state change information from the portlet. This 
service provides three methods, shown in Table 1. In older versions, this task 
was handled by Java Server Faces “Managed Beans”, which are a feature of 
the JSF framework. This updated web service has the following merits 
compared with the Managed Bean solution: 

(1) Efficiency: since calling a web service method does not require 
refreshing the web page, which is necessary for calling a method of a 
Managed Bean, updating all stations’ states information for a specific 
date is much faster when the web service method is used. Table 3 

<xml> 

 <output-pattern> 

  <server-url> 

http://156-56-104-131.dhcp-bl.indiana.edu:8080//rdahmmexec 

</server-url> 

  <pro-dir>daily_project_{!station-id!}_2007-12-18</pro-dir> 

  <AFile>daily_project_{!station-id!}.A</AFile> 

  <BFile>daily_project_{!station-id!}.B</BFile> 

  <InputFile>daily_project_{!station-id!}_2007-12-18.input</InputFile> 

  <LFile>daily_project_{!station-id!}.L</LFile> 

  <XPngFile>daily_project_{!station-id!}_2007-12-18.all.input.X.png</XPngFile> 

  <YPngFile>daily_project_{!station-id!}_2007-12-18.all.input.Y.png</YPngFile> 

  <ZPngFile>daily_project_{!station-id!}_2007-12-18.all.input.Z.png</ZPngFile> 

  <PiFile>daily_project_{!station-id!}.pi</PiFile> 

  <QFile>daily_project_{!station-id!}_2007-12-18.Q</QFile> 

  <MaxValFile>daily_project_{!station-id!}.maxval</MaxValFile> 

  <MinValFile>daily_project_{!station-id!}.minval</MinValFile> 

  <RangeFile>daily_project_{!station-id!}.range</RangeFile> 

 </output-pattern> 

 <station-count>442</station-count> 

 <station> 

  <id>7odm</id> 

  <lat>30.3421</lat> 

  <long>-144.3342</long> 

  <status-changes>2006-10-03:5to2;2006-10-02:3to5;…</status-changes> 

  <change-count>16</change-count> 

  <time-nodata>2008-12-09to2008-11-23;…</time-nodata> 

 </station> 

 … 

</xml> 



shows the tested page loading time and stations’ states updating time 
following four different kinds of solution strategies that we have 
analyzed. Table 2 gives a detailed explanation of these solution 
strategies. Obviously, the web service strategy produces both shorter 
loading time and shorter updating time than the Managed Bean 
solution; 

(2) Scalability: Since hidden HTML controls are needed to pass 
parameters for calling the methods of Managed Beans, one managed 
bean is created for each HTTP session (that is, each distinct user). This 
leads to redundant work of loading and analyzing the XML result file in 
each managed bean. When the number of clients is large, the web 
server will have to maintain too much state information about the clients. 
On the other hand, the web service is stateless; further, the XML file is 
only loaded once at the creation of the web service, and updated only 
once per day thereafter. We tested the response time of the Daily 
RDAHMM Result Analysis Service under different work-loads with 
JMeter [23] and the results are shown in Table 4. We can see that the 
service can handle 30*5=150 requests per second with an average 
response time of 379.5ms and a maximal response time of 1476 ms. 

We did not use the pure JavaScript or JPS + JavaScript strategies because 
of their long loading time or large page size. 

Table 1 Methods provided by the Daily RDAHMM Result Analysis Service.    These provide data 

used in the map plots such the snapshot shown in Figure 2. 

Method Description 

String getDataLatestDate() Calculates the latest date when any station has 
some input data. 

String getLatLongForStation 
(String stationId) 

Returns the string representation of latitude and 
longitude of the station specified by stationId. 

String calcStationColors 
(String date) 

Calculates the string representation of the 
colors for all stations on a specific date. The 
colors represent different states of the stations 
on that date. 

 

Table 2 Four Strategies for Implementing the DRA Portlet 

Strategy Description 

Pure 
JavaScript 

Analyze the XML result file and store data needed for map 
computation with client side JavaScript; stations’ states and 
their markers’ colors are computed with JavaScript at client 
side. 



JSP + 
JavaScript 

Analyze the XML result file with server side JSP codes, and 
JavaScript the data needed for map computation at client side 
with JavaScript objects; stations’ states and their markers’ 
colors are computed with JavaScript at client side. Since we do 
XML file analysis on the server side but do stations’ states 
computation at client side, we have to generate a lot of 
JavaScript codes for directly storing the state change and 
missing data information, such as direct assignment sentences 
for each station, which result in a large html file transmitted to 
the client side. 

Managed 
Bean + 
JavaScript 

Analyze the XML result file and store the data needed for map 
computation with server side managed session beans; stations’ 
states and their markers’ colors are also computed by session 
beans. 

Web Service 
+ JavaScript 

Analyze the XML result file and store the data needed for map 
computation with web service; stations’ states and their 
markers’ colors are also computed by web service. 

 

Test environment configuration: the web server runs on a Linux server 
machine with 8 Intel Xeon 2.33GHz processors and 8G memory, and the 
Firefox client runs on a Linux desktop with a 2-core Intel Pentium 4 3.40GHz 
CPU and 2G memory. Each strategy is tested 5 times and the average results 
are given.  Network connections are over 1 Gbps internal networks.  

Table 3 Single Client test of performance of the four strategies 

Method Page size Loading time Map update 
time 

Pure JavaScript (only 
state changes) 

289KB 13.0s 4.4s 

JSP + JavaScript 2.78MB 7.4s 2.8s 

Managed Bean + 
JavaScript 

766KB 8.4s 5.4s 

Web Service + 
JavaScript 

972KB 5.2s 3.4s 

 

Test environment configuration: the test is done with JMeter 2.3.2, the server 
and client machine configuration is the same as Table 3. N is the number of 
client threads created per second. Each client sends 5 requests to the web 
service after started. RT means “Response Time”. 



Table 4 Web Service Scalability Test.    N is the number of client threads interacting with the user 

interface each second. RT is the response time.    Units are in milliseconds.   

N Avg RT(ms) Min RT(ms) Max RT (ms) 

1 81.0 80.0 85.0 

10 85.0 76.0 136.0 

20 191.5 77.0 750.0 

30 379.5 78.0 1476.0 

40 596.5 80.0 2937.0 

50 784.5 79.0 3485.0 

 

2.4 Realtime RDAHMM – Two Phase RDAHMM Analysis Service 

We have expanded the previous real-time RDAHMM analysis model to a 
two-phase analysis model, whose workflow is shown in Figure 4. In brief 
summary, data streams from the California Real Time Network are obtained 
and processed using a publish/subscribe-style filter chain system. A wrapped 
RDAHMM application represents a link in the processing chain.  Raw data is 
generated at the rate of 1 Hz.  Previous work provided a performance 
evaluation of the GPS stream filter management system, but to begin obtaining 
geophysical information, we need to train the RDAHMM filters first on an 
incoming data set. Classifications of states in the real time data are then made 
using the trained filters. 

In the first phase, the service builds an RDAHMM model for each GPS station 
with its real-time data collected in 1-2 days. In the second phase, the service 
collects real-time data for each station, performs an RDAHMM evaluation for 
each station every 30 minutes based on their models, plots the evaluation 
results, and saves the state change information of each station within last 2 
hours. Then the real-time RDAHMM portlet can access this information and 
present the plots of each station, and mark the stations on Google map with 
different colors to indicate their state change information. Adding a remodeling 
phase where the RDAHMM models are periodically rebuilt is part of our future 
work. The problem here is that building a model with 1-2 days’ real-time data is 
computationally intensive. Strategies for solving these problems are described 
in the following section.  



 

Figure 4 Workflow of Two‐Phase Real‐time RDAHMM Analysis Service 

3 SWARM: Infrastructure for Scheduling LargeScale Job Clusters 

Many QuakeSim applications need substantial backend computing power.  
Applications such as GeoFEST need high-performance computing resources 
to realistically model faults, and real-time RDAHMM processing requires 
frequently updated training models that (although trivially parallelizable for 
each station) can be computationally demanding.  These two scenarios are in 
fact very general and point out important differences between the current state 
of the art in Grid computing (which focuses on federating high end computing 
resources) and Cloud computing (which focuses on providing highly available 
virtual computer clusters).  To address both of these issues, we have 
developed the Swarm service. 

Swarm is a high-level job-scheduling infrastructure for large-scale jobs. Swarm 
has been developed for scientific applications that need to submit a massive 
number of high-throughput jobs to highly distributed computing clusters 
(include virtual clusters) and high performance computers. The jobs that may 
be submitted by Swarm include both serial and parallel jobs that are normally 
submitted to the batch job systems provided by high-performance computing 
clusters. The Swarm service is itself designed to be extensible, lightweight, 
and easily installable on a desktop or small server. Derivative services (such 
as services with a GeoFEST-specific API) based on Swarm can be integrated 
in a straightforward fashion with other applications including Web portals and 
science gateways.  

There have been several approaches to high-level job scheduling in the grid 



environment. We review this related work to put Swarm in context.  GridWay 
[24], and PanDa [25] projects provide a job submission environment over 
multi-site resources. On top of the scheduling functionality, Swarm 
incorporates a resource prioritizing feature, which searches the batch queue 
system with the minimum wait time. Falkon [26] and myCluster [27] enable 
users to access provisioned resources (typically implemented by holding slots 
in a queuing system) to submit large-scale scientific jobs. Instead of 
provisioning resources, Swarm provides a user-based resource pool, which 
limits the maximum number submissions to a given batch queue system at any 
given time.  Jobs are held on the Swarm server until more slots on the actual 
cluster queuing systems become available. This enables Swarm to incorporate 
policies from different batch queue systems more flexibly.   

Pegasus [28] provides a workflow generation and mapping environment for 
grid computing environments. It generates a workflow plan based on artificial 
intelligence reasoning techniques. The workflow plan is transformed into a 
directed acyclic graph that is then passed to the Condor [29] DAGMan system 
and then executed on the grid environment. Swarm utilizes Globus [30] job 
submission services (running on the backend clusters) along with the 
Condor-G and Birdbath as the foundation job submission mechanism. 
Condor-G is an optional configuration of Condor that can act as a universal 
client to various types of Grid middleware.  Birdbath is Condor’s Web Service 
interface. It is also a configuration option for standard Condor and has a 
collection of Java client libraries that simplify the process of creating a client. 
Instead of using DAGMan, Swarm provides a simple built-in workflow manager 
that submits individual jobs through Condor-G and maintains the status of the 
submitted jobs.  

We chose Condor-G as a universal client because of its flexibility.  In addition 
to submitting jobs to various versions of the Globus toolkit, Condor also 
provides bridges to interact with PBS and LSF queuing systems directly. An 
“Amazon” Grid type has been added in Condor version 7.1, allowing Condor-G 
to also interact with Amazon’s Elastic Computing Cloud services.  Thus the 
Swarm service inherits these features.  



 

.  

Figure 5:    Swarm architecture.    Client applications interact with the Swarm WSDL using standard 

Web service tools. In practice, we extend Swarm to make problem‐specific services that inherit 

Swarm capabilities but provide a code‐specific WSDL.   

Our goal with Swarm’s architecture is to provide a highly extensible base for 
domain specific application extensions instead of a general purpose, “out of 
the box” job submission service. Science gateways or Web portals such as 
QuakeSim can integrate Swarm with their required data model and 
fault-handling scheme. The service is designed to be installable on single 
servers and can be hosted separately from the Grid middleware.  In Figure 5, 
the Request Manager, Resource Ranking Manager, Data Model Manager, 
Fault Manager, Job Board, and Job Execution Manager are all components of 
a single service.  We typically install Condor-G on the same host server.  
Globus and other middleware services such as provided by the TeraGrid are 
on separate hosts.  These components are now discussed in detail.  



3.1 Architecture     

Swarm is a set of Web services and local servers, as depicted in Figure 5. 
Gateway style applications access Swarm via standard Web service interfaces. 
We have also provided simple, example command-line clients for desktop 
users.  Each of the operations and parameters are defined in the WSDL 
associated with the services. 

To provide the capability to track a large number of jobs, Swarm provides a 
simple structure for the submissions. Users submit jobs to Swarm in groups.  
Group sizes containing up to one million individual jobs have been tested. The 
requests for group job submissions are delivered to Swarm’s Request 
Manager. The Request Manager creates a 128-bit universally unique identifier 
ticket for the series of jobs.  An individual job is identified by its ticket and an 
internal ID. Here, the internal ID is the identity of the job, which is unique within 
the job group. This structure is designed to support multiple experiments 
launched by multiple users through the Web service.  

As seen in Figure 5, the job submission process interacts with the Resource 
Ranking Manager, which prioritizes the resources over which the job is 
submitted to optimize the job execution process. With Swarm, users are 
allowed to specify multiple backend resources (computing clusters) to submit 
the job group. To prioritize the resources listed in the user's job description, 
Swarm interacts with the QBETS batch queue prediction service [31]. The 
QBETS service provides queue delay predictions. The Wall Clock Time and 
number of nodes are key factors to get the predicted delay.  Wall Clock Time 
and the number of nodes are specified in the input job description and 
Resource Ranking Manager passes that information to the QBETS Web 
service and gets the result of predicted wait-time in the batch queue. 

The Data Model Manager specifies the data model for the input, output and 
temporary files during the process. The temporary files include log files, error 
messages, and security related files such as proxy certificates. The data model 
provides a directory structure for the output files from a large number of jobs. 
In addition, the location for the privacy sensitive files can be specified in the 
data model. Besides using the standard data model, users or applications can 
implement their own data model to satisfy their application specific 
requirement. 

The Fault Manager decides how to respond to the faults encountered during 
the job submission and execution. Swarm’s current implementation 
categorizes faults into two categories: fatal faults and recoverable faults. A 
fatal fault is defined as a fault that cannot be recovered without new inputs 
from the users or relocating the jobs on different computing clusters. Examples 
of fatal faults include, 

 Erroneous arguments, e.g. the supplied path to the input data is wrong; 

 Hardware and software failures in the computing clusters; and 



 Failures resulting from the policy of the computing cluster. 

Recoverable faults are faults that can possibly be recovered without contacting 
the user. These are commonly related to resource specifications such as 
expected execution time or memory requirements. When Swarm detects that 
the fault is due to insufficient resource specifications, the jobs are resubmitted 
with modified arguments. Similar to the data model manager, the users or 
application developers can implement their own response mechanism.   

Under the Request Manager and Resource Ranking Manager, there is a group 
of software components referred to as the Job Board. Swarm maintains a Job 
Board for each user. Each Job Board contains a Job Queue, Job Distributor, 
and Resource Pool. Users do not share any of these components. 
Matchmaking between the jobs and the resources are done in the user’s Job 
Board.  

When the Job Distributor finds a match with an available remote resource, the 
Job Execution Manager submits the job through Condor-G’s Web service APIs. 
The user’s Grid certificate (based on the X.509) is retrieved by means of 
interacting with the MyProxy service [32] and used to access to the Globus 
GRAM job manager. In addition, users are allowed to submit jobs to ordinary 
Condor computing nodes through Swarm. 

3.2 Performance Evaluation 

We have developed a prototype of the Swarm framework, in Java, based on 
Apache Axis2.  The server was hosted on a machine with 3.40GHz Intel 
Pentium 4 CPUs and 1GB RAM. For the measurement, we ran the client 
software on the same machine to submit jobs. The machine involved in the 
benchmark was hosted on 1 Gbps network. As a group of HPC clusters, 
TeraGrid network was used for testing jobs. 

 

Figure 6 The testing scenario: The same group of jobs is submitted by client to Swarm and the 

Resource Utilization Rate is measured. 

 

Our benchmark measured the resource utilization rate with various size of 
resource pool. Here the size of resource pool is defined as the total number of 



jobs that we allow in the batch queue system concurrently (that is, we do not 
swamp the TeraGrid batch queues with jobs). Each of the clusters may have 
different policies about the number of jobs in the batch queue at a given time. 
Swarm controls the job submission so as not to exceed the number of 
concurrent jobs by means of configuring the size of resource pool for each of 
clusters. 

The resource utilization rate shows how efficiently swarm utilizes the resources 
specified in the resource pool. We defined the resource utilization rate as 

Resource Utilization Rate = (Total number of currently running jobs) / (Size of the 

resource pool) 

As illustrated in Figure 6, the number of the concurrently running jobs is 
measured by executing condor command that returns status of jobs either 
running or idle. Figure 7 provides the resource utilization rate for the different 
size of resource pool.  The time to reach close to maximum resource 
utilization rate (1.0 in Figure 7) is increased as the size of resource pool is 
increased.  The job queue is scanned every minute, which is also 
configurable based on the characteristics of jobs to be submitted. The interval 
of the scanning caused the stairway pattern. 

 

 

Figure 7 The resource utilization rate for the different size of resource pool 



4 Developing a Gadget Container for Gateways 

As discussed in the introduction, component-based portal systems have been 
a popular architecture for many years but are being challenged by open 
gadget APIs provided by iGoogle, Netvibes, and other popular “start pages”.  
These public containers simplify the process for developers to add new 
components, perhaps for very specialized groups of users. Integration may be 
very loose (essentially the third party content is delivered as an HTML IFrame), 
requiring no modification to the gadget’s source site except perhaps sizing.  
Integration between the component and the container may also be more tightly 
coupled through the use of JavaScript libraries supplied by the container 
provider.   

Social networking portals have also been a major trend in Web 2.0 systems. 
Google has attempted to merge gadget-container systems and social 
networking in the Open Social consortium (which includes most prominent 
U.S.-based social networking sites except Facebook).  Open Social extends 
Google’s gadget JavaScript API to enable the gadgets to interact with backend 
social network database information.  Gadget developers can use this 
information to make asynchronously collaborative applications, such as shared 
calendars.  Open Social compatible gadgets can run without modification in 
any Open Social compatible container.  

Although one may want to use one of the prominent Open Social containers to 
build a science gateway such as QuakeSim, we also believe many of these 
gateways will want to provide their own containers.  There are several 
reasons for this: the security model for the public containers may not be 
adequate for sharing scientific data; users may want to cleanly separate 
research work social networks from more casual networks of friends and family; 
the existing containers may need to be extended to support more container 
services (such as custom login and layout modules); and we may wish to 
experiment with advanced, unsupported capabilities such as real-time 
collaboration.  By adopting the Open Social standard, we can develop gadget 
components that can be moved back and forth between (for example), iGoogle 
and a gadget-based QuakeSim.  Shindig, and Apache incubator project, is 
nominally the Open Social container reference implementation, but its code 
base is very unstable, and it in any case is primarily designed to test the 
evolving API rather than serve as a production portal. Given the situation, we 
have decided to investigate and implement an open architecture version of a 
generic gadget container. 

Our prototype gadget container is a system by which developers can download, 
build, and run their own layout containers. The current prototype consists of 
user authentication system, user administration system, and gadget 
management system. The user authentication system allows the system to 
accept new user registration and login of existing users. The user 



administration system provides a way for administrators to manage all user 
accounts and profiles.  The gadget management system allows users to 
manage gadgets in convenient way. 

4.1 Architecture 

As we have discussed above, portals are divided into containers and gadgets. 
Containers handle universal chores such as login, layout, and user 
management.  Gadgets implement more specific functionality.  In Open 
Social, there are actually two containers for each gadget: the display container 
(such as iGoogle) and the social container (such as Orkut, LinkedIn or 
MySpace).  The former controls the display and layout of the gadgets, while 
the latter controls the social context that the gadget operates in (that is, it has 
access the gadget user’s network and groups and can provide information 
about the network members’ and groups’ states).  This architecture is 
depicted in Figure 8.  



Although it is possible to run these two containers on the same server, this is 
not required. To simplify the interactions between the two separate containers, 
and to simplify account management generally, we include OpenID support 
[33].  OpenID allows portals and similar sites to establish trust in the 
authentication process of another portal. Thus a user can use Portal A to log 
into Portal B if he/she has an account on both and binds the relationship.  
OpenID is also useful for transmitting user profile information (such as the 
user’s full name, email address, and contact information).  We use OpenID’s 
Simple Registration Extensions format [34] to do this.  

 

Figure 8 Gadget container architecture.    Arrows represent HTTP‐based communications. The 

curved line represents a JDBC connection.   

When a new user wants to create a new account, he/she can do it in usual way 
by providing username, password and additional personal information. In 
addition, the user can bind the account to OpenID. Binding only needs to be 
done once and after that the user can log in to the portal using her/his 
associated OpenID. When a user logs in using OpenID, he/she first is directed 
to OpenID provider’s side. If the user has not logged in, OpenID provider 
prompts the user for login. After that, the user is asked to accept or deny 
request from the third-party application (in our case, the third-party application 
is our system). The user will be redirected to his/her main gadget container 
page after successful OpenID authentication and authorization.  

In our initial JavaScript-based layout manager implementation, gadgets are 
organized into tab panels. Each tab panel is divided into three columns, each 



of which may contain a variable number of gadgets that are chosen by the user. 
Gadgets can be reorganized using drag and drop. Users can add and remove 
both gadgets and tab panels. Content of a gadget is embedded in an HTML 
IFrame element that points to the address (URL) of a rendered gadget from 
iGoogle server.  

4.2 Other Features 

We summarize other design features below. 

 To make the system open, we use REST-style web services. Any client 
program that conforms to our calling interface can interface with our 
gadget management server.  

 To make the server side program independent of underlying relational 
database, object-relational mapping (ORM) techniques are used to 
convert data between object-oriented programming languages and 
incompatible type systems of relational database. Hibernate is used in 
our system.  

 The format of messages transmitted between client and server is Java 
Script Object Notation (JSON). We chose JSON over XML because of 
JSON’s simplicity and relative compactness.  

 On the client side, Asynchronous JavaScript and XML technique is used 
to provide an interactive interface. After comparing different JavaScript 
libraries, ExtJS was chosen. Currently, the tab layout is supported. In 
the future, desktop-like layout and tree layout may be implemented.  

5 Summary and Conclusion 

Previous approaches to building science gateways, such as portlets and Grid 
services, are being challenged by Web 2.0 and Cloud computing.  This paper 
reviews some of our efforts within the QuakeSim project to evaluate these 
approaches and their use with the QuakeSim portal. Specific challenges that 
we have addressed include investigating techniques for building more 
interactive user interface, integrating high-end supercomputing capabilities for 
mass job management, and adopting new techniques for managing user 
interface components based on Open Social gadgets. In particular, we 
evaluated strategies for optimizing user interactivity with GPS data analysis 
results.  We also described and evaluated an architectural solution for 
managing large-scale job submissions encountered in QuakeSim and other 
gateways.  Finally, an architectural approach and early implementation details 
for an Open Social compatible version of the QuakeSim portal (or any gateway) 
were also presented.  

Several interesting problems remain.  The Swarm service and the prototype 
gadget container are relatively new projects.  Although Swarm is being tested 
with realistic submission scenarios, scaling and optimizing the system to 



millions of jobs or more will introduce new technical problems.  Also, more 
interestingly, we find that some large job clusters (such as the RDAHMM 
evaluations of GPS data) can contain jobs ranging from a few seconds 
execution time to much longer, parallelizable computations, thus providing an 
excellent experiment for merge Cloud Computing approaches (such as 
Amazon’s EC2) with Grid computing.   

The Open Social prototype container system is also in early stages of 
development.  As our next step we plan to evaluate its suitability for building a 
fully functional version of QuakeSim, and by extension many other gateways. 
We also plan to integrate the Open Authorization (OAuth) service and clients.  
This is a compatible feature to OpenID which can be used to determine if the 
identified user has the authorization to reach particular capabilities.  

This work is supported by NASA through the Advanced Information Systems 
Technology (AIST) program (Andrea Donnellan, PI) and ACCESS program 
(Yehuda Bock, PI). 
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