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Abstract  10 

Accelerated loss of ice from Greenland and Antarctica has been observed in recent 11 

decades. The melting of polar ice sheets and mountain glaciers has a considerable influence on 12 

sea level rise in a changing climate. Ice thickness is a key factor in making predictions about the 13 

future of massive ice reservoirs. The ice thickness can be estimated by calculating the exact 14 

location of the ice surface and hidden bedrock beneath the ice in radar imagery. Identifying ice 15 

surface and bedrock locations is typically performed manually which is a very time consuming 16 

procedure. Here we propose an approach which automatically detects ice surface and bedrock 17 

boundaries using distance regularized level set evolution. In this approach the complex topology 18 

of ice and bedrock boundary layers can be detected simultaneously by evolving an initial curve 19 

in radar imagery. Using a distance regularized term, the regularity of the level set function is 20 

intrinsically maintained that solves the reinitialization issues arising from conventional level set 21 

approaches. The results are evaluated on a large dataset of airborne radar imagery collected 22 

during IceBridge mission over Antarctica and Greenland and show promising results in respect 23 

to hand-labeled ground truth.          24 
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1. Introduction 25 

In recent years global warming has caused serious damages to our environment. 26 

Accelerated loss of ice from Greenland and Antarctica has been observed in recent 27 

decades. The melting of polar ice sheets and mountain glaciers has a considerable 28 

influence on sea level rise and altering ocean currents, potentially leading to the 29 

flooding of the coastal regions and putting millions of people around the world at risk. 30 

Therefore precise calculation of ice thickness is very important for sea level rise and 31 

flood monitoring.  Moreover the shape of bedrock hidden beneath the thick ice sheets is 32 

a key factor in predicting the ice motion and the future locations of massive ice 33 

reservoirs and their contribution to sea level rise in changing climates. The hidden 34 

terrain beneath the thick ice has fascinated researchers for many years. Radar sensor 35 

is the only instrument that can penetrate through ice and give information about the 36 

hidden bedrock beneath layers of ice. The multichannel coherent Radar depth sounder 37 

was used during IceBridge mission (Allen et al., 2012) to provide important information 38 

about polar ice thickness and its changes during time. Ice thickness can be determined 39 

by distinguishing layers of different dielectric constants such as air, ice, and rock in 40 

radar echograms. Figure 1 shows a sample image produced by radar echogram.  The 41 

horizontal axis is along flight path and the vertical access represents depth. The dark 42 

line on the top of the image is the boundary between air and ice while the more irregular 43 

lower boundary represents the bedrock which is the boundary between ice and the 44 

terrain. The bedrock hidden beneath the thick ice sheets can take any shape from 45 

smooth to mountainous (figure 1). 46 
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                      47 

Figure 1: Ice sheet and bedrock depicted in radar echogram gathered by the Multichannel Coherent 48 

Radar Depth Sounder 49 

 50 

 The large variability of bedrocks shape along with speckle noise inherits from the 51 

coherent nature of SAR images, make the identification and interpretation of bedrocks 52 

quite difficult. Usually human experts mark ice sheet layer and bedrock by hand for 53 

further processing. Manual layer identification is very time consuming and is not 54 

practical for regular, long-term ice-sheet monitoring. The development of automated 55 

techniques is thus fundamental for proper data management.  56 

This paper proposes a novel level set approach to automatically identify ice layer 57 

and bedrock in a large dataset of radar imagery. In this approach the image will be 58 

segmented by an initial curve into two parts: inside the curve (negative interior) and 59 

outside the curve (positive exterior). At the next step, each point on the curve will move 60 

at variable speeds depending on their distance from the center of the curve. Nearer 61 

points move faster while further points move at lower speeds. In the case of having a 62 

feature in the image, shrinking (expanding) curve will stop at the boundary of the shape. 63 

This process will continue until all boundaries are detected. In conventional level set 64 

formulation, the level set function typically develops irregularities during its evolution 65 

Bedrock 

Ice sheet 
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and needs re-initialization to periodically replace the degraded level-set function.  Here 66 

we used a variational level set function in which the regularity of level set function is 67 

maintained intrinsically. 68 

After this introduction, the related works will be discussed in section 2. The 69 

details of the proposed method will be discussed in section 3. Experimental results will 70 

be discussed in section 4. Finally conclusions are drawn in section 5. 71 

2. Related works 72 

Several semi-automated and automated methods have been introduced in the 73 

literature for layer finding and ice thickness in radar images (Crandall et al., 2012; 74 

Fahnestock et al., 2001; Ferro and Bruzzone, 2011; Freeman et al., 2010; Frigui et al., 75 

1900; Gifford et al., 2010; Ilisei et al., 2012; Karlsson et al., 2013; Lee et al., 2014; 76 

Mitchell et al., 2013a; Mitchell et al., 2013b; Sime et al., 2011). Freeman et al. (Freeman 77 

et al., 2010) find near surface ice layers in images form the shallow subsurface radar on 78 

NASA’s Mars reconnaissance Orbiter (SHARAD). First the layers were transformed to 79 

horizontal layers and then several filtering and thresholding techniques were applied to 80 

enhance the image and discard unclear layers. Finally the layers were transformed back 81 

to  image space. Our algorithm is quite distinct from this method in a sense that it does 82 

not need any intermediate thresholding which might be different from one image to 83 

another. Ferro & Bruzzone (Ferro and Bruzzone, 2011) proposed an algorithm to extract 84 

the deepest scattering area visible in radargrams of SHARAD mission acquired on the 85 

north polar Layered Deposits of Mars. Their algorithm is based on the statistical 86 

properties of subsurface targets and finding a suitable fitting model. This method is 87 
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unable to find exact layers of ice sheet and only find an approximate location of different 88 

sub-regions merely based on the statistical analysis of the signal.  89 

Several works in the literature use graphical models to detect land mine (Frigui et 90 

al., 1900) or ice layers (Crandall et al., 2012) (Lee et al., 2014) in radar echograms. 91 

Frigui et al (Frigui et al., 1900) proposed a system for land mine detection using ground-92 

penetrating radar. Their proposed system includes a hidden Markov model based 93 

detector, a corrective training component, and an incremental update of the background 94 

model. Crandall et al (Crandall et al., 2012) used probabilistic graphical models for 95 

detecting ice layer boundary in echogram images. Their model incorporates several 96 

types of evidence and constraints including that layer boundaries should lie along areas 97 

of high image contrast and that layer boundaries should be continuous and not 98 

intersect. The extension of this work was presented in (Lee et al., 2014) where they 99 

used Markov-Chain Monte Carlo to sample from the joint distribution over all possible 100 

layers conditioned on an image. Gibbs sampling instead of dynamic programming 101 

based solver was used for performing inference. The problem with using graphical 102 

models is that it needs a lot of training samples (around half of the actual dataset) which 103 

are ground-truth images labeled manually by human. Given the fact that manual ice 104 

layer detection is a very time consuming and expensive task, the last three methods are 105 

not practical for large dataset.  106 

 In another work, Gifford et al (Gifford et al., 2010) compared the performance of 107 

two methods, edge based and active contour, for automating the task of estimating 108 

polar ice and bedrock layers from airborne radar data acquired over Greenland and 109 

Antarctica. They showed that edge-based approach offers faster processing but suffers 110 
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from lack of continuity and smoothness aspects that active contour provides.  In active 111 

contour approach, the contour’s shape is adaptively modified and evaluated to minimize 112 

cost or energy in the image (Chan and Vese, 2001; Kass et al., 1988). The main 113 

disadvantage of the active contour model is the incapability of maintaining the topology 114 

of evolving curve. This difficulty does not arise in the level set model as it embeds the 115 

evolving curve into a higher dimensional surface. Mitchell et al (Mitchell et al., 2013b) 116 

used level set technique for estimating bedrock and surface layers. However for each 117 

single image the user needs to re-initialize the curve manually and as a result the 118 

method is quite slow and was applied only to a small dataset. In this paper, the 119 

regularity of level set is intrinsically maintained using a distance regularization term. 120 

Therefore it does not need any manual re-initialization and was automatically applied on 121 

a large dataset.  122 

3. Methodology 123 

Here we propose to use level sets technique to precisely detect ice layer and 124 

bedrock boundary. The level set method (LSM) is essentially a successor to the active 125 

contour method. Active contour method (ACM), also known as Snake Model, was first 126 

introduced by Kass et al (Kass et al., 1988). The ACM is designed to detect interfaces 127 

and boundaries  by a set of parametrized curves (contours) that march successively 128 

toward the desired object until the desired interfaces are captured. We present the 129 

parametrized curves as 130 

 ( , ) ( ( , ), ( , )) , [0,1], )[0,C s t x s t y s t s t     (1) 131 
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where s is the parameter of the curve length and t is the temporal variable. The idea is 132 

that the curve ( , )C s t  approaches to the desired object as time increases until it captures 133 

the desired interface. The motion of the curves is due to the influence of a vector field 134 

created based on properties of the desired feature in image, so that it can eventually 135 

lead the curve to the boundaries of the desired object. 136 

Generally speaking, the curve ( , )C s t  moves and eventually captures the 137 

interface of the desired object according to the following differential equation  138 

 
C

FN
t





  (2) 139 

where F  is the velocity function for the moving curve C and N determines the direction 140 

of the motion. Here N is the normal vector to the curve C . 141 

The ACM is an efficient tool in image and video segmentation, but it suffers from certain 142 

serious issues. As mentioned before, the main disadvantage of the ACM is that it is 143 

incapable to maintain the topology of the evolving curve; therefore, it can introduce 144 

misleading complexities in the process. To overcome the disadvantages that the snakes 145 

model presents, the level set method (LSM) was proposed by Osher and Sethian 146 

(Osher and Sethian, 1988). Rather than following the interface itself as in ACM, the 147 

level set method takes the original curve and builds it into a surface. In other words, the 148 

LSM takes the problem to one degree higher in spatial dimension ( Figure 2) and 149 

considers the curve ( , )C s t  as the zero-level of a surface ( , , )z x y t at any given time t. 150 

The function   is called the level set function (LSF). 151 
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 152 

Figure 2: Level Set Method 153 

 154 

Suppose the curve ( , )C s t  is the interface of an open region 2

t  . We embed the 155 

curve ( , )C s t   in the surface ( , , )z x y t in a way that the curve ( , )C s t  will be the zero 156 

level set while LSF, , takes negative values inside C  and positive values outside of it. 157 

That is  158 

  ,  0  for     ,  tx t x  Ω   (3) 159 

and 160 

 
 

 

, 0       

,  0       

t

t

x t for x

x t for x





 

 

Ω ,

Ω .
  (4) 161 

In this setting, the LSF,  ,  is the solution of the following dynamical system 162 

 ( [0, ], )x t
t






 
 

 
   (5) 163 

with a typical initial condition. Conventionally in image segmentation approaches the 164 

LSF functional  is defined as the sum of the edge force and the area force: 165 

 
edge area    (6) 166 
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where 167 

    edge g dx    


    (7) 168 

    area gH dx  


    (8) 169 

with ,   a real constant and 0  . The functions   and H  are the Dirac and 170 

Heaviside functions respectively. The function g is the edge indicator on  , area of the 171 

image, which is defined by 172 

 
2

1

1
g

G I


  

  (9) 173 

where I  is the image intensity and G  is a Gaussian Kernel with a standard deviation 174 

 . 175 

The edge term, 
edge

 computes the line integral along the zero level contour of  ; 176 

that is, 
1

0
( ( )) | '( ) |g C s C s ds , where the curve ( ) :[0,1]C C s   is the zero-level contour 177 

and s  is the curve length.  This term will be minimized when C  is positioned on the 178 

boundary of the desired object. The area term, area , is basically calculated as a 179 

weighted area of the region inside the zero level contour. It accelerates the motion of 180 

the zero-level contours toward the desired object. 181 

Therefore, to minimize the energy functional , it is necessary to solve the 182 

following PDE system: 183 

 

0

( )div ( ) [0, )
| |

( ,0) (

( )

)

,x t
t

g g

x x


   










 
   

 






   (10) 184 
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For this system we consider the Neumann boundary condition on  , which 185 

signifies that there is no external force outside the image area. To carry out a numerical 186 

process to solve this PDE system, the spatial derivatives are discretized using the 187 

upwind scheme. The use of the central difference scheme will result in instability in the 188 

numerical procedure. The numerical procedure also involves the assumption that189 

| | 1  . We initialize the procedure with a function that satisfies this property, but the 190 

numerical scheme will not pass on this property; consequently at each step an extra 191 

care, known as re-initialization, must be taken to avoid the error accumulation. The 192 

reinitialization procedure involves solving the following PDE system for   in each step 193 

 ( )(1 | |)sign
t


 


  


  (11) 194 

This severely slows down the computation. To overcome this difficulty we use the 195 

distance regularization method proposed in  (Li et al., 2005) (Li et al., 2010). In DSLR 196 

method, the LSF functional   is defined as  197 

 
edge area p     (12) 198 

where 
p
 represents the distance regularization term  defined by 199 

  
Ω

| |p p dx     (13) 200 

with a potential function p  and a constant 0  . As suggested in (Li et al., 2010) , we 201 

use a double-well function for the potential function p  defined by 202 

 
2

2

(1 cos( )2
( )

( 1)

) / 4

1/ 2

1s s
p s

s s

 








 


  (14) 203 
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We have 204 

 d v( )i
p

D 






   (15) 205 

where the diffusion coefficient  ( )D D   is given by 206 

   207 

 
' (| |

.
|

(
)

)
|

D
p 








  (16) 208 

We note that p  has two minimum points at 0s   and 1s  . It is also twice 209 

differentiable with the following properties 210 

 
0

'( ) '( ) '( )
| | 1  for 0 , and lim lim 1.

s s

p s p s p s
s

s s s 
      (17) 211 

Given the above properties, one can easily see that 212 

 
' (| |)

| | .
| |

p 
 







  (18) 213 

Therefore the diffusion coefficient in (15) will be bounded. Now the new energy 214 

functional  can be minimized by solving the following gradient flow: 215 

 

0

d( )div ( ) ) [0, )
| |

(

iv

,0

(

) )

( ,

(

)g g

x

D

x

x t
t


      









 
    













  (19) 216 

Thanks to the distance regularization term, the central difference scheme can be 217 

used to discretize spatial derivatives, which leads to a stable numerical procedure 218 

without need of re-initialization (Li et al., 2010).  219 
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It also must be noted that, in practice, the functions   and H  are approximated 220 

by the smooth functions   and H  defined by   (see (Osher and Fedkiw, 2006) and 221 

(Zhao et al., 1996))  222 

  

1
1 cos ,

2

0 ;

x
x

x

x






 



   
    

    
 

  (20) 223 

and 224 

  

1 1
1 sin ,

2

1 | | ,

0 | | ;

x x
x

H x
x

x






  





   
     

   
 


  

  (21) 225 

for 0  .  is often considered to be 3/2. 226 

As the boundary condition, we consider the Neumann boundary conditions. For the 227 

initial condition, we will consider a simple step function defined by 228 

 
0 0

0

0 0

,

;/

c x

c x


 
 

 
  (22) 229 

where 0 0c   is a constant, and 0  is a region inside the image region  . 230 

4. Experimental results 231 

We tested our ice layer identification approach on publicly available radar images 232 

from 2009 NASA Operation Ice Bridge program. The images were collected with the 233 

airborne Multichannel Coherent Radar Depth Sounder system described in (Allen et al., 234 

2012). The images have a resolution of 900 pixels in horizontal direction, which covers 235 
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around 30km on ground, and 700 pixels in vertical direction, which corresponds to 0 to 236 

4km of ice thickness. For these images there are some ground truth labels that we 237 

compared our ice layer identification approach with them. The ground-truth images have 238 

been produced by human annotators and some of them are quite noisy and inaccurate 239 

and contain only one layer. We chose the images that have both ice and bedrock layers 240 

and tested our method on total of 323 images. Since our method is fully automatic we 241 

do not need any training dataset and our method is not affected by inaccurate ground-242 

truth. Moreover annotating data by human is quite time consuming and because our 243 

method does not need any training and is independent of ground-truthing, it is quite fast.  244 

We used the same iteration number of 800 for all of the images. 245 

Figure 3-6 show the results of our approach with respect to the ground-truth. 246 

Figure 3a shows the initial curve. This initial curve was drawn automatically; hence 247 

there is no need for the user input in any step of the procedure. The entire process is 248 

completely automatic. Figure 3b-3e shows the results after iteration 200, 400, 600, and 249 

800respectively. As it can be seen in Figure 3b, after 200 iterations the ice layer is 250 

approximately detected but the bedrock is still not detected. After 400 iterations, part of 251 

the bedrock is detected, but after 800 iterations both the ice (top layer) and bedrock 252 

layers are detected perfectly. Figure 3f shows the ground-truth which is the result of 253 

labeling the layers by human. Comparing Figure 3e, the result of the proposed 254 

approach, with Figure 3f, the ground-truth, we notice that our result is very close to the 255 

ground-truth and is even more accurate in some part. The automated approach 256 

proposed in this paper, in addition to being fast and cost effective, increases accuracy in 257 
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regard to the manual approach. The reason is that in manual procedure experts 258 

become tired and careless due to the tediousness of the task.  259 

   260 
                  (a)                                                         (b) 261 

   262 
                  (c)                                                         (d) 263 

   264 
                  (e)                                                         (f) 265 

 266 
Figure 3: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 267 

and ice layer after 200,400,600,800, correspondingly, (f) ground-truth image   268 
 269 

Figure 4 shows another example; here the bedrock is rougher with more 270 

fluctuation. The same initial curve at previous example was utilized in Figure 4a. After 271 

400 iterations (Figure 4c), the approximate shape of bedrock and ice layers is detected.  272 
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After 600 iterations (Figure 4d) the solution is converged and exact shape of both layers 273 

are detected.  Here we continued the iteration to 800 to have the same conditions for all 274 

images. As it can be seen in Figure 4e the perfect shapes of bedrock and ice layers are 275 

maintained and extra iterations will not make the situation worse. Comparing our results 276 

(Figure 4e) with the ground-truth (Figure 4f), we find our results are more smooth and 277 

accurate than ground-truth. 278 

   279 
                  (a)                                                         (b) 280 

   281 
                  (c)                                                         (d) 282 

   283 
                  (e)                                                         (f) 284 

 285 
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Figure 4: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 286 
and ice layer after 200,400,600,800, correspondingly, (f) ground-truth image 287 

 288 
Figure 5 demonstrates another example for ice and bedrock layers identification. 289 

Here the bedrock is smoother but the image contains more noise especially in the 290 

middle layer between ice and bedrock. Here again with the same initial curve and the 291 

same number of iterations we got very accurate results comparing to the ground-truth. 292 

   293 
                  (a)                                                         (b) 294 

   295 
                  (c)                                                         (d) 296 

   297 
                  (e)                                                         (f) 298 

Figure 5: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 299 
and ice layer after 200,400,500,800, correspondingly, (f) ground-truth image 300 

 301 
 302 
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 303 
Figure 6 is yet another example with more complicated shape of bedrock and 304 

with high level of noise in the entire image. Here it takes the entire 800 iterations for the 305 

level set solution to converge but it shows a very satisfactory results comparing to the 306 

ground-truth. 307 

   308 
                  (a)                                                         (b) 309 

   310 
                  (c)                                                         (d) 311 

   312 
                  (e)                                                         (f) 313 

 314 
Figure 6: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 315 

and ice layer after 200,400,600,800, correspondingly, (f) ground-truth image 316 
 317 
 318 
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Figure 7 shows some of the representative results for the ice and bedrock layer 319 

identification for various shapes of bedrock from a very smooth bedrock to a rough and 320 

very oscillating bedrock with different levels of noise. In all of the examples, the results 321 

with the automatic level-set approach (the left column) is as accurate as ground-truth 322 

(the right column).  However in the last two rows (f1 and g1) due to high level of 323 

fluctuations in the bedrock, still after 800 iterations it could not detect all parts of the 324 

bedrock. However the results are very close to ground-truth and more iteration will 325 

create more accurate results. In this study we used the constant iterations of 800 for all 326 

of the images in the dataset. 327 

 328 

   329 
                  (a1)                                                         (a2) 330 

   331 
                  (b1)                                                         (b2) 332 
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   333 
                  (c1)                                                         (c2) 334 

   335 
                  (d1)                                                         (d2) 336 

 337 

   338 
                  (e1)                                                         (e2) 339 

 340 
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   341 
                  (f1)                                                         (f2) 342 

 343 

   344 
                  (g1)                                                         (g2) 345 
 346 

Figure7: Bedrock and ice layer detection by proposed method, left column: the result of the proposed 347 
level set approach, Right column: ground-truth 348 

5. Evaluation 349 

To evaluate the performance of our proposed method first we need to set up 350 

some benchmarks. For any particular piece of data that we are evaluating there are four 351 

states. Whether it is correctly belonging to a class or not belonging to a class. This 352 

information is normally displayed in a confusion matrix (Table 1).  353 

 354 

 355 

 356 
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Table 1: Confusion Matrix 357 
 358 

 

Actual Class 

(Observation) 

 

Predicted Class 

(Expectation) 

 

TP 

(True Positive) 

Correct result 

FP 

(False Positive) 

Unexpected 

result 

FN 

(False Negative) 

Missing result 

TN 

(True Negative) 

Correct absence 

of result 

 359 
 360 

In the confusion matrix, TP is true positive or correct result, FP is false positive or 361 

unexpected result, FN is false negative or missing results, and TN is true negative or 362 

correct absence of results. From the confusion matrix recall (R) and precision (P) are 363 

calculated as follow: 364 

  
TP

R
TP FN




  (23) 365 

 
TP

P
TP FP




  (24) 366 

Precision measures the exactness of a classifier while recall measures the 367 

completeness or sensitivity of a classifier. Precision and recall can be combined to 368 

produce a single metric known as F-measure, which is the weighted harmonic mean of 369 

precision and recall. The F-measure defined as:  370 
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captures the precision and recall tradeoff. The F-measure is valued between 0 and 1, 372 

where larger values are more desirable. In this paper we used balanced F-measure, i.e. 373 

with 𝛽 = 1 . 374 

The assumption is that human labeled images (ground-truth) contain perfect 375 

results and then the performance of our method was evaluated with respect to ground-376 

truth. We calculated the precision, recall and F-measure for 323 images. Figure 8 377 

shows  F-measure for all of the images. In our dataset around 65% of the images have 378 

invisible or faint bedrock layers.  For the images that bedrock is not completely visible in 379 

the image (Figure 9) our approach is not able to detect the invisible part accurately. For 380 

these images it is better to stop the iteration early otherwise its error will be 381 

accumulated. However to avoid human interference we kept the iteration of 800 for all of 382 

the images and reached 75% accuracy for the entire dataset. For the images that have 383 

visible bedrock layers (1/3 of dataset), we reached the average accuracy of 96% ( Table 384 

2).  Our algorithm is very fast, taking an average of 30 second to process each image 385 

on a 2.7 GHz machine. Moreover it does not need any training phase with human 386 

labeled images which speed up the entire process significantly. Usually it takes up to 45 387 

minutes per file to manually label the image (Gifford et al., 2010).    388 

 389 
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 390 

Figure 8: F-measure for 323 images 391 
 392 
 393 
 394 
 395 

Table 2: Average F-measure of our approach for the entire dataset and also for the images with visible 396 
bedrocks 397 

 F-measure 

Entire dataset (visible and 

invisible bedrock layers) 75% 

Images with visible bedrock 

96% 

 398 
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      401 
                                 (b)                                                                     (c) 402 
Figure 9: our approach is not able to detect the invsible parts of bedrock, a) original image, b) the 403 

icelayer and bedrock detected by our approach, c) ground-truth 404 

6. Conclusion 405 

We presented an automatic approach to estimate bedrock and ice layers in 406 

multichannel coherent radar imagery. In this approach the complex topology of ice and 407 

bedrock boundary layers were detected by evolving an initial curve in radar imagery. 408 

The results were evaluated on a large dataset of airborne radar imagery collected 409 

during IceBridge mission over Antarctica and Greenland and show promising results in 410 

respect to hand-labeled ground truth. We reached the high accuracy of 75% for the 411 

entire dataset using a fully automatic technique. Some images present faint or invisible 412 

bedrock layers and are nearly impossible to automatically detect them with 100% 413 

accuracy. For those images it is better to first separate them from the images that have 414 

visible bedrock layer. In future we are planning to extend this work by improving the 415 

quality of the image in invisible areas in bedrock prior to applying level set algorithm.  416 
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