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Goals 

 
Deep learning methods have led to significant progress in large-scale applications (e.g., speech, language, vision) 
and show promise in  different application domains. As deep learning and its uti l ization continues to matures, 
so does the infrastructure and software needed to support it. Various frameworks have been developed in recent 
years to facilitate both implementation and training of deep learning networks. As deep learning has also evolved to 
scale across multiple machines, there’s a growing need for frameworks that can provide full parallel support. While 
deep learning frameworks restricted to running on a single machine have been studied and compared, frameworks 
which support parallel deep learning at scale are relatively less well-known and studied. To bridge the gap, we survey, 
summarize, and compare frameworks which currently support distributed execution, including but not limited to 
Tensorflow, CNTK, Deeplearning4j, MXNet, H2O, CaffeOnSpark, Theano, and Torch.  

 

 

Framework Comparison 
 

Tensorflow, CNTK, Deeplearning4j, MXNet, H2O, CaffeOnSpark, Torch, and Theano were deep learning frameworks, 
chosen for their traction among other factors, for detailed study. They were compared according to a consistent set of 
characteristics, ranging from parallelism at the hardware and application level, to other information such as release 
date, core language, API, computation and synchronization models, programming paradigm, fault tolerance, and 
visualization. These findings have been summarized in Table 1.  

 

The relevance of release date, core language, a n d  user-facing APIs are self-explanatory. Synchronization model 
specifies the nature of data consistency through execution, i.e. whether updates are synchronous or asynchronous. 
In the context of optimization kernels like stochastic gradient descent (SGD), synchronous execution has better 
convergence guarantees by maintaining consistency or near-consistency with sequential execution. Asynchronous 
SGD can exploit more parallelism and train faster, but with less guarantees of convergence speed. Frameworks 
like Tensorflow and MXNet leave this tradeoff as a choice to the user. 

 

The computation model tries to categorize the nature of across-machine execution according to well-known 
paradigms. There are three possible levels of parallelism at the hardware level: cores within a CPU/GPU device, 
across multiple de- vices (usually GPUs for deep learning), or across machines. Most lower-level library kernels (e.g. 
for linear algebra) are designed to use multiple cores of a device by default, so this is not a major point of comparison.  
At this point, all the frameworks also support parallelism across multiple GPUs. Theano and Torch do not yet support 
multi-machine parallelism. 

 

Data and model parallelism are the two prevalent classes for parallelism in training deep learning networks at 
the distributed level. In data parallelism, copies of the model, or parameters, are each trained on its own subset 
of the training data, while updating the same global model. In model parallelism, the model itself is partitioned and 
trained in parallel. 

 
Deep learning models can be categorized into three major types: deep-belief networks (DBNs), convolutional neural 
networks (CNNs), and recurrent neural networks (RNNs). CNNs and RNNs were briefly described in the 
introduction. DBNs are less domain-specific compared to CNNs and RNNs, and could be considered a precursor to 
CNNs, but are fundamental nonetheless. 
 

Programming paradigm falls into the categories of imperative, declarative, or a mix of both. Conventionally, 
imperative programming specifies how a computation is done, whereas declarative programming specifies what 

needs to be done. There is plenty of gray area, but the distinction made here is based on whether the API exposes 
the user to computation details that require some understanding of the inner math of neural networks (imperative), 
or whether the abstraction is yet higher (declarative). 

 

Fault tolerance is included for two reasons. Distributed execution tends to be more failure prone, especially at scale. 



Furthermore, any failures (not necessarily limited to distributed execution) that interrupt training part-way can be 
very costly, especially if all the progress made on the model is simply lost as a result. 

 

Finally, UI/Visualization is a feature supported to varying degrees across the frameworks studied. The ability to 
monitor the progress of training and the internal state of networks over time could be useful for debugging or 
hyperparameter tuning, and poses an interesting direction of research. Tensorflow and Deeplearning4j both support 
this kind of visualization. 

Table 1:  Deep Learning Open-source Frameworks 
 

Platform Tensorflow CNTK Deeplearning4j MXNet H2O CaffeOnSpark Theano Torch 

Release Date 2016 2016 2015 2015 2014 2016 2010 
2011 (deep 

learning) 

Computation Model Parameter server MPI 
Iterative 

MapReduce 
Parameter 

server 
Distributed 

fork-join 
MPI Allreduce Single node Single node 

Parallelism Data & Model Data Data Data & Model Data Data Data & Model Data & Model 

Synchronization 
Mechanism 

Sync or async Sync Sync Sync or async Async Sync Async Sync 

Deep Learning Models DBN, CNN, RNN 
DBN,CNN, 

RNN 
DBN, CNN, RNN DBN, CNN, RNN DBN DBN, CNN, RNN DBN,CNN, RNN DBN,CNN, RNN 

Core Language C++ C++ Java C++ Java C++, Scala C++ C 

API C++, Python NDL Java, Scala 

C++, Python, R, 
Scala, Matlab, 
Javascript, Go, 

Julia 

Java, R, 
Python, 
Scala, 

Javascript, 
web-UI 

Python, Matlab, 
Scala 

Python Lua 

Programming Paradigm Imperative Imperative Declarative Both Declarative Declarative Imperative Imperative 

Fault Tolerance 
Checkpoint-and- 

recovery 
Checkpoint- 
and-resume 

Checkpoint- 
and-resume 

Checkpoint- 
and-resume 

N/A N/A 
Checkpoint- and-

resume 
Checkpoint- and-

resume 

Visualization 
Graph (in-teractive), 
training monitoring 

Graph 
(static) 

Training 
monitoring 

N/A N/A 
Summary 
Statistics 

Graph 
(static) 

Plots 

 

Future Work 

 

Scaling Deep Learning 
 

Distributed frameworks operate under the basic premise that easily scaling up to more machines is important for scaling 
up to bigger problems. At heart the goal is to utilize parallelism effectively. While execution on more machines can help, 
there are also other important factors, namely the underlying hardware and application characteristics, which can 
escape the abstraction of a general-purpose framework. One example of this is the difference in Google’s and 
Stanford’s approaches in training a large-model convolutional auto-encoder network. Whereas Google’s seminal billion-
parameter model was trained using thousands of machines for several days, Stanford demonstrated training the 11 
billion-parameter version of a similar model using a tiny fraction of the hardware in 3 days [1].  

 

They used a HPC cluster of 16 machines, with 4 NVIDIA GPUs each. Communication was via MPI on top of fast 
Infiniband interconnects. The results showed that the application characteristics, namely a convolutional neural network 
(with auto-encoding) with 200x200 images as input, limited the amount of model parallelism that could be extracted 
from mapping partitions of the images to different GPUs. Therefore, it seems that a small cluster of 16 machines, or 64 
GPUs, was optimal enough. Taking the hardware concept further, NVIDIA now has a state-of-the-art server (DGX-1) 
consisting of 8 Tesla P100 GPUs (over 28,000 CUDA cores), optimized for deep learning [2]. The communication 
network features a direct-connect topology for inter-GPU communication.  It is certainly possible that such specialized 
hardware could sufficiently handle certain deep learning problems, at scale, without need of a second machine.  

 

On the application side, it also is not necessarily the case that greater model size correlates with higher model accuracy. 
In fact, a fairly state-of-the-art convolutional neural network like GoogleNet [30] achieves similar accuracy to other 
networks that use far more parameters. So while software frameworks for deep learning provide helpful abstractions 
both for constructing networks and running them at scale, necessary attention must also be paid to underlying hardware 



and application-specific characteristics to in order to effectively utilize parallelism. 

 

Tensorflow was released by Google Research as open source in November 2015, and included distributed support in 
2016. The user-facing APIs are C++ and Python. Programming with Tensorflow leans more towards the imperative 
approach. While plenty of abstraction power is expressed in its library, the user will probably also be working with 
computational primitive wrappers such as matrix operations, element-wise math operators, and looping control. In 
other words, the user is exposed to some of the internal workings of deep learning networks. Tensorflow treats 
networks as a directed graph of nodes encapsulating dataflow computation and required dependencies [4]. Each 
node, or computation, gets mapped to devices (CPUs or GPUs) according to some cost function. This partitions 
the overall graph into subgraphs, one per device. Cross-device edges are replaced to encode necessary 
synchronization between device pairs. Distributed execution appears to be a natural extension of this arrangement, 
except that TCP or Remote Direct Memory Access (RDMA) is used for inter-device communication on separate 
machines. This approach of mapping subgraphs onto devices also offers potential scalability, because each worker 
can schedule its own subgraph at runtime instead of relying on a centralized master [4]. Parallelism in Tensorflow 
can be expressed at several levels, notably including both data parallelism and model parallelism. Data parallelism 
can happen both across and within workers, by training separate batches of data on model replications. Model 
parallelism is expressed through splitting one model, or its graph, across devices. Model updates can either be 
synchronous or asynchronous for parameter-optimizing algorithms such as SGD. For fault tolerance, Tensorflow 
provides checkpointing and recovery of data designated to be persistent, while the overall computation graph is 
restarted. In terms of other features, TensorBoard is a tool for interactive visualization of a user’s network, and 
also provides time series data on various aspects of the learning network’s state during training.  

 

While deep learning frameworks such as Tensorflow provide abstraction and many are designed to scale up to many 
machines, there is evidence that some deep learning problems can be solved efficiently and accurately with a small to 
medium sized cluster of machines, given the right utilization of specialized hardware and attention to application-specific 
characteristics. In future work, we will look into utilizing HPC technologies to improve parallel computation and 
communication efficiency of Deep Learning frameworks, where we have demonstrated good results in modeling 
iterative computations for other machine learning applications [5] [6].  
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