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CHAPTER 1

MOTIVATION

The motivation for looking into the role of HPC in deep learning can be viewed

from the two major components. The first is to have a high performance distributed

data pre-processing framework which is developed using core HPC principles around

efficient communication operators and task scheduling strategies. In order to be

effective, these highly optimized core operators need to be wrapped and presented

using easy to use high-level programming interfaces. While data pre-processing

does not have the glamour and interest that attracts people to deep learning and

machine learning, it is an integral step before more advanced deep learning and

machine learning programs can be applied to the data. In some cases, this step may

be where the bulk of the time is spent. Having an easy to use high performance

distributed data pre-processing framework allows users to quickly do all the data

cleaning and transformation steps that needed to be done so that they can be used

as inputs to deep learning/ML algorithms.

Figure 1.1: Distributed data processing vs deep learning frameworks and what areas
each address

Once all the data pre-processing is done, machine learning and deep learning

algorithms need to be applied to extract useful information and patterns from the
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data. For machine learning, it has been proven that leveraging the primitive oper-

ations provided by the distributed data processing frameworks to develop parallel

implementations of ML algorithms can be done efficiently. With a more optimized

set of core operators, such ML programs will also see higher performance numbers.

For deep learning, this has not been the case to a vast extent. Developing, training

and inferencing deep learning models are mostly done through a set of deep learn-

ing frameworks such as Caffe[JSD+14], Keras[GP17], PyTorch[PGM+19], etc. that

have been optimized for deep learning models. These provide easy to use high-level

interfaces which can be used to develop complex deep learning models and then

leverage CPU’s and/or GPU’s to execute. While some such frameworks do provide

the ability to train/run, deep learning models in a distributed manner, they are

not well suited for the pre-processing data; hence that needs to be performed using

distributed big data frameworks. This means processed data needs to be migrated

between different frameworks. Figure 1.1 show how the current framework echo

system is divided between distributed data processing frameworks and deep learn-

ing frameworks. In order to have an efficient end-to-end workflow, it is important

to have seamless integration between these two framework echo systems. This will

allow developers and data scientists to efficiently build a complete data processing

and analysis pipeline without having to move intermediate data between frameworks

and possibly compute clusters.

It is also important to note that even with the current state of the art frameworks

such as PyTorch, setting up distributed training and evaluation can pose major

technical challenges and require expert knowledge to get done correctly. This leads

to the motivation of having a seamless integration of deep learning frameworks

with distributed data processing framework. If both data pre-processing and deep

learning can be done through a single framework, it would make the end to end data

2



analytics process much easier.

1.1 DAMDS

One of the main motivations for extending the Twister2 framework to support

DeepLearning came from the DAMDS[RF13] application that was utilized to an-

alyze and cluster gene sequence data by the authors. DAMDS is a parallel Multi-

Dimensional Scaling (MDS)[Kru78, BG05] algorithm. In essence, MDS is a non-

linear optimization problem that tries to optimize the mapping in the target di-

mension based on the original pairwise distance information. Since it works on

pairwise distances, DAMDS can be broadly applied to many datasets. This is es-

pecially important in gene sequence data analysis since such datasets do not have

associated feature vectors. Pairwise distance, on the other hand, can be calculated

using sequence alignment algorithms such as Smith-Waterman[SW+81]. DAMDS is

a complex algorithm with computation and memory complexity of O(N2) where N

is the number of data points. Therefore using DAMDS on even modest data sets

require a considerable amount of distributed computing power. Results discussed

in section 4.6.2 shows that a DAMDS implementation executed on Twister2 frame-

work runs on par with highly optimized OpenMPI implementation. DAMDS takes

in a distance matrix of size NxN as an input, which means the raw input data

such as gene sequence data needs to be pre-processed to generate the input distance

matrix. Even with a highly optimized parallel implementation of DAMDS it is still

not practical to run it for datasets with millions of data points.
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1.2 Autoencoder based MDS

In order to analyze gene sequence data with DAMDS, a considerable amount of

pre-processing needs to be done. For a gene sequence dataset of N sequences, N2

Smith-Waterman calculations need to be performed. Smith-Waterman algorithm it-

self has a complexity of O(ML) where M and L are the lengths of the gene sequences

being aligned. For example, the fungi gene sequence dataset analyzed by the authors

contained 170K sequences, which meant ∼14.5 Billion Smith-Waterman calculations

needed to be done to generate the input distance matrix for the DAMDS algorithm.

Such large data pre-processing requirements are not uncommon in distributed data

processing pipelines. Because of the high resource requirements of DAMDS and the

resource constraints surrounding DAMDS, the authors looked into the applicability

of deep learning to perform multi-dimensional scaling for large datasets. In [WF]

we propose an multi-dimensional scaling algorithm based on autoencoders for gene

sequence data. One of the main challenges with applying an autoencoder based solu-

tion for gene sequence data is the nature of the data itself. First, gene sequence data

is typically presented in RNA format, where each sequence is a string of characters.

The character alphabet for RNA sequences are A, T, G and C. Secondly, sequences

in a data set can vary in length significantly. In order to train an autoencoder, the

input needs to be of fixed size numerical vector. Therefore raw gene sequence data

needs to be converted into fixed-length numerical vectors which accurately represent

the original gene sequence.

1.2.1 Adapting gene sequences for Autoencoders

The conventional method to convert gene sequences into fixed-length numerical vec-

tors is to use either One Hot Encoding (OHE) or ordinal encoding. In [WF] we
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Figure 1.2: Dimension reduction approaches. (a) DAMDS. (b) Autoencoder with
OHE, “H” is the length of the vector once it is encoded with OHE, (c) Autoencoder
with reference sequences, “K” is the number of reference sequences

introduce an additional approach based on pairwise distances to generate a repre-

sentative numerical vector. Later evaluation results show that this method generates

better results compared to OHE based approach.

One Hot Encoding

In OHE, the character alphabet of the sequence is represented by a vector. The

vector has a length that is equal to the number of characters in the alphabet, and

the value of the position representing a single character will be ’1’ the other location

will be ’0’. For example, the ’A’ of the ’ATGC’ alphabet in RNA sequences is

represented as [1,0,0,0]. In order to make the length of the OHE vectors equal

for a given dataset, the vectors need to padded with ’0’. One drawback of the

OHE approach is that while it does create a fixed-length vector (with padding), it

would vary between datasets. OHE also does not encode any biological distance

data related to the gene sequences, which is an important aspect when performing
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dimension reduction on gene sequence data. The resulting input vector will have a

length of ’Alphabet Size * Length of longest sequence’.

Ordinal Encoding

In ordinal encoding, each character in the alphabet is assigned a specific numerical

value. To construct the numerical vector, the sequence values are replaced with

the assigned numerical value. For example, characters “A,T,G,C” can be assigned

values “0.25, 0.5, 0.75, 1.0” respectively. This would mean the encoded result of

the sequence “GGTAC” would be [0.75, 0.75, 0.5, 0.25, 1.0]. This approach will

produce a smaller vector since the length of the numerical will be equal to the

length of the longest sequence in the dataset. One major issue with ordinal encoding

in the context of deep learning is that during training, the network may give a

higher significance to characters assigned with higher numerical values, while in the

biological sense, there is no such significance to those characters. Therefore out of

OHE and ordinal encoding, OHE presents a more accurate representation for gene

sequence encoding.

Pairwise distance - K Reference encoding

The aim of the novel approach we introduced in [WF] for gene sequence encoding

for multidimensional reduction was to generate a fixed-length numerical vector that

encapsulates the biological distance data of sequences. In this approach, the rep-

resentative numerical vector is calculated by first selecting ’K’ reference sequences

and then calculating the Smith-Waterman distance to a given sequence and the ’K’

reference sequences. This results in a numerical vector of length ’K’, which con-

tains biological distance information of the dataset embedded within it. The correct

value for ’K’ would depend on the dataset and the structure of the dataset. A logical
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estimate of K would be “10xC” or “20xC,” where “C” is a rough estimate of the

number of clusters in the dataset.

Figure1.2 summarizes how the different approaches for multidimensional scaling

operate and the intermediate data structures that are generated in the process. Fig-

ure 1.3 shows the heat-maps generated for each approach. The heat-map plots the

comparison between the original ”Smith-Waterman” distance and euclidean distance

in the projected 3 dimensional space. As seen in the heat-maps the ’K Reference’

based approach generates heat-maps that have data points more concentrated along

the diagonal, which is the desired outcome. Based on the heat-maps ’K Reference’

based autoencoder solution produces results that are slightly better than DAMDS

based approach. The findings show that the autoencoder based solution is able to

produce results similar to DAMDS with significantly lesser compute resources. This

solution does not contain O(N2) memory or computation complexities allowing it

to be scaled to millions of data points. The proposed solution is based on a set of K

reference sequences, which are used to create the input vector for the autoencoder.

Implementing the solution proposed by the authors in [WF] requires two main

stages. The first is a data pre-processing step where a representative vector for each

gene sequence is generated based on the K reference sequences. This means that

for each gene-sequence, K Smith-Waterman calculations need to be performed. To

put this in perspective for the 170K sequence dataset with K=1000, pre-processing

needs to calculate 170 million Smith-Waterman calculations ( opposed to ∼14.5 Bil-

lion in DAMDS pre-processing). While the amount has been reduced drastically for

larger datasets, the pre-processing step also needs to be distributed. In the second

stage, the calculated input vectors need to be used to train an autoencoder. This

also needs to be executed as a distributed application for large datasets. In such an

application, the need for seamless integration between distributed data processing

7



Figure 1.3: Heatmaps of Smith-Waterman distance vs projected distance in 3D

and distributed deep learning is clear. Without such an framework, the first stage

needs to be executed on a big data framework like Twister2[KGW+17] and the deep

learning stages need to be done in PyTorch or a similar deep learning framework.

The intermediate data generated needs to be moved between frameworks that typ-

ically involve file storage. In the solution presented in [WF] experiments need to

be performed for varying K values and multiple runs for each individual K (to run

using different random samples of K reference sequences). This means for each run;

two frameworks need to used and data needs to moved between the frameworks.

Which can add up to a considerable amount of time spent on non-productive tasks.

Figure 1.4 shows visualisations (in 3D space) of dimension reduction achieved using

DAMDS and 1.5 shows the results from the proposed autoencoder based MDS solu-

tion on a 170K gene sequence dataset. While the positions of the clusters may look

different, the clustering of data points is similar in both cases. This is discussed in

8



more detail in [WF].

Figure 1.4: DAMDS 170K points pro-
jected to 3

Figure 1.5: 1K reference sequences,
170K points projected to 3D
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CHAPTER 2

LITERATURE REVIEW

There is a plethora of research and development being done around the big

data/HPC domains and machine learning and deep learning domain. While some

work is more on specific use cases, some are working on more general frameworks

and optimizations that can be applied to a wide range of problems. Below we focus

on related work in regard to two major areas that are developed and discussed.

The first is work-related to distributed dataflow frameworks, which is the high level

distributed data processing layer that is discussed in this paper. Then related work

for distributed deep learning frameworks are discussed.

There is no specific definition for dataflow in the research literature; the term

dataflow is used to denote various versions of the same underlying model. The

dataflow process network presented by Lee et al. [LP95] can be to some extent seen

as a formal definition of the dataflow model. A layered dataflow model was intro-

duced by Misale et al. [MDAT17] which was built on top of [LP95] to represent big

data processing frameworks that follow the dataflow paradigm. In their work, they

break down big data frameworks into three layers which as a whole represent the en-

tirety of the dataflow model. They then go onto show the mapping of each presented

layer into components that are present in several popular frameworks. This mapping

also holds true for Twister2, where those three layers can be loosely mapped to the

communication, task and data layers. How the dataflow model is adopted by the

popular Google cloud dataflow framework is described by Akidau et al. [ABC+15]

including implementation details of the framework. Apache Spark[Spa] develops a

dataflow graph with an additional linage graph that is logged and tracked to achieve

fault tolerance.
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Naiad[MMI+13] introduced the timely dataflow model system for iterative and

incremental distributed computation processing; timely dataflow is a slightly dif-

ferent and more complex interpretation of the dataflow model. Naiad presents a

stateful dataflow model, where the edges of the dataflow graph carry unbounded

streams of data over dataflow nodes containing mutable state. Dryad[IBY+07]

is a high-performance distributed execution engine that is suitable to run coarse-

grained data-parallel programs as acyclic dataflow graphs for execution; the user

has to program the dataflow graph in Dryad explicitly. In general, a Dryad applica-

tion combines computational vertices with communication links to form a dataflow

graph. In[Hie] the authors show how coarse-grain parallelism of an application can

be leveraged and used through Hierarchical Task Graphs. The main objective of

the technique is to provide a program dependency representation without a cyclic

dependency. Cyclic dependencies are hidden from the user by encapsulating them

within a supernode. Turbine[WAM+13] is a distributed many-task dataflow engine

that evaluates program overhead and generation of tasks. During program execu-

tion, the system breaks parallel loops and invocation of concurrent functions into

smaller fragments and execute them parallelly using Twister2; the explicit dataflow

programming is hidden from the user, which is different from Dryad and similar to

the Turbine model.

The relationship between dataflow and MPI at an operator level is not well-

defined within the research literature to our knowledge. There has been work done

in this area that discusses the role of dataflow for parallel programs such as MPI

applications. OpenStream, which is a dataflow extension to OpenMP was intro-

duced by Pop et al. [PC13], and they discuss the advantages of such a model.

The importance of understanding dataflow within MPI programs is discussed by

Strout et al. [SKH06] they also introduce a dataflow analysis framework for an MPI
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implementation.

There has also been some effort in the big data domain to unify many frameworks

through a single API. Apache Beam[apa] developed as the programming model for

Google Cloud Dataflow[ABC+15] addresses this issue and strives to provide users

with a single API that can be used to develop parallel data processing applications.

Apache Beam has been widely adopted in the industry, with a large user base

taking advantage of its uniform API which supports multiple back-end distributed

processing frameworks. Apache Beam can be extended to support new Distributed

data processing back-ends by implementing a component named beam runners. Li

et al. [LGM+18] discuss the challenges faced when developing an Apache Beam

runner for IBM streams[HAG+13].

Starting with the initial deep learning frameworks such as Torch[Tor], Theano

[ARAA+16], Caffe[JSD+14], deep learning has seen the introduction of many frame-

works, each developing on top of the previous frameworks. Many of the early frame-

works did not support distributed execution, and in some, distributed execution

support was added later. Caffe2[cafa], Pytorch[PGM+19], TensorFlow[AAB+15]

and MXNet[CLL+15] are among the most widely adopted deep learning frameworks.

Caffe was extended to Caffe2, which supported distributed training. Pytorch intro-

duced distributed data parallel mode which allowed Pytorch to be run on multiple

machines. TensorFlow allowed distributed training through distributed strategies

or through Horovod[SDB18]. Among the many available deep learning frameworks,

PyTorch and Tensorflow are the most used frameworks and account for most of

the use in academia and industry. Deeplearning4j[dee] is a java based distributed

deep learning framework that runs on the JVM. While many of the well known deep

learning frameworks do support distributed training, it can sometimes be technically

challenging to set up and may discourage researchers/developers who are not used
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to orchestrating a cluster on their own from using the distributed features. Because

these frameworks are targeted towards optimizing deep learning model training,

they do not provide the capabilities provided by big data frameworks to pre-process

data in a distributed fashion.

The BigDL[DWQ+19] framework developed by Intel to run on top of Apache

Spark address this need. By providing a built-in deep learning framework, users can

do the data pre-processing, and machine learning workloads using Apache Spark

API’s and seamlessly move data into deep learning models developed using the

BigDL framework.
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CHAPTER 3

INTRODUCTION

With the proliferation of data that is available to be processed and analyzed in

recent years, the demand for frameworks and algorithms that can be used to infer

useful information from raw data has also proliferated. Machine learning algorithms

and, more notably, deep learning/neural networks started to play an ever-increasing

role in the big data world to process and analysis the data and to extract valuable

information from raw data in every thinkable field and industry, from agriculture

to finance. More and more machine learning algorithms and optimized versions of

algorithms were introduced to tackle the growing demand for data analysis. As the

volume of data increases, requirements that data processing frameworks/algorithms

need to meet in order to cater to these requirements also increase. As compute,

and memory requirements that are needed to process the amounts of data available

quickly exceeded the capabilities of a single machine or computing unit, parallel

and distributed algorithms needed to be utilized to scale-out data processing and

analysis to 100’s if not 1000’s of machines.

3.0.1 Big Data Frameworks

With these requirements and the introduction of the map-reduce framework, a large

number of distributed data processing frameworks such as Apache Hadoop[Whi12],

Apache Spark[ZCD+12], Twister2[KGW+17], Apache Fink[CKE+15], etc. gained

popularity because of their ease of use and simple programming interfaces and most

importantly their ability to scale into large computing clusters to run programs in

parallel. In addition to providing easy to use high-level programming interfaces to

develop distributed data processing applications, these frameworks also developed
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machine learning libraries on top of the distributed platforms and provided the abil-

ity to use parallel implementations of popular machine learning algorithms such

as KMeans, SVM, etc. out of the box. As the data processing requirements kept

increasing, data processing frameworks needed to increase in performance to make

sure they performed efficiently on the available compute resources. Improvements

that were made in recent years have been two-fold; first, most frameworks and new

frameworks that address shortcomings of existing frameworks have worked towards

improving and optimizing the core distributed building blocks such as efficient com-

munications and improved task scheduling and fault tolerance. Resulting in more

efficient execution of machine learning algorithms on distributed environments. Sec-

ondly, vast amounts of research have been done on developing more efficient parallel

implementations of machine learning algorithms to allow such algorithms to process

and analyze more and more raw data. While these research efforts have improved

the existing systems, it is clear that there is more work to be done and further

optimizations that can be achieved.

The High-Performance Computing (HPC) domain has been developing, fine-

tuning and perfecting the mechanics and strategies that need to be used to maximize

the performance of parallel and distributed programs and algorithms for the past sev-

eral decades. However, developing parallel programs and algorithms using the tools

available in the HPC domain, such as MPI[SGO+98], is non-trivial. While machine

learning algorithms developed using MPI implementations such as OpenMPI, vastly

outperform implementations available in big data frameworks such as Apache Spark

[KWEF18], they are much harder to develop and require expert knowledge in the

domain. Due to the ease of using big data frameworks, they have gained wide adop-

tion in both industry and academia, even though they provide sub-par performance

in many cases. This led to the initial motivation to develop Twister2[KWG+18],
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which is a high-performance data analytic framework built with core HPC princi-

ples and know-how, which enabled it to perform on par with frameworks such as

OpenMPI while providing a high level, easy to use programming interface for the

end users/developers. Another important aspect that needs to be noted is that most

if not all distributed big data processing frameworks are built around the dataflow

model as opposed to the control flow model that is widely adopted in applications

and programs in the HPC domain. Dataflow is viewed as the model best suited for

tackling large sums of data for processing and analysis both in stream processing

and batch processing and has seen wide adaptation.

3.0.2 Machine Learning and Deep Learning

While distributed data processing frameworks provide the capability to utilize large

compute clusters to process data and play an important part in the big data echo

system, machine learning and deep learning are the mechanisms that allow useful

information to be extracted from the raw data. Without efficient distributed im-

plementations of both machine learning and deep learning algorithms, distributed

data processing capabilities would be of little use. A vast amount of research has

been done and is being done on how to efficiently run machine learning algorithms

on data processing frameworks. From the data processing frameworks end, it is

essential that easy to use high-level programming API’s are provided so that en-

gineers and scientists can write machine learning algorithms without the need to

understand the underlying distributed computing concepts in great detail. Big data

frameworks like Apache Spark[ZCD+12] have introduced rich machine learning li-

braries (MLlib[MBY+16]), which can be easily used out of the box to address such

requirements. More recently, the Deep learning models have started to replace tra-
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ditional machine learning algorithms for various use cases because of the superior

performance they tend to exhibit with the ability to consume vast sums of data.

With the rapid adaptation of deep learning in many domains, deep learning

has slowly become the go-to solution for many machine learning problems. Mainly

because of its ability to provide solutions to a wide range of problems. Deep Learning

is now used in a wide range of applications that can be span from small experiments

that may run on a single machine or a single GPU device to a large scale where

the training and inference of the deep learning model may span multiple machines

or employ supercomputers. These large models may contain billions of parameters

and require terabytes of data to train. Frameworks such as PyTorch[PGM+19],

TensorFlow[ABC+16], Caffe[JSD+14], etc. have allowed deep learning models to be

developed in a distributed manner. In addition to optimized software frameworks,

the vast adaptation of deep learning has prompted the design and development of

specialized hardware components which are able to run deep learning computations

extremely efficiently. The two most well-known hardware components are GPU’s

and TPU’s; while GPU’s are more general purpose and have been around for some

time, TPU’s have been designed specifically to handle deep learning computations.

It is important to note that while GPU’s and TPU’s are able to achieve several times

the performance of traditional CPU’s these hardware devices are more expensive and

generally not as prevalent as CPUs. Therefore having the ability to run machine

learning/deep learning applications on traditional CPU’s is an essential requirement

and may be financially favourable in some cases.

When considering real-world machine learning/deep learning applications, most

are comprised of two major components,

• Data collection and pre-processing/Machine Learning

• Deep Learning/Model training and inference
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Data collection and pre-processing can be handled using big data systems such

as Spark[ZCD+12], Twister2[KWG+18], Flink[CKE+15], etc. And training and in-

ference can be handled using deep learning frameworks such as PyTorch[PGM+19].

However, with the adaptation of deep learning to solve many problems, many use

cases where deep learning needs to be applied to big data processing pipelines have

emerged. For such use-cases, it is vital to have an end-to-end solution that can han-

dle big data analysis as well as deep learning while keeping the performance of such

a system in mind. In order to have an efficient deep learning application, both the

data pre-processing and deep learning components need to be efficient. In some use

cases, the bulk of the application run time would be taken up by data pre-processing

since it can be a highly time-consuming task.

With many machine learning applications being converted or replaced by deep

learning applications, it has become more and more important to facilitate easy to

use deep learning frameworks which can integrate with the data processing pipeline.

One such machine learning application area that motivated some of this proposed

work is Multi-Dimensional Scaling(MDS). MDS is an important tool that allows

researchers and scientists in many areas such as biology to understand higher di-

mensional data by projecting them into lower dimensions where they can be visual-

ized. However, even with the existing state of the art distributed algorithms such as

DAMDS[RF13] it has been difficult to scale beyond a couple hundred thousand data

points because of the massive memory requirements of their algorithms. Prelimi-

nary results obtained by doing MDS using deep learning models have shown that

similar results to DAMDS[RF13] can be obtained using deep learning models that

incur a fraction of the memory requirement. However, the bulk of the runtime of

this deep learning-based MDS application is spent on complex data pre-processing

steps. In such use-cases having the ability to implement both the pre-processing and
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deep learning in a single framework where the data flows seamlessly between the

two stages while providing excellent performance would be highly desirable. Such

applications provide both the motivation and the evaluation foundation for the ideas

proposed in this document.

The first half of the puzzle to provide efficient big data analysis is addressed us-

ing Twister2 TSet’s[WKG+19], which provide a high-performance iterative dataflow

framework, TSet’s employ knowledge from High-Performance Computing(HPC) to

provide a more efficient alternative to frameworks such as Apache Spark[ZCD+12]

and Apache Flink[CKE+15]. Additionally, the integration of Twister2:TSet’s with

Apache Beam[apa] as a distributed back-end processing engine allows users to run

Apache Beam pipeline jobs on top of the high-performance dataflow back-end with-

out any changes to the existing code.

The next challenge is to provide seamless integration between data pre-processing

and the deep learning portion of the application. BigDL[DWQ+19] provides such a

framework for Apache Spark, BigDL[DWQ+19] allows users to develop deep learning

applications on top of Apache Spark. However, this inevitably faces performance

and efficiency issues of the underlying Apache Spark framework, which have been

addressed in Twister2:TSet’s. Therefore it is important to extend Twister2:TSet’s

to support deep learning applications that would provide an efficient end-to-end

solution for deep learning applications that need to be integrated into the big data

analytic workflow. Having an end-to-end solution would allow developers to de-

velop the needed deep learning applications quickly and run them on existing com-

pute clusters such as Kubernetes[BGO+16], Nomad[nom], Mesos[HKZ+11], or use

Slurm[YJG03] to run on supercomputers and leverage high speed interconnects to

increase performance.
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CHAPTER 4

DISTRIBUTED DATA PROCESSING/MACHINE LEARNING

In order to tackle the issue of processing large sums of data, it is important to

have a high performance distributed data processing framework, which also pro-

vides easy to use high-level programming interface. The ecosystem that has been

built around the big data ecosystem is vast. Frameworks such as Hadoop[Whi12],

Spark[ZXW+16], and Flink[CKE+15] focus on batch processing; Storm[TTS+14],

Heron[KBF+15], and Flink[CKE+15] target stream processing; while TensorFlow[ABC+16]

and PyTorch[Ket17] are for machine learning and deep learning. Frameworks such

as Apache Beam[apa] provide a unified API for both batch and stream processing

and support many of the above-mentioned frameworks as data processing engines

underneath. In addition to the frameworks mentioned above, there are a large

number of frameworks developed by both academia and industry that provide op-

timizations and specializations while hiding the underlying complexities of parallel

and distributed computing. One important takeaway from studying these frame-

works is that most of them are designed around the core dataflow model and differ

in how the implementation of the core dataflow model concepts are done at each

level. Most successful frameworks in this domain have developed easy to use high-

level programming interfaces so that even users with very little understanding of

distributed computing can write efficient distributed applications. The runtime sys-

tem takes the responsibility of dynamically mapping the dataflow graph into an

execution graph and executing it on a cluster as efficiently as possible. Most of

these dataflow system’s have come from the database and big data research commu-

nities and have not employed the vast amount of knowledge in the HPC community

on distributed computing at the core of their designs. In[KWEF18] the authors

studied this topic in more detail, and their findings motivated the development
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of Twister2[twi, KGW+17], which is a data analytics framework for both batch

and stream processing. The goal of Twister2 is to provide users with performance

comparable to HPC systems while exposing a user-friendly dataflow abstraction

for application development. Twister2 was able to achieve significant performance

improvements when compared to the state of the art big data frameworks such as

Apache Spark and Apache Flink, using highly optimized distributed communication

operators[KWG+18]. This highly-optimized communication layer paved the path to

develop a high-performance dataflow abstraction that serves as a high-level pro-

gramming language interface for the developers/scientists. This abstraction, named

TSet, provides functionality similar to other popular frameworks such as RDD API

in Apache Spark and DataSet API in Apache Flink. TSet’s are the solution pre-

sented in this paper to address efficient distributed data processing, which is the

first major component that needs to be addressed to understand the role of HPC in

deep learning. To understand the influence of HPC in the design and development

of TSet’s and the challenges that need to be addressed when applying HPC domain

knowledge, one needs to compare and contrast the dataflow model and MPI (MPI

has been established as the defacto standard in HPC).

4.1 Comparison of Dataflow and MPI

MPI can be considered the defacto standard used in the HPC domain due to its

wide adaptation in the domain. In most cases, applications and programs devel-

oped in the HPC domain are built around the Bulk Synchronous Parallel (BSP)

model. BSP can be loosely defined as coarse-grained parallelism, which performs

barrier synchronizations using inter-process communications. MPI specification is

well suited to implement BSP-style programs. However, since the primitives pro-

vided by MPI implementations such as OpenMPI are very low-level communications
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operators, it requires expert knowledge in parallel computing domain to develop

applications/programs using them. Collective operations such as gather, reduce,

allreduce, allgather, scatter, etc., are well known highly optimized communications

primitives specified by MPI and implemented by frameworks such as OpenMPI.

These collective operations have been researched and optimized throughout the

past couple of decades in the HPC community to a great extent. However, it is not

possible to directly use these primitives in a dataflow model because of several key

differences. Dataflow collectives are driven by the following requirements that make

them slightly different from MPI specification-based collectives

• A detailed view of the dataflow model for batch and stream processing in

Twister2.

• A more efficient way of handling iterations for dataflow framework with Twister2

TSet API.

• An evaluation of the presented framework to showcase its expressiveness and

performance.

• A connected dataflow model for big data frameworks

• Review of extensibility and compatibility of TSet’s to other frameworks.

Twister:Net[KWG+18] introduced a set of collective communication operations

that correspond to collective communications in MPI specifications while also sup-

porting the requirements stated above. It was also able to achieve comparable

performance to OpenMPI. MPI specification based frameworks such as OpenMPI

provide the bare minimum requirements to implement an efficient parallel appli-

cation but leave the heavy burden of thread and data management to the user.

Developing and dataflow model on top which hides all that information while pre-

serving performance which can compare with MPI is challenging since each layer of
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abstraction inadvertently adds more overhead to the system. TSet’s is an attempt

to achieve this using Twister:Net as the foundation.

4.2 Twister2 Framework

Before looking at the Twister2 dataflow model, it is important to understand the

Twister2 framework and how it is structured. The high-level overview of the com-

ponents in Twister2 is depicted in Figure 4.1. In essence, twister2 is a flexible, high

performance distributed data processing engine developed from scratch with HPC

technologies and principles at its core. The framework is built with several well-

separated layers, each layer abstracting out underlying complex information and

from the layer above and providing a clean API interface so that underlying imple-

mentation can be switched out without having to change higher levels. The current

Twister2 code provides several implementations for some layers, which allows the

user to pick and choose layer implementation that best suit their needs.

4.2.1 Data Access Layer

The data access layer is the lowermost layer of the Twister2 framework. It provides

users with access to data storage systems such as regular file systems or distributed

data layers such as HDFS or NFS. In addition to the supported storage frameworks,

users can develop custom data readers by implementing their own data sources.

Other than the direct use by end-users, the upper layers of the framework also

leverage the data access layer to store and retrieve temporary data that needs to be

persisted in files,

23



Figure 4.1: Twister2 architecture

4.2.2 Cluster Resource Layer

One of the main requirements when running a distributed frameworks is the ability

to obtain and manage a large number of compute resources in the form of compute

nodes. In Twister2 the resource management is handled by the cluster resource layer.

To make sure Twister2 can be easily used in a multitude of environments, several

popular resource management frameworks are supported. For HPC environments,

Twister2 supports Slurm resource manager to allocate and manage compute nodes

in HPC clusters. In addition, Mesos, Yarn and Kubernetes are supported. The

end-user can choose any one of the frameworks which best suites them to deploy a

Twister2 cluster. In addition to these, a local resource manager is also supported

to allow users to run twister2 locally on a single machine; this is mainly to try out

and explore the framework before deploying in a real environment.
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4.2.3 Communications Layer

The distributed communication layer is one of the most important layers in the

Twister2 framework. It provides highly optimized distributed communication prim-

itives and collective communications such as reduce, gather, keyedreduce, allreduce,

etc. Each communication operation is developed and implemented with highly opti-

mized algorithms which mimic the algorithms used in HPC libraries, with the addi-

tion of support for dataflow style communications that allow dynamic data sizes. An

in-depth study of the communications layer and how it performs compared to other

frameworks such as OpenMPI, Spark and Flink is done in [KWG+18], the results

show that Twister2 is able to perform on par with HPC frameworks like OpenMPI

while vastly outperforming big data frameworks such as Apache Spark. As with all

other layers, the communication layer supports several different implementations;

for BSP style communications, the layer is implemented with MPI standards and

using Harp[ZRQ15] library. For dataflow style communications, the layer is im-

plemented using MPI standard and regular TCP. The communication details such

as buffer management and communication links are hidden from the upper layers,

and a clean API interface is presented. If needed, end-users can directly develop

data processing applications using the communication layer API’s. This allows the

users to manage all the execution details, such as thread management. While this

allows for fine-grained performance optimizations for the application, it is signifi-

cantly harder to develop the application since most of the execution details need to

be handled by the end-user.
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4.2.4 Task Layer

The next layer of abstraction in the Twister2 framework is the task layer. Applica-

tions developed using the task layer do not need to handle communication details

as they are abstracted out. Users specify the tasks and how the tasks are connected

through the primitives provided by the API. This layer will manage how the tasks

are distributed and executed on the cluster, the application developed will be con-

verted into a task graph, and then the communication layer will be leveraged to

perform the necessary distributed communications to achieve the task connections

specified by the application. The task layer also manages thread pools to make sure

the execution is done as efficiently as possible using the compute resources made

available to the application.

4.2.5 Distributed Dataflow : TSet

The highest layer of abstraction in the Twister2 framework is the distributed dataflow

abstraction which is also named the TSet API. This layer abstracts out all the lower-

level details of both the task layer and the communication layer from the end-user

and allows the end-user to develop applications using high-level dataflow abstrac-

tions named TSet’s. TSet’s are similar to Apache Spark RDD’a and Apache Flink

DataSet’s at the API level; however, optimizations done at this layer and at lower

levels of the framework allows TSet’s to perform much more efficiently. Implemen-

tation details and performance of the Twister TSet layer is discussed in more detail

in the following sections and is also discussed in [WKG+19].
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TSet User API’s

Currently, the TSet API is exposed in both Java and Python programming languages

to allow users to choose based on their programming language preference. The Java

API is the native implementation since the framework is implemented in Java. The

python API acts as a wrapper around the Java API and supports all the functionality

provided by the Java API.

4.3 Twister2 Dataflow Model

Dataflow is the most prevalent and most widely adopted model for processing large

quantities of data in a distributed environment. The main goal is to hide the im-

plementation details from the end-users while preserving the performance of the

framework as much as possible. Since the model follows the flow of data, it makes

the process of parallelizing tasks and dynamically building task and process de-

pendencies simpler. In the dataflow model, the application/program written by

the end-user is converted into a dataflow graph; this graph can either be created

statically or dynamically. The graph consists of task vertices and edges; a task

vertex represents a computational unit, in which some specified computational logic

is applied to the data that flows through the edges of the dataflow graph. When

executing in a distributed manner, each vertex will be represented by a number

of execution tasks that will apply the same computational logic on separate sets

of input data. The edges which represent communications between tasks will be

responsible for properly coordinating and gathering the results from multiple tasks

that are being executed in parallel.

Figure 4.4 shows the dataflow graph that represents an implementation of KMeans

algorithm done using the TSet API. Each box in the diagram represents a vertex,
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and each arrow represents an edge. This diagram gives a clear picture of how data

flows between task vertices. Based on the dataflow graph that is generated, the

framework can generate a concrete execution plan to determine when each task

needs to be executed and how the communication channels need to be set up. This

execution plan, which is self a graph, will take into account the data dependen-

cies between vertices in the dataflow graph and parallelisms defined for each vertex

in the dataflow graph. The dataflow graph generation can either be done stati-

cally or dynamically. If the graph is statically generated, the complete structure

of the dataflow graph will be known by compile time. With a dynamically gener-

ated dataflow graph, the framework will complete the latter parts of the graph as

execution happens.

It is vital that both batch processing and stream processing modes of the dataflow

model need to be considered when designing the framework; prioritizing one or the

other would result in sub-optimal performance when using one of the two modes.

For example, Apache Spark[ZXW+16] was designed as a batch processing engine

and therefore handles streaming operations using a mini-batch approach, while

Apache Flink[CKE+15] which was designed as a stream processing engine at its

core. Twister2 framework has been developed with the goal of adding first-class

support for both batch and streaming models. To achieve this, batch and streaming

modes need to be supported throughout each layer of the system. A quick example

would be how batch and streaming can handle task scheduling differently. In batch

mode, a sequence of tasks that need to be executed in order can be executed at the

same location to improve performance through data localization. Such a scheduling

decision cannot be made in stream mode for a sequence of tasks because each task

in the sequence needs to be executing at the same time.
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4.3.1 Layered Model

The Twister2 framework has been designed with a layered architecture so that each

layer is independent of the layer below it. This is achieved by using a set of well-

defined API interfaces between each layer. Having a well defined, fully decoupled

layered architecture has two major benefits. First is that each layer can be designed

and optimized without any negative effect on the other layers, and each layer could

potentially have multiple implementations that cater to different use cases. Secondly,

advanced users could develop custom layers to replace one or more of the layers in

the framework to suit their needs. At the lowest layer, which is the communication

layer, the framework provides the user with the ability to set up parallel processes

and exposes a set of communication primitives such as reduce, gather, allreduce,

scatter, etc., to the users. At this layer, the system has semantics that are very

similar to MPI specifications. And each communication operator has been developed

using optimized algorithms derived HPC domain knowledge. The layer above the

communication layer is the task layer. At the task layer, the main abstraction

users interact with are tasks; the details of the communications layer are concealed

from the user. The user models applications as a set of tasks and define dataflow

connections between the tasks that were given. Internally the framework will replace

the connections defined by the end-user with the most suitable optimized collective

communication operation when the dataflow graph is generated.

Finally, the TSet layer, which can be viewed as the true dataflow model abstrac-

tion layer, is built on top of the task layer. TSet layer has similar characteristics

to other big data framework API’s such as Apache Spark RDD’s and Apache Flink

DataSet. Even though the high-level programming language interface exposed to

the user is similar to other big data frameworks, underneath the optimized commu-

nication layer and the iteration model adopted by Twister2 allows it to outperform
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Figure 4.2: Different iteration models in Spark, Flink and Twister2

other major big data processing frameworks. In this paper, we will discuss the de-

tails of the TSet layer and its design, some aspects of the task layer will be touched

upon to help with discussion, but in general, the implementations of the task layer

and communication layer are not within the scope of this paper.

4.3.2 Iterations

Most, if not all, complex parallel/distributed applications have some section of the

code that is executed in an iterative fashion. This is even more prevalent in ma-

chine learning and deep learning programs, where the bulk of the computation time

is spent within iterative code segments. In most parallel programs other than pleas-

ingly parallel programs, the end of an iteration is accompanied by some sort of

synchronization operation. This is typically used to share the results calculated

during the iteration that was completed. For example, in a deep learning appli-

cations, after each iteration the calculated local gradients need to be shared and

averaged before the next iteration in order to calculate the weight parameters for

the model. Therefore an efficient iteration model is vital for the performance of any

distributed data processing framework. The approach taken by Twister2 TSet’s to
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handle iterations is an important point that sets TSet’s apart from other big data

frameworks. Before looking at the iteration model in Twister2 it is important to

understand how existing frameworks have addressed iterations and how they have

gradually moved towards BSP style iteration model adopted by Twister2 TSet’s.

Apache Hadoop[Whi12] was one of the first open-source big data frameworks de-

veloped using the map-reduce model. Before being replaced with frameworks such

as Apache Spark, Apache Hadoop was used heavily for distributed data processing

applications. In Apache Hadoop, at the end of each iteration, the intermediate re-

sults were written to disk and read back from disk for the next iteration. This meant

there were two file I/O operations for each iteration. This was very inefficient be-

cause I/O operations are extremely time-consuming operations even with a state of

the art storage device. As a solution to this issue, iterative MapReduce frameworks

such as Apache Spark[ZCD+12] and Twister[ELZ+10] introduced in-memory oper-

ations, which removed the need to write to ad read from disk after each iteration.

Instead, the intermediate state would be kept in memory and used in the next itera-

tion. This can also be viewed from the angle of how the semantics of the iteration is

handled. How Apache Spark handled, iterations can be seen as moving the control

of the iterations from the client (as in Apache Hadoop) to the driver/master. Per-

forming iterations at the driver still retains several unwanted overheads. After each

iteration, the results must be collected at the driver process and later broadcast to

each worker for the next iteration. For example, if the program was training a neural

network using data parallelism, at the end of each iteration the weight parameters

would need to be collected and averaged at the driver node and broadcast back to

the workers for the next iteration, in a BSP model this could be done more efficiently

using a collective operation such as allreduce. In Apache Flink iterations are em-

bedded into the generated dataflow graph itself. This results in the iteration control
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being moved into the worker level rather than being controlled at the driver level

as with Apache Spark. However, Apache Flink does not currently support nested

iterations because of constrained introduced by the iteration model of embedding

the iterations in the dataflow graph.

Twister2 adopts its iteration model from HPC BSP model, which is arguably

the most used iteration model in HPC. With this model, Twister2 TSet’s moves the

iteration control to the worker level, the primary contrast with how Apache Flink,

which also moves the iteration controls to the worker level, is that, unlike Flink, the

iterations are not baked into the dataflow graph. This facilitates a cleaner itera-

tion model with no constraints on nested iterations, so TSet’s are able to support

nested iterations without any additional modifications needed. Figure4.2 shows how

Apache Spark, Apache Flink and Twister2 handles iterations. Moving the iteration

logic into the workers removes the need to gather information at a central location,

as seen in Apache Spark after each iteration, allowing the use of more optimized

communication primitives to be used for synchronization at the end of each iteration.

For example, end-users can use a collective communication operator like AllReduce

to perform the synchronization.

Supporting the BSP style iteration model in the framework is straightforward

in the communications layer of Twister2 since the framework closely resembles the

BSP model at this layer. The challenge of implementing this iteration model comes

when we move to the higher layers, which are the task layer and TSet layer. In these

layers, the program written by the end-user needs to be converted into a dataflow

graph before it can be executed, the iteration logic also needs to be encapsulated

within this logic. Since Twister2 does not embed the iterations in the dataflow

graph itself, the framework has to build the sub dataflow graph needed for the logic

inside iterations for each iteration. This can be more clearly understood by looking
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at an example. Algorithm 1 shows the pseudo-code for the KMeans algorithm using

the TSet API. In this, each time line 7 is executed, the dataflow graph for the TSet

”reducedMap” needs to be generated; this adds unwanted computation overheads to

the execution of the program. To address this issue Twister2 TSet’s introduce the

iterative execution mode in which the framework caches the dataflow graph built

during the first iteration and reuses it for subsequent iterations. The code change

needed to change to the iterative mode is listed in Algorithm 2. Passing in ”true”

to the ”cache” method informs the framework that it should consider that section

of the logic as an iterative section. With this information, the framework will save

the required dataflow graph segments and reuse them in subsequent iterations. The

single additional change that is required is to call the ”finishIter” function, which

cleans up the data structures that were created in the environment.

Algorithm 1: KMeans using Twister2 TSet API

1 CachedTSet points = tc.createSource(...).cache();

2 CachedTSet centers = tc.createSource(...).cache();

3 ComputeTSet kMapTSet = points.direct().map();

4 ComputeTSet reducedMap = kMapTSet.allReduce(...).map(...);

5 for i=0 to maxIteration do

6 kMapTSet.addInput(centers);

7 centers = reducedMap.cache();

8 end
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Algorithm 2: KMeans using Twister2 TSet API in Iterative mode

1 CachedTSet points = tc.createSource(...).cache();

2 CachedTSet centers = tc.createSource(...).cache();

3 ComputeTSet kMapTSet = points.direct().map();

4 ComputeTSet reducedMap = kMapTSet.allReduce(...).map(...);

5 for i=0 to maxIteration do

6 kMapTSet.addInput(centers);

7 centers = reducedMap.cache(true);

8 end

9 reduced.finishIter();

Migrating the iteration control to the worker level can be seen as the logical next

step in improving the performance of iterations in distributed big data processing

frameworks. From managing iterations in the client as in Apache Hadoop to man-

aging iterations in the drive/master node as done in Apache Spark to finally moving

the iteration control completely into the worker nodes them-self. This mode of han-

dling iterations in distributed and parallel programs has been tested and proven in

the HPC community over the past couple of decades, and the results obtained for

TSet’s that are presented in this paper will further solidify this claim.

4.4 TSet’s

TSet API is the high-level programming interface exposed by Twister2; it is similar

in function and capabilities to RDD API in Apache Spark and DataSet API in

Apache Flink. It has both a Java API and a Python API; the Python API is built

on top of the Java API. The TSet API defines a set of transformations and actions

which the users can use to develop distributed data processing applications. The
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details of how the program is parallelized and executed in a distributed manner is

hidden from the user. TSet’s support both batch processing and stream processing

and expose both with similar interfaces. The discussion and explanations of the

concepts and details on how TSet’s are developed will apply to both modes; if some

part does not apply to one of the modes, it will be stated explicitly.

When developing a data processing application, the user will define the program

as a graph where vertices represent computations and edges represent dataflows

that happen between computation units. Underneath the framework will convert

this into a fully-fledged dataflow graph with parallelism information embedded and

take care of data distribution. One of the main goals of the TSet API is to provide

an easy to use and simple to understand interface for the end-users. To preserve

the simplicity of the API, the TSet API does add some restrictions and is not as

expressive as lower-level API’s such as the Task API or Communication API, but

it does preserve the versatility as much as possible.

The TSet API is comprised of two major entities which are namely ”TSet” and

”TLink”. TSet’s represent the vertices of the graph, and TLink’s are the edges that

connect one TSet to another. Table4.1 lists all the TSet’s and TLink’s which are

currently supported in the Twister2 framework.

4.4.1 TSet

A single TSet represents a node in the dataflow graph. Each TSet is accompanied

by some form of computation logic that it is responsible for executing. Each TSet

typically has an input and an output associated with it; this is true for all TSet’s

other than the SourceTSet and the SinkTSet. SourceTSet only has an output link,

and the SinkTSet only has an input link; this is because they represent the start and
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TBase

sets
TSet

batch

ComputeTSet
SourceTSet
SinkTSet
CachedTSet

streaming
SComputeTSet
SSourceTSet
SSinkTSet

TupleTSet batch KeyedTSet
streaming SKeyedTSet

links TLink

batch

BSingleTLink AllReduceTLink
ReduceTLink

BIteratorTLink

DirectTLink
ReplicateTLink
PartitionTLink
KeyedGather
KeyedReduce
KeyedPartition
JoinTLink

BBaseGatherTLink AllGatherTLink
GatherTLink

streaming

SSingleTLink

SAllReduceTLink
SReduceTLink
SDirectTLink
SReplicateTLink
SPartitionTLink
SKeyedPartition

SBaseGatherTLink SAllGatherTLink
SGatherTLink

SIteratorTLink -

Table 4.1: Twister2 TSet Organization
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end of the dataflow graph. Each program written using the TSet API starts off with

a SourceTSet; from this, the application graph can be gradually built by connecting

TSet’s using TLink’s. The API restricts the user so that only valid transformation

sequences can be applied when creating the dataflow graph. For example, applying

a key-based collective operation such as KeyedReduce on a TSet such as a Map that

does not output a key-value pair would result in an invalid graph. Therefore the

framework enforces several restrictions through the API itself to make sure the user

does not end up programming an invalid dataflow graph.

In order to provide first-class support for both batch and stream processing, all

TSet’s have corresponding stream and batch versions defined. On top of these two

categories, TSet’s can be divided into two broad areas based on the type of data

that is being handled.

• TSet - Used for individually typed data

• TupleTSet - Used for keyed data arranged in Tuples

Table 4.1 shows the TSet’s that are available in the API and how they are cate-

gorised into sub-groups. These well-defined categories of TSet’s allow the framework

to apply the most suitable lower-level semantics to obtain the best possible perfor-

mance when it is converted into task level dataflow graphs and execution graphs.

4.4.2 TLink

A TLink represents an edge in the dataflow graph. TLinks are therefore responsible

for managing the communications that need to happen between TSet’s. Because

TSet’s are executed in a distributed manner, the TLinks perform some form of

distributed communication based on its definition. Table4.1 lists all the TLink’s
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Name Description Is action

Compute Performs basic compute transformation, more gen-
eral version of map and flatmap

false

Map Performs map transformation false

Flatmap Performs flatmap transformation false

MapToTuple Maps Values to a Key-Value pairs false

Join Perform join operations such as inner-joins, outer-
joins on the TSet’s

false

Union Generates the union of 2 or more TSet’s false

Cache Evaluates the current graph and caches the values
in-memory

true

ForEach Evaluates the current graph and performs an com-
putation per item

true

Sink Evaluates the current graph and stores the results
as speficied through the sink function

true

Table 4.2: Twister2 TSet Transformations and Actions

that are available in the Twister2 TSet API. As with TSet’s TLink’s have separate

implementations to support batch and streaming versions to make sure Twister2

performs optimally for either version. Underneath each TLink is implemented using

highly optimized communication operators introduced in Twister:Net[KWG+18].

For example, the reduce operation is performed using an inverted binary tree to keep

the number of calls that are needed to complete the communication to a minimum.

Based on the content of the messages communicated through the TLink’s, they can

be categorized into three major categories.

• SingleTLink - For communications that produces a single output

• IteratorTLink - For communications that produces an iterator

• GatherTLink - Specialized TLink for Gather operations (gather, allgather)

These categories are present for both batch and streaming modes. Table 4.3

shows all the TLink’s in the API in greater detail. The table shows how each

communication primitive is represented as TLinks and the message content for each.
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Mode Communication Message Content Parallelism TLink Representation

Batch

Reduce T m to 1 SingleTLink[T]
Allreduce T m to 1 SingleTLink[T]
Direct Iterator[T] m to m IteratorTLink[T]
Broadcast Iterator[T] 1 to m IteratorTLink[T]
Gather Iterator [Tuple[Integer, T]] m to 1 GatherTLink[T]
Allgather Iterator[Tuple[Integer, T]] m to 1 GatherTLink[T]
KeyedGather Iterator[Tuple[K, Iter[T]]] m to n IteratorTLink[Tuple[K,

Iter[T]]]
KeyedReduce Iterator[Tuple[K, T]] m to n IteratorTLink[Tuple[K, T]]
Partition Iterator[T] m to n IteratorTLink[T]
KeyedPartition Iterator[Tuple[K, T]] m to n IteratorTLink[Tuple[K, T]]
Join Iterator[JT[K, U, V]] m to n IteratorTLink[JT[K, U, V]]

Streaming

Reduce T m to 1 SingleTLink[T]
Allreduce T m to 1 SingleTLink[T]
Direct T m to m SingleTLink[T]
Broadcast T 1 to m SingleTLink[T]
Gather Iterator[Tuple[Integer, T]] m to 1 GatherTLink[T]
Allgather Iterator[Tuple[Integer, T]] m to 1 GatherTLink[T]
Partition T m to n SingleTLink[T]
KeyedPartition Tuple[K, T] m to n SingleTLink[Tuple[K, T]]

Table 4.3: Twister2 Communication semantics

It also shows the parallelism mapping for each TLink, that is, whether it is an ”m

to 1 ”, ”1 to m”, or ”n to m” operation.
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4.4.3 Transformations, Actions and Lambdas

One of the main goals of the TSet API is to make the programming interface which

is simple yet powerful, allowing users to develop complex distributed data processing

applications with ease. To this end, the API exposes a set of transformations and

actions, which are listed in Table4.2. Each transformation/action is applied on a

TLink which represents a stream or batch of data. Applying a transformation/action

on the input data results in the creation of a new TSet. Figure 4.3 shows a simple

example to visualize how transformations and communications are composed. In

the figure, the source which generates some form of input data is fed into a ”map”

transformation and ”foreach” action through a direct communication link. The

”foreach” action simply iterates through the input data, which the user can use to

simply print the data into the console. Data flowing into the map transformation

will be modified using the user-defined computation logic for that map operation.

The transformed data can then be sent through a communication operation, which

is specified as ”reduce” in this example. Users can expand the program and perform

any number of transformations by stacking them one after the other to generate the

desired final result.

As listed in Table 4.2 Twister2 API provides a range of transformations to be

used. Most transformation takes in a function that will be used as the computa-

tion logic for that transformation; others, more specialized transformations/actions

have the logic required to perform the computation built into them. The API also

supports lambda functions when the Java API is used. Lambda functions are much

easier to develop and use. The only slight drawback is using lambda functions is

that the TSet Context, which includes runtime metadata such as parallelism, rank,

etc., is not accessible from the lambda function due to limitations in the Java pro-

gramming language.
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Figure 4.3: Example TSet execution

4.4.4 Lazy Evaluation

During runtime, all applications written using the TSet API are evaluated using

a lazy evaluation strategy. This essentially means that until one of the ”actions”

is called, the dataflow graph will not be evaluated by the framework. Currently,

there are three actions specified in the TSet API, which are ”sink”, ”foreach” and

”cache”, as listed in Table 4.2. Only when one of these actions are attached to the

dataflow graph will the graph be executed by the framework. For example, when

looking at Figure 4.3 once the ”foreach” action is called, the framework willtraverse

back through the dataflow graph to determine the sequence of transformations and

communications that need to be performed to complete that action. Only then will

the framework execute the particular sub-graph and output the results. For Figure

4.3 the two sub-graphs that will be executed are as follows.

• source -> direct -> foreach

• source -> direct -> map -> reduce -> foreach

Lazy execution model allows the framework to perform optimizations on the

graph execution efficiently; for example, if there are multiple consecutive map trans-

formations connected through direct communications links in the sub-graph that

needs to be evaluated, the framework can simply pipeline the map transformations

into a single map operation to improve performance. If required, the user is free to
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add dummy actions after each transformation to make sure each transformation is

evaluated separately, but this would result in sub-par performance.

Alternatively, the users can force the entire graph to be executed using the ”eval”

method provided in the TSetEnvironment. In this mode, the framework will traverse

the complete dataflow graph starting from the initial sourceTSet using breadth-first

traversal and then execute the entire dataflow graph. When the entire graph is

executed, the framework will add its own action to the leaves of the graph. Therefore

the ”foreach” actions in the example given in Figure 4.3 would need to be replaced

with ”map” transformations so that the framework can append actions to the end

of the graph. This mode of execution is the default execution mode for streaming

applications. For streaming applications, the complete dataflow graph needs to be

executed concurrently, which necessitates the use of this mode. Executing sub-

graphs of the dataflow graph as discussed above is undefined for streaming mode

and only applies for batch mode.

4.4.5 Caching

Caching intermediate results during execution is an important strategy that helps

improve performance, especially in iterative algorithms. The TSet API allows users

to cache intermediate results of the dataflow graph by calling the ”cache” action.

When this is called, the framework will evaluate the sub-graph up to that call and

save the results in-memory using a specialized TSet named the ”CachedTSet”. Using

the cached result in an iterative computation will remove the need to evaluate the

complete sub-graph for each iteration, improving the performance of the program.

”CachedTSet”’s can be consumed in two distinct manners.
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1. Treated as a source and build a new graph with the CachedTSet as the starting

point

2. Set as an input to a separate TSet so the cached values can be accessed during

computation steps

This gives the user the freedom to use cached results as needed. This can be more

clearly understood in section 4.4.6 which walks through how the KMeans algorithm

can be efficiently implemented in the TSet API.

4.4.6 KMeans Walk Through

Kmeans is a well-known machine learning algorithm that is used to cluster data

points into a number of clusters. The parallel version of KMeans is implemented

by dividing the data points in the dataset into several partitions and assigning

the data partitions to distributed tasks. Each task calculates the distances to the

centers for the data partition assigned to it and assigns each data point to the closest

center point. At the end of each iteration, values are summed across all the tasks

to generate the new center points before the next iteration. Listing 1 shows the

pseudo-code for implementing the KMeans algorithm using the TSet API.

In line 1 and 2, two SourceTSet’s are created for the data points and the initial

centers. Both of them are cached since they will be in an iterative algorithm to make

sure data loading is only done once. Twister2 will partition the data according to the

user logic and load only the assigned partition in each parallel task. All the center

points will be loaded at each task since they cannot be partitioned. Line 3 calls

a map transformation on the cached data points TSet; this map function contains

the logic to calculate the euclidean distances from each point to the centers and to

make the correct center assignment for each data point. At line 4, an ”AllReduce”
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Figure 4.4: K-Means TSet API dataflow graph

collective communication operation is applied on the map TSet to collect the new

center values from all the parallel map tasks. These values are then sent through

another map transformation which does an average to calculate the center points

for the next iteration. Since this was done using an ”AllReduce” operation, each

parallel worker will now have the same values as the new centers. Lines 5-8 show the

iteration logic used in the KMeans algorithm. In line 6, the code adds the cached

center values into the first map transformation which does all the calculations since

the center values are needed for that calculation. In line 7 we update the centers

with the new values so that the next iteration is performed with the new center

values. The dataflow graph for the Kmeans algorithm is visualized in Figure 4.4.

This implementation also employs both methods of using a cached TSet mentioned

in section 4.4.5. In line 3, the cached data points TSet is used as a source, and in

line 6 the cached centers TSet has been used as input for a map function. Another

important note to make is that the transformations in line 3 and 4 are only evaluated

when line 7 calls the ”cache” action.
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4.5 Apache Beam Twister2 Runner

Apache Beam[apa] is a popular open-source framework that was introduced and

promoted by Google. The main goal of this project is to provide a unified model

for distributed data processing in both batch and stream mode. It has attracted

a large developer community and has seen wide adaptation in the industry and

academia. The major selling point of Apache Beam is that once a program is

developed using its unified API, it can be executed on a multitude of data processing

frameworks without having to do any additional changes. To achieve this, Apache

Beam supports several distributed data processing back-ends, which are known as

Beam runners. Currently over 10 such back-ends including Apache Spark[ZCD+12],

Apache Flink[CKE+15], Google Cloud Dataflow[ABC+15], etc. Supporting many

back-ends and being able to seamlessly switch between back-ends to run a given

program makes Apache Beam an amicable choice for distributed data processing for

many end-users. Figure 4.5 shows the high-level architecture of Apache Beam and

how it provides a unified model to the end-user through various programming API’s

and various execution platforms.

In order to run programs written using the unified API provided by Apache

Beam in other frameworks, each runner includes transformation logic that converts

the program into a program that is understood by the runner’s respective frame-

work. For example, if the program is to be executed on an Apache Spark cluster,

the Apache Beam Spark runner will convert the program into a program written

using RDD’s which is the programming interface of Apache Spark. This is done

programmatically, so the end-user does not need to have any knowledge on how

this is done. For any distributed data processing framework being supported as a

distributed back-end in Apache Beam open ups the possibility to access the vast
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Figure 4.5: Apache Beam Architecture

user base that it boasts easily. With the flexibility and versatility of the Twister2

TSet API we were able to contribute and be accepted as a fully-fledged distributed

data processing back-end for Apache Beam in a relatively short time. Twister2 is

now listed on the Apache Beam homepage[bea] among popular frameworks such as

Apache Spark.

In order to develop a full-fledged Apache Beam runner, there is a set of transfor-

mations that need to be implemented so that Beam programs can be converted into

Twister2 TSet programs. The five major operations that need to be supported are

listed below. Other than these five major transformation primitives, many smaller

requirements need to be met in order to become a fully-fledged Apache Beam runner.

A PCollection is an unordered bag of elements in Apache Beam.
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1. Read - parallel connectors to external systems

2. ParDo - per element processing

3. GroupByKey - aggregating elements per key and window

4. Flatten - union of PCollections

5. Window - set the windowing strategy for a PCollection

4.5.1 Read

The read primitive represents data sources in the Apache Beam. It is used to collect

raw data and connect to external data sources. Beam supports two versions of

read primitives, one for bounded data sources and one for unbounded data sources

(streams). Each need to be implemented by the runner to support batch and stream

data. Within the runner, the read transformer is responsible for converting the beam

data source into a data source supported by that particular runner. In the Twister2

runner this is achieved by transforming the beam data sources into a SourceTSet

in the Twister2 TSet API. Since beam data sources are distributed objects, the

transformed read primitives also need to adhere to the distributed nature of the

data source and support parallelism through data source splits.

4.5.2 ParDO

The ParDO primitive can be thought of as the core data transformation primitive

in Apache Beam; it defines the element-wise transformations that need to be per-

formed on data points. ParDO is the most complex primitives of all the primitives

that a runner needs to support since it acts as a catch-all operation that represents

multiple standard operations. Not only does it represent operations such as map and
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flatmap, it also supports multiple outputs, stateful processing, side inputs, teardown

operations, etc. Therefore in the transformer that converts ParDo primitives into

equivalent counterpart in Twister2 it also needs to support the whole range of func-

tionality. ParDO primitive is implemented using a combination of ComputeTSet

and CachedTSet in the Twister2 runner, while ComputeTSet is versatile enough to

support most of the use cases of the ParDo operation, supporting side inputs require

the use of CachedTSet’s.

Within the ParDo primitive, users are allowed to define the custom processing

logic using the DoFn abstraction; within the transformer logic, DoFn are converted

into Twister2 functions using the function abstractions provided in the Twister2

TSet API. DoFn’s support needs to cover the complete function lifecycle defined by

the Beam. A bundle represents a small batch of data points

1. Setup - Called once per function instance for initialization work

2. StartBundle - Called once per bundle

3. ProcessElement - called for each element

4. FinishBundle - finalizing details per bundle

5. TearDown - Called once per function instance for cleanup

4.5.3 GroupByKey

The groupByKey primitive allows key-value pairs to be collected into groups based

on the key value. This is an essential operation that is required in many machine

learning and data analytic pipelines. Keys in the groupByKey primitive are seen as

a sequence of bytes; therefore, the grouping logic needs to implemented based on

the byte sequence even if knowledge of the key types are available. In the Twister2
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runner groupByKey primitive is implemented using a combination of KeyedTSet’s

and ComputeSet’s.

4.5.4 Flatten

The Flatten primitive is one of the more simple primitives in Beam; as the name

suggests, the function of the primitive is to take a batch of PCollections and flat-

ten them to create a single PCollection that represents all whole batch; however,

windows defined within the data need to be preserved during the transformation.

Within the Twister2 runner, this operation is implemented using union transforma-

tion listed in Table 4.2.

4.5.5 Window

The Window primitive applies a user-defined function (WindowFn) that applies to

each element in a PCollection so elements can be assigned to specific windows in the

outputs of that PCollection. The functionality is somewhat similar to a groupby

operation that is based on timestamps. The Window primitive is implemented using

ComputeTSet, and the WindowFn is defined using a ComputeCollector function in

the TSet API.

Once all the primitives are implemented, the runner needs to pass a rigorous test

suite to make sure that all the edge cases are supported properly. The acceptance of

the Twister2 runner for Apache Beam opens up a wide user base for Twister2 since

it can directly be used with Apache Beam programs. It also validates the versatility

and the extensibility of the Twister2 TSet API since all the Beam primitives were

implementable with no custom changes needed on the Twister2 TSet API side.
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4.6 Evaluation

One of the main goals of developing the Twister2 TSet layer was to provide a

high-level dataflow abstraction to the user while adding as little overhead to the

performance of the program as possible. In Twister:Net [KWEF18] it was shown

that the underlying communication layer performed exceptionally well compared

to other big data processing frameworks and was on par with OpenMPI. However,

the many additional layers that have been added can add significant overheads to

the execution time. Therefore it is important to evaluate the performance of the

framework at the TSet API level. This will also help solidify the effectiveness of the

iteration model adopted in the Twister2 TSet framework.

To thoroughly evaluate the TSet API several applications are developed and

executed in a distributed environment. To compare and contrast with other state

of the art frameworks, identical applications (algorithmically) were developed using

OpenMPI(v4.0.1) and Apache Spark (v2.4). The applications implemented for the

performance comparison are a distributed KMeans algorithm and DAMDS algo-

rithm. DAMDS is a complex algorithm when compared to the more simple KMeans

algorithm, and it shows how well Twister2 TSet API performs for complex machine

learning algorithms. All the execution timing values presented are calculated by

taking the average of 3 runs. Two compute clusters were used to perform the eval-

uation. The first cluster had 16 nodes of Intel Platinum processors with 48 cores in

each node, 56Gbps InfiniBand and 10Gbps network connections. The second clus-

ter had Intel Haswell processors with 24 cores in each node with 128GB memory,

56Gbps InfiniBand and 1Gpbs Ethernet connections. 16 nodes of this cluster were

used for the experiments. Both clusters have network mounted file system (NFS)

for storage requirements. For the experiment results, time taken to initially load
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data into the program is not counted. This is to make sure that the performance

numbers are not affected by the IO performance differences in different frameworks.

Intermediate data is always kept in-memory using a caching function provided by

each function to remove unwanted file IO operations.

4.6.1 K-Means

KMeans is a well known iterative clustering machine learning algorithm. Given a set

of data points, the algorithm finds ”K” cluster centers and assigns the data points to

these to perform the clustering operation. KMeans starts with some initialized val-

ues for the ”K” cluster centers and gradually adjusts the centers to find the optimal

center positions based on the initial center positions. Since this is a highly iterative

but simple algorithm, it is ideal for testing the performance of the framework, and

the iteration model introduced. For evaluation, we use a distributed version of the

KMeans algorithm. In each implementation of the algorithm, caching constructs

provided by each framework was used to cache the input data partitions and the

initial center points.

The distributed KMeans algorithm was executed on a 16 node cluster with a

parallelism of 128 for OpenMPI, Apache Spark, Twister2 Task and Twister2 TSet

implementations; the results are shown in Figure 4.6. A Twister2 Task layer imple-

mentation was tested to observe the overhead added solely by the TSet layer. For

TSet API, both methods listed in Listing 1 and Listing 2 are tested; the latter is

labelled as Twister2 TSet Iterative. Each run was done with 2 million data points

with two features and a varying number of centers starting from 1000 centers and

increasing up to 16000 centers for 100 iterations. As seen in Figure 4.6 Twisters2

Task implementation and the Twister2 TSet Iterative implementation performs on
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Figure 4.6: K-Means job execution time on 16 nodes with varying centers, 2 million
data points with 128-way parallelism for 100 iterations.

the same level as OpenMPI. The base TSet implementation that does not use the op-

timizations done to iterations as mentioned in 4.3.2 performs slightly slower, which

can be attributed to the overhead added because of the repeated creation of the

dataflow graph. However, even in that mode TSet implementation performs signifi-

cantly better than Apache Spark, which is 2-3x slower than the TSet implementation

in each case. These results confirm that the TSet API provides a high level easy to

use programming interface to users while adding very little overhead to the appli-

cation, even when compared to highly optimized HPC implementations of the same

algorithm. It is important to note while TSet based implementation performs on

par with OpenMPI, implementing the distributed KMeans algorithm in OpenMPI is
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Figure 4.7: TSet Iterative K-Means job execution time on 16 nodes with varying
centers, 2 million data points with 128-way parallelism for 100 iterations.

significantly more complex and requires expert knowledge in parallel programming,

while it is much easier to implement the same in Twister2 TSet API. Figure 4.7

shows how the Twister2 TSet implementation performs with increased centroids, as

the number of centers double the total execution time of the algorithm also roughly

doubles as expected because both computation load and communication load dou-

ble.
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4.6.2 Deterministic Annealing Multi-Dimension Scaling(DA-

MDS)

Deterministic annealing multi-dimensional scaling (DAMDS) [RF13] is distributed

multi-dimensional scaling (MDS) algorithm. MDS is a well-established machine

learning algorithm that is used to project high dimensional data into lower dimen-

sions. MDS is useful when high dimensional data needs to be visualized in three

dimensions or two dimensions to analyze the data. DAMDS is a relatively com-

plex algorithm and consumes a large amount of memory since it performs many

matrix operations. DAMDS, as with most MDS implementations, has a compu-

tation and memory complexity of O(N2). Because of this, efficient parallel im-

plementations are needed to execute DAMDS on even moderately large datasets.

This complex algorithm will help evaluate the performance of the TSet API for

complex machine learning algorithm with high computation and memory require-

ments. In order to compare against other frameworks, the DAMDS algorithm was

implemented using Twister2 TSet API, Apache Spark and OpenMPI. In a previ-

ous peer-reviewed publication, it was shown that Apache Spark and Apache Flink

based DAMDS algorithms perform up to an order of magnitude slower than Open-

MPI based implementation[KWEF18]. Figure 4.8 shows the execution times for

DAMDS implementation. The tests were conducted with varying input matrix

sizes ranging from 5000x5000 to 25000x25000 with a parallelism of 128 for all the

runs. Results show that the Twister2 implementation performs on-par with Open-

MPI while outperforming the Apache Spark implementation by a significant margin.

Figure 4.9 show how the Twister2 implementation compares with the OpenMPI im-

plementation. While the Twister2 implementation runtime is slightly large, it is not

a significant difference.
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Figure 4.8: Execution time of DA-MDS with varying matrix sizes

4.6.3 Distributed SVM

Support Vector Machines (SVM) algorithm is a well known and widely used machine

learning algorithm for classification. It is used by many researchers and scientists

in various domain sciences. While SVM can be implemented using many different

approaches, matrix decomposition methods, sequential minimal optimization-based

methods, and stochastic gradient-based methods are the most popular approaches.

Stochastic gradient-based methods have been proven to be efficient both in com-

putation and communication complexity and are an ideal approach for distributed

SVM implementations. For evaluations, the SVM algorithm was implemented us-

ing the stochastic gradient ensemble model. The ensemble model is not a highly
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Figure 4.9: Execution time of DA-MDS with varying matrix sizes

iterative algorithm at a distributed level, weight calculations are done each paral-

lel process for a specified number of iterations, and as a final step, the results are

communicated to synchronize the parallel work performed.

For evaluation, distributed SVM implemented using four frameworks. Open-

MPI implementation of the Distributed SVM was done as the MPI standard-based

implementation; MPI has become the defacto standard for parallel programming

in the high-performance computing domain because of well-established efficiency.

Model synchronization in the OpenMPI implementation is performed using highly

efficient AllReduce communication primitive. The Apache Spark implementation of

distributed SVM was done using the Spark RDD API; the final model synchroniza-
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Figure 4.10: SVM job execution time for 320K data points with 2000 features and
500 iterations, on 16 nodes with varying parallelism

tion is done at the driver program by collecting the results from all the distributed

executors at the end of training iterations. For Twister2, implementations were

done using the Twister2 TSet API and the Twister2 Task API; The task API can

be seen as a programming abstraction similar to Apache Storm. From the evalua-

tion results in Figure 4.10 it is clear that Twister2 TSet implementation performs

better than the Apache Spark implementation; both Twister2 TSet and Twister2

Task implementations are slightly slower than the OpenMPI implementation, which

is to be expected. Since this algorithm only performs local iterations and only per-

forms a single distributed collective communication, overheads due to distributed

communications are minimal. Figure 4.11 show the execution time improvement
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Figure 4.11: Twister2 TSet SVM job execution time for 320K data points with 2000
features and 500 iterations, on 16 nodes with varying parallelism

as parallelism increases. After parallelism of 128, the training time is dominated

by communication times and other initialization times, which is why a significant

improvement in training time is not observed, going from 128 to 256.

4.6.4 Dataflow Node

Evaluating the performance of various machine learning algorithms allows us to get

a good understanding of how the framework performs in many different scenarios.

However, it is also important to understand performance at a more fine-grained

level. One such important test for a dataflow framework is to understand the over-
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heads added to the runtime when a single dataflow node is added to the dataflow

graph. To evaluate this, we created two dataflow graphs with the difference between

the two graphs being a single map transformation that is essentially a dummy map

transformation that simply forwards the input to the next node without any changes

(a no-op transformation). The first graph is ”source-map-allreduce” and the second

is ”source-map-map-allreduce”. Similar graphs were implemented using Twister2

TSet API and Apache Spark RDD API to compare the results. Execution time

was evaluated on 200K data points running for 100 iterations, for parallelism of 128

and 256. The results are shown in Figure 4.12 we can observe a slight overhead

in the execution time in Twister2 and a much smaller overhead in Apache Spark.

This is because Spark optimizes its map operations by pipe-lining consecutive map

operations into a single operation. Even with the overhead, it is clear that Twister2

implementation performs almost an order of magnitude better than Spark. Oper-

ation pipe-lining optimizations and other related execution optimizations will be

added to the Twister2 execution framework in the future to address these slight

overheads.
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Figure 4.12: Execution time for Source-Map-AllReduce (SMA) and Source- Map-
Map-AllReduce(SMMA) graph configurations. With 200K data points and 100
iterations
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CHAPTER 5

DISTRIBUTED DEEP LEARNING - TWISTER2DL

With the immense growth of popularity and adaptation, deep learning has be-

come one of the most researched areas in academia and one of the most sought after

set of skills in the industry. Many companies and institutions have heavily invested

research in this domain resulting in new deep learning models, new frameworks and

improvements being done to existing frameworks and models. More and more data

analytic tasks that were typically done using machine learning algorithms are now

implemented using deep learning/neural network models because they are capable

of producing better results than machine learning algorithms. Up until recently,

deep learning was mostly utilized by larger technology companies running complex

deep learning models, but with the rapid adoption of deep learning for many appli-

cations, more and more organizations have started using deep learning models for

even relatively small data analytic tasks. This has led to increasing demand for using

deep learning models in conjunction with distributed data analysis pipelines. Most

of the popular deep learning frameworks such as TensorFlow and PyTroch mainly

focus on the deep learning aspects and do not provide support for distributed data

pre-processing; because of this, while they are well adapted for developing complex

deep learning models, the data pre-processing would need to be done using a sepa-

rate framework. Resulting in the need to move data between frameworks, which can

be costly. The main goal of Twister2DL is to provide seamless integration between

the high performance distributed data processing capabilities of Twister2 and deep

learning. To this end, Twister2DL provides a deep learning framework that is built

directly on top of the Twister2 TSet API and using Twister2 framework to achieve
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distributed deep learning capabilities.

5.1 Motivations for Twister2DL

There are several motivating reasons for developing both deep learning capabilities

and distributed data processing capabilities in a single framework, which was the

main motivation for Twister2DL; they are as follows.

1. Input data processing

2. Data locality

3. Ease of distribution

5.1.1 Input data processing

The most popular method of testing the performance and accuracy of deep learn-

ing frameworks is to use some benchmark and the data set that accompanies that

data set such as ImageNet[RDS+15], SQuAD[RZLL16], MNIST[LC10], etc. These

datasets have already been curated and explicitly labelled as needed. Hence the

users do not have to process the data before using them as inputs into the deep

learning models to train/evaluate them. Using such curated datasets is justified

when the goal of the research is to improve some deep learning model, to test the

performance of a new framework or evaluate improvements made to an existing

framework. In real-world applications, in many cases, the datasets are in raw form

and need to be curated and labelled as needed. In batch data, the process might

only need to be done a single time, but for streaming data the pre-processing steps

would need to be done continuously. When a considerable amount of pre-processing

needs to be done on the dataset before using it with the deep learning program, it

makes sense to adopt a framework that provides both distributed data processing
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capabilities and deep learning capabilities. Datasets used for deep learning tend to

be large and raw data is typically even larger because they need to be cleaned and

curated, therefore in most cases, the data pre-processing cannot be done on a single

machine, which makes the desire for a distributed data processing framework even

stronger.

5.1.2 Data locality

When working with large amounts of data, as done in most deep learning appli-

cations, moving the data around can be a costly operation, both in terms of time

and money. The financial cost is especially important if cloud services are used

since they typically charge based on the amount of data that is transferred. Since

real-world data typically needs to pre-processed, if the deep learning applications

are executed on a separate set of resources than where the data processing was

done, the curated data would need to be moved between the two locations. In some

cases, the pre-processing step may need to be performed multiple times while the

application is going through development, costing both time and money. In such

cases having the capability to perform the deep learning applications on the same

framework will allow processed data to be used without the need to transfer data

unnecessarily. Resulting in saved time and money.

5.1.3 Ease of use

Having deep learning capabilities in the distributed data processing framework

makes it much easier to develop an end to end data analytic pipeline complete

with deep learning models. The user does not have to worry about maintaining two

clusters, one for data processing and another for deep learning. With Twister2DL,
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all the cluster setup steps would be made easier since Twister2 supports several

resource management frameworks such as Slurm, Kubernetes, Nomad, etc. Another

important note to make is that while popular deep learning frameworks such as

PyTorch do have distributed modes, they are notoriously hard to set up on a large

cluster without expert knowledge.

5.1.4 Performance

There are currently several solutions that can be used to integrate data processing

and deep learning. The first option would be to use the ”connector approach”.

There are several connectors that have been written to enable deep learning on

CaffeOnSpark[Cafb], TensorFlowOnSpark[Ten], TFX[BBC+17] and DeepSpark[KPJY16]

are some such connector based solutions. The main drawback of such connectors

is the boundary that exists between the two frameworks, even though they run

on the same set of resources. Moving data between different framework results

in inter-process communications, additional serialization/deserialization operations

and even file operations for persistent. This causes significant overheads when ex-

ecuting an end to end application. The issues faced by connectors was mostly

addressed for Apache Spark with the introduction of BigDL[DWQ+19] by devel-

oping a deep learning framework directly on top of the Apache Spark framework

which is similar to the approach taken by Twister2DL with the Twister2 frame-

work. However, since BigDL runs on Apache Spark, its performance is subject to

the performance of the Spark framework, especially for communication operations.

As shown in Twister:Net[KWG+18] and by the results shown in section 4.6 it is

clear that much Twister2 boasts significantly higher performance numbers, hence

developing a deep learning framework on top of Twister2 would allow Twister2DL
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to leverage the superior performance to deliver a faster deep learning framework.

5.2 Twister2DL execution model

Figure 5.1: Twister2 execution model

Twister2DL implementation follows the basic strategies and principles of the

BSP model to keep in line with the Twister2 framework. Figure 5.1 shows how dis-

tributed training is performed in Twister2DL. Currently, Twister2DL only supports

data parallel mode, and hence the discussion will be based on the assumption that

training is done using the data parallel mode. In Twister2DL each parallel training

task is spawned as a Twister2 process, each will be assigned an global rank ranging

from 0 to N-1 (for a parallelism of N). Each process will have its own replica of the

model that needs to be trained. Unlike framework such as BigDL[DWQ+19] the

model does not need to be broadcast from a central driver/master program; since

Twister2 follows the BSP model, each parallel worker will build the model replica

locally. Once the data partition is loaded, each parallel process will calculate the

local gradient values for the model based on the input data partition. Once all the
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parallel processes complete the local gradient calculation, an AllReduce operation

will be used to aggregate all the local gradients and calculate the global gradient.

Since this is an AllReduce operation, once it completes, each process will have iden-

tical copies of the global gradient. Next, the weights of the model will be updated

using the optimization method specified by the user and the global gradient. This

process iterated until the conditions set by the user is met. The stopping conditions

may be some error threshold or a specific number of iterations/epochs. Once the

training is complete, the model will be saved/persisted at the process with rank

0. The pseudo-code for how data parallel training works in Twister2DL is listed in

Algorithm 3

Algorithm 3: Twister2DL data parallel training

1 // N parallel workers;

2 for rank=0 to N - 1 do

3 build model;

4 while stopping condition is incomplete do

5 read latest weight;

6 read data from data partition;

7 perform forward-backward to calculate local gradient;

8 call AllReduce to calculate global gradient;

9 update weights according to optimizer method;

10 end

11 if rank = 0 then

12 output/save trained model;

13 end

14 end
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5.3 Twister2DL implementation

The implementation of Twister2DL is done entirely using the Twister2 TSet frame-

work. Figure 5.2 shows the dataflow graph that is associated with the training

phase of a deep learning model. The input data is structured as mini-batches or

samples and taken in as the starting point of the dataflow graph in the form of a

SourceTSet. The framework automatically distributes the data to all the parallel

instances that are being executed. Each data partition is cached locally to im-

prove the performance of the training operation since the data will be reused when

running several epochs. The modal that needs to be trained is also handled as a

TSet; however, in this case, each distributed instance of the TSet will have identical

values. The model is also cached to make sure the model is not built for each itera-

tion. To perform the actual training of the model, a special map operation is called

on the input data. This map operation contains the logic to perform the forward

and backward passes on the model; the cached model TSet is added into this map

transformation as an input. Once the iteration is completed, and the local gradient

values are calculated, the framework calls an AllReduce operation to aggregate all

the local gradient values. The results of the AllReduce operation is fed into a final

map transformation which calculates the final global gradient required for the next

training iteration. Finally, each parallel worker updates the weight values of the

local model based on the optimizer that is specified by the user. If the stopping

conditions are met, the model can be saved for inference. If not, the next iteration

of the training is performed. For the next iteration, the map transformation will

have access to the updated weight parameters. In order to optimize the performance

of the training phase, the framework relies upon the highly optimized Intel MKL

and Intel MKL-DNN libraries to perform core computations.
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Figure 5.2: Twister2 Dataflow graph

5.3.1 Tensors

Tensors are a generalization of vectors and matrices, which are widely used in the

machine learning and deep learning domains. Most deep learning frameworks sup-

port tensors as a core part of the framework. In many frameworks, tensors are the

main building block and the main medium used to store input data and parameters

within the framework. In order to have an efficient framework, the tensor operations

should also be highly optimized since the bulk of the calculations are done through

tensor arithmetics. Twister2DL supports tensors natively to make sure the ten-

sor operations do not carry any unwanted overheads. The tensor is modelled after
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the tensor package in Torch[Tor]. In order to obtain the best performance for the

tensor operations, Twister2DL leverages Intel MKL[inta] library to perform highly

optimized arithmetic operations.

Tensors are essentially n-dimensional data structures that contain data from a

single scalar type such as Int, floats, double, etc. Following the models defined

in the Torch[Tor] tensor package, tensors in Twister2 consist of two main parts,

data and metadata that describe the structure of the data. Because of how they

are constructed, tensors can represent standard types such as vectors and matrices

straightforwardly, as shown in Figure 5.3.

1D Tensor 2D Tensor 3D Tensor

Figure 5.3: Data structures represented using Tensors

Tensors in the twister2 tensor package are built up of several key components;

the separation of data and meta-data of the tensors allow the framework to easily

recompose tensors into different layouts and views. In order to reshape a tensor,

the framework only needs to alter the size and stride metadata of the tensor which

means no data copying needs to be performed, saving valuable compute and memory

resources.

1. data - A 1D array of either floats or doubles, this contains the actual data of

the tensor.

2. size - A array that contains the sizes of each dimension of the tensor, For

example a 3D tensor will have an size array such as [Depth, Height, Width]
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3. stride - A array t that defines how the data layout is defined in physical

memory and helps calculate the location of tensor values when needed. For

example if the data is stored contiguously in memory the stride array would be

[Height*Width, Width, 1]. The ”1” at the final index means that each element

is placed contiguously in memory.

Tensor Operations

Tensor operations are the core computational kernels that perform all the required

calculations for model training and inference. Therefore it is vital that tensor op-

erations are highly optimized. To this end, Twister2 supports optimized imple-

mentations of tensor operations for both floating-point precision operations and

double-point precision operations. It is important to have separate implementations

because the number of floating-point operations done in floating-point precision cal-

culations are half of what is done for double point precision calculations. Internally

to boost performance, the framework leverages highly optimized math kernel opera-

tions provided by Intel MKL [inta] which will be discussed in more detail in section

5.3.2.

5.3.2 Optimized Kernel Operations

For deep learning workloads, the bulk of the computation time is spent on vector

operations. Therefore improving performance on vector operations can significantly

improve the performance of deep learning frameworks. This is why libraries such

as BLAS play a significant role in deep learning frameworks. In order to improve

math kernel operations in Twister2DL internal math operations are implemented

using Intel MKL and Intel MKL-DNN libraries. Both these libraries are geared
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towards optimizing CPU operations which aligns with the computation requirements

of Twister2DL

Intel MKL

Intel MKL, recently named as oneAPI Math Kernel Library[inta] is a highly opti-

mized math library. It provides enhanced math routines to improve the performance

of applications and frameworks; this is especially important for machine learning and

deep learning frameworks. BLAS, LAPACK, vector math and random number gen-

eration functions are among the highly optimized core functions that are provided

by the Intel MKL library. The library is specially optimized for Intel hardware to

obtain the maximum possible performance from Intel hardware. The tensor opera-

tions implemented in Twister2DL use Intel MKL extensively, especially for vector

and matrix operations. Intel MKL library is written in C++; therefore, Twister2DL

connects to the library through a Java binding that is provided by Intel. The kernels

calls do not require any additional processing; therefore is easy to use and integrate

with the framework.

Intel MKL-DNN

Intel MKL-DNN[intb] which has been recently renamed to Intel oneAPI Deep Neural

Network Library (oneDNN) [intb] is a library specifically developed to enhance

the performance of deep learning frameworks. This allows the same API’s to be

used regardless of the hardware that it runs on. The hardware that it runs on

can be CPU’s or GPU’s or even other hardware devices once support is added in

the library. It provides a set of primitives which can be used in deep learning

frameworks. And within the library, these primitives have been highly optimized to

run on Intel hardware. Functions such as activation functions, batch normalization,
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convolutions, etc. are provided by the framework. This allows developers to focus

on the other aspects of the deep learning framework.

One drawback when using the Intel MKL-DNN library is that it requires custom

memory layouts to be implemented on the framework side in order to be used. Ten-

sor operations that used Intel MKL internally cannot be simply re-routed to use the

math kernels provided by Intel MKL-DNN. Unlike in MKL, MKL-DNN implements

higher-level kernel operations specifically built for deep learning. Element-wise op-

erations such as RELU, Normalization layers and Convolution layers are some of

the kernels supported by MKL-DNN.

In order to support MKL-DNN, a conversion layer was added in Twister2DL;

once the user defines the model the framework builds an intermediate representa-

tion to convert the model into a layout that can be used with MKL-DNN. The

execution graph is built using the intermediate representation. The intermediate

representation is also responsible for building the memory layouts that are needed

by MKL-DNN; once the memory layouts are built, relevant kernels can be invoked.

5.3.3 Forward and Backward Propagation

When looking at how neural networks are designed and trained the flow can be

broken down into the following steps.

1. Define Model network

2. Forward propagate through network with input

3. Calculate loss based on loss criterion

4. Backpropagate starting from the loss to calculate the gradients for each layer

5. Update weights based on learning rate and gradient
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6. Iterate from the start till end condition

In twister2DL forward propagation and backward propagation is handled by

generating a forward and backward execution graph based on the model that is

defined by the user. Each layer internally has the computation logic defined for

the forward calculation and the backward gradient calculation. The automatically

generated execution graph for gradient calculation can be thought of as a layer level

”autograd” similar to the full-blown autograd systems available in frameworks such

as PyTorch, but less versatile.

5.4 Twister2DL Programming Interface

In order to make the process of building a deep learning model as smooth as possible,

the programming interfaces provides easy to understand constructs that follow the

existing popular frameworks as closely to make the transition easy. In order to

perform training using the Twister2DL framework, users need to define the following

main components. We will look at how each of these are defined using a simple

autoencoder network as an example. The code for constructing the autoencoder

code and training it is defined in Algorithm 4, The code segment does not list all

the details of the actual code, only the lines needed for the explanation.

1. Optimizer Type - Distributed or Local

2. Input Data

3. Network model

4. error criterion

5. optimizer method - Adam, Adagrad, etc.

6. stopping condition
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5.4.1 Optimizer

The optimizer represents the execution unit that takes in the model, data and other

relevant information to perform the training and inferencing operations. Internally

the optimizer handles the details of how the framework organizes and executes the

deep learning application. Currently, Twister2DL supports two optimizer imple-

mentations. They are namely local optimizer and distributed optimizer.

Local Optimizer

The local optimizer is made available to the end-user mainly for testing and debug-

ging purposes. This optimizer is lightweight and can be used to run test models or

small models on a single machine or laptop device. The local optimizer does allow

users to run parallel training, which is handled internally using the Twister2 stan-

dalone cluster mode. It is not advised to run large models using the local optimizer

since it is not optimized or designed to handle such workloads.

Distributed Optimizer

The distributed optimizer has been designed and developed to run large deep learn-

ing applications on compute clusters. The optimizer is designed to run on the

Twister2 cluster to which the deep learning job was submitted. Internally the dis-

tributed optimizer handles all the required model and local data caching to improve

runtime performance of the application. In addition to that, several runtime opti-

mizations are programmed into the distributed optimizer. One such optimization

is the usage of a custom data packer. Data packers are extensions supported by

Twister2 which allows users to define how data needs to be packed when serializa-

tion and de-serialization are performed on data before it is sent over the communi-

cation channel. This helps reduce the size of the data being transmitted through the
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communication channel and/or reduce the time that the frame takes to perform the

serialization and de-serialization operation; both are typically expensive operations.

The distributed optimizer leverages this feature to define how the local gradients

are to be packed to reduce communication overheads.

5.4.2 Input Data

In order to perform distributed data-parallel training efficiently, the framework needs

to handle input data efficiently. The framework is responsible for assigning data

partitions to each parallel process and making sure each process only loads the

allocated data partition. Local data also needs to be cached in-memory whenever

possible to avoid the need to read data from stable storage multiple times. File

operations are generally extremely expensive operations and can slow down the

application.

In Twister2DL input data is handled through extensions that are built on top

of the Twister2 TSet API. All input data is handled as special SourceTSet’s. The

framework provides several convenience methods through a data set factory API

which natively supports data types such as CSV files and other delimited data files.

The API also provides the ability for the user to define custom implementations

for data loading by extending extension interfaces that are supported by Twister2

TSet API. The Twister2 framework internals will automatically handle details on

how data is partitioned and distributed among all the parallel workers. Once the

data is read from the raw data source, they are converted into either ”Sample”

or ”Minibatch” sourceTSet’s. This required since the optimizer expects data to

provided as one of these two options. When using the provided data API methods,

these steps are also handled transparent to the user.
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Sample

A ’Sample’ represents a single data point in a deep learning input dataset. A sample

is made up of a feature tensor and a label tensor. For example, a single image and

the associated category is a sample. In most cases, it would make sense to use the

’Minibatch’ data type.

Minibatch

A ’Minibatch’ represents a batch of input data, similar to the sample, the minibatch

is also constructed with a feature tensor and a label tensor. The difference between

sample and minibatch is that the minibatch contains an extra dimension in the

tensor that corresponds to the minibatch size. For example, if the minibatch is set

to 32 in an image data set, the minibatch data object would have the first dimension

size of 32 and the other dimensions to represent the image as required.

5.4.3 Network Model

The most important component of the deep learning application is the network

model. Twister2DL API allows users to define the network model by defining a

set of layers and stacking them up to create the network model. The list of layers

that are currently supported in Twister2DL is listed in Table 5.1. In addition

to the currently supported layers, the framework provides well-defined interfaces

that can be extended to add new layers into if needed. There are many more

layers that need to be implemented in order to make the framework more complete.

Implementing layers require more engineering work and will be added in the future

as the framework is adopted and developed. Table5.1 also indicates if the layers

are supported with MKL and/or MKL-DNN libraries. Currently, only a handful
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Layer Description MKL MKL-DNN

Sequential A special layer that is used to construct
the network by concatenating layers se-
quentially

true true

Reshape Used to reshape input tensors as
needed, such as reshaping an image into
a vector

true true

Linear Applies a linear transformation on the
input data

true true

Relu Applies rectified linear unit function
element-wise on the input

true true

LeakyRelu Similar to Relu function with the addi-
tion of a small positive gradient when
the unit is not active

true true

Logsoftmax Applies logsoftmax function to the in-
put data

true false

Sigmoid Applies the Sigmoid function element-
wise to the input data

true false

Dropout Sets sections of the input data to zero
using a Bernoulli distribution. Each in-
put element is has a probability P of
being set to zero

true false

SpatialConvolution Applies 2D convolutions on the input
data. Input data is asumed to be 4D
or 3D and the convolution is applied to
the last two tensors. Padding can be
defined to handle the edges

true false

SpatialMaxPooling Applies 2D max pooling operation on
the input data

true false

Table 5.1: Twister2DL supported layers and available implementations

of layers are supported for MKL-DNN because of the implementation complexities

involved in developing MKL-DNN supported layers.

5.4.4 Error Criterion

The error criterion a.k.a loss criterion is used evaluate the candidate solution at

the end of the forward propagation. The loss calculated using the loss criterion is

then used to perform backward propagation on the network. TwisterDL provides
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several error criterion’s which the user can use out of the box. And also provides

extension interfaces to implement custom loss functions when existing criterion are

not sufficent.

5.4.5 Optimizer Method

The optimizer method refers to the method that is used to update parameters as

the model training is performed. Gradient descent has become the defacto stan-

dard for neural network optimization as well as for many other machine learning

algorithms. Various frameworks implement different optimized versions of gradient

descent, some well known implementations of gradient descent for deep learning are

Adam, Adagrad, Adadelta, etc. While no one implementation is better than other

for all use cases, each have strengths and weakness of their own. In general gradient

descent has 3 variants. Which are described briefly below.

Batch gradient descent

In batch gradient descent each step takes all the data points in the dataset into

consideration before the parameters of the model are updated. This is a very slow

optimization method especially for large datasets since each iteration needs to pro-

cess all the data in the dataset. However batch gradient descent results in a very

smooth gradually decreasing graph for the cost/loss when mapped against epochs.

Batch gradient descent is guaranteed to reach a global minimum for convex error

surfaces and will reach a local minimum for non-convex error surfaces. However in

practice batch gradient descent is rarely used for large datasets because of it takes a

relatively long time to converge. The other two gradient descent are preferred over

batch gradient descent most of the time.
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Stochastic gradient descent

Stochastic gradient descent (SGD) can be thought of as the polar opposite of batch

gradient descent. In stochastic gradient descent for each data point we pass it

through the network and calculates the gradients to update the parameters before

the next data point is processed. With stochastic gradient descent the cost/loss does

not gradually decrease, this is because parameters are update after processing each

data point. As a result the cost/loss keeps fluctuating as the parameters are updated

with each iteration and step. Therefore it is not guaranteed that this would method

would reach a local minimum. In the long run it will generally decrease the cost/loss

and converges faster especially for larger datasets. stochastic gradient descent is also

applicable to online learning applications. It has been shown that the fluctuating

nature of the SGD can be mitigated to some extent by decreasing the learning rate

as training progress.

Mini-batch gradient descent

Mini-batch gradient descent can be placed in between batch gradient descent and

SGD. With mini-batch gradient descent n data points are chosen at a time and at

each step the parameters are updated based on those n data points. This removes

results in smoother cost/loss decrease compared to SGD. Another major advantage

of mini-batch gradient descent over SGD is that in the implementation, frameworks

can utilize vectorized implementations for forward and backward calculations. This

can boost the performance of the training significantly. Because of mini-batch gra-

dient descent combines the best of both worlds it is the most widely used gradient

descent variant of the 3.

However plain mini batch gradient descent does not guarantee good convergence

due to several key challenges.
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1. Identifying the correct learning rate can be difficult, A small learning rate can

result in a slow convergence and a large learning rate can cause the cost/loss

function to fluctuate and even diverge. Learning rate schedules [DCM+92] are

able to mitigate this issue to some extent by changing the learning rate as

training progresses, however these generally need to be defined in advance and

are not learnt based on the dataset.

2. The learning rate applies to all parameters equally. This might not be ideal

for some scenarios, For example if the training is done with sparse data, it

would be desirable to apply higher learning rates to features that appear less

frequently.

3. As with SGD, mini-batch gradient descent can get stuck in local minima, for

non-convex error surfaces.

In order to tackle the challenges mentioned above and to improve various other

factors of mini-batch gradient descent many optimized mini-batch gradient descent

algorithms have been in introduced by various frameworks. Twister2DL implements

several such popular algorithms.

Adam

Adaptive Moment Estimation (Adam) [KB14] is a well-known gradient descent op-

timization algorithm; it is simple to implement and had very little memory require-

ments. Implementations of Adam is available in most deep learning frameworks due

to its popularity. Adam also calculates adaptive learning rates for each parameter

which helps address issues with the plain mini-batch gradient descent model. It

also uses and keeps track of an exponentially decaying average of prior gradients.
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In [KB14] the authors show that the algorithm works well in practice compared to

other gradient optimization models.

Adagrad

Adagrad[DHS11] is another well-known gradient descent optimization algorithm

that is implemented in many frameworks. Adagrad is especially suited for sparse

data because it adapts the learning rate for parameters based on the occurrence fre-

quency of features related to a given parameter. For example, adagrad will assign

higher learning rates for parameters associated with features that infrequently occur

in data and assign lower learning rates to parameters associated with features that

frequently occur in the data.

Adadelta

Adadelta[Zei12] is an extension of adagrad algorithm, which aims to build upon

adagrad by fixing a few inefficiencies of adagrad. Adadelta aims to reduce the fast,

monotonically decreasing nature of the learning rate in adagrad. Adadelta restricts

the number of past gradients that are accumulated as opposed to adagrad, which

has no such limit.

RMSprop

RMSprop[HSS12] was introduced by Geoffrey Hinton; it is not a published optimizer.

However, RMSprop has gained popularity and is implemented in many deep learning

frameworks. Similar to Adadelta, RMSprop aims to solve the diminishing learning

rate observed in Adagrad.
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5.4.6 Stopping condition

The stopping condition defines when the training iterations should stop. Currently

Twister2DL supports 3 stopping conditions.

1. Max Iteration - stop training once a maximum number of iterations is reached

2. Min Loss - stop training when the loss value reaches the defined min value

3. Max Epoch - stop training if the maximum number of epochs is reached

Algorithm 4: Twister2DL data parallel training for Autoencoder

1 // Create input data

2 SourceTSet<MiniBatch> source =

DataSetFactory.createMiniBatchDataSet(env, dataFile, miniBatchSize,

dataSize, parallelism);

3 // Define network model

4 Sequential model = new Sequential();

5 model.add(new Reshape(new int[]{features}));
6 model.add(new Linear(features, l1));

7 model.add(new ReLU(false));

8 model.add(new Linear(l1, l2));

9 model.add(new ReLU(false));

10 model.add(new Linear(l2, l1));

11 model.add(new ReLU(false));

12 model.add(new Linear(l1, features));

13 model.add(new Sigmoid());

14 // Define loss/error criterion

15 AbstractCriterion criterion = new MSECriterion();

16 // Define the Optim method

17 OptimMethod optimMethod = new Adam();

18 // Define optimizer with the details

19 Optimizer<MiniBatch> optimizer = new DistributedOptimizer(env, model,

source, criterion);

20 optimizer.setOptimMethod(optimMethod);

21 optimizer.setEndWhen(Triggers.maxEpoch(epoch));

22 optimizer.optimize();
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Line 2 creates the input dataset using the ”DataSetFactory” class. To create

an input dataset you need to pass in several parameters to the function; the exact

parameters may differ based on the API call. ”env” is the Twister2 environment

that is used during the execution, this is an object that is created for any Twister2

application. Next, ”dataFile”, ”miniBatchSize” and ”dataSize” are values needed

to create the soureTSet, as the names suggest these specify the data file (CSV file in

this case) the size of the mini-batch which is to be used during training and the total

size of the input dataset. The final parameter which is passed in is the parallelism,

this dictates the number of parallel tasks that the execution happens with. Lines

4-13 defines the network model, which is an autoencoder in this case. Twister2DL

has a set of defined layers that the user can use to develop the network. If a layer

that is needed by the user is not defined in the current API, Twister2DL has been

developed in an extensible manner that the end-user can add custom layers to the

framework by extending the proper API interface classes. If the features, l1 and l2

are set to 12, 8 and 3, respectively, the network created in Lines 4-13 is illustrated in

Figure 5.4. Line 15 defines the error/loss criterion to be used to calculate the error

of the network, for this mean squared error is used. In line 17, the optimizer method

that is used to update the weight parameters based on the calculated gradient is

defined. Finally, all the details are passed to the DistributedOptimizer at lines

19-21. Twister2 supports two optimizers which are the LocalOptimizer and the

DistributedOptimizer. The local optimizer is suitable for debugging and initial

tests on a single machine. The DistributedOptimizer runs on the Twister2 cluster

to which the job is submitted. At line 21 the code sets the stopping condition

which will be used to determine when the training phase will be completed. In this

example, it is set to the given number of epochs. Once all the required objects have

been defined, the training process will start once line 22 is executed.
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Figure 5.4: Simple Autoncoder network layers

5.5 Evaluations

In order to test the efficiency of Twister2DL, several tests where done and compared

against Intel BigDL[DWQ+19] and the popular PyTorch framework. The compar-

isons are made against Intel BigDL since it is a popular framework that provides

similar functionality to Twister2DL, that supports an end to end distributed data

processing pipeline including deep learning. Twister2DL does not currently support

GPU’s which is also the case for Intel BigDL. For more transparency and insight, we

also evaluated against PyTorch since it is the most prevalent deep learning frame-

work in the domain. However, it is important to keep in mind that PyTorch only

provides deep learning capabilities and does not provide distributed data processing

capabilities; therefore, it does not have any of the dataflow related overheads. Addi-

tionally, running distributed data parallel workloads with PyTorch require manually

created and executed scripts on each node, in both Twister2DL and BigDL, a single
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command will transparently handle the parallel execution of workers on each node.

Evaluation runs were done on a cluster with 12 nodes of Intel Platinum processors

with 48 cores in each node, 56Gbps InfiniBand and 10Gbps network connections.

Each value presented is obtained through an average of 3 independent runs.

5.5.1 The effect of programming languages on runtime per-

formance

Before we look into the performance number between different frameworks, it would

be worthwhile to take a quick look at the effect different programming languages

have on runtime performance of a framework. In the context of this research, the

main languages that are involved are Java, Scala, Python and C++. Java is the main

language used to develop Twister2 and Twister2DL. Scala is the core language used

in Intel BigDL. Python and C++ are the core languages used on PyTorch. Twister2

and Spark both do have Python API’s, but the core runtime is not implemented

using Python. First, looking at Java and Scala, they are quite similar in construct;

both run on the JVM hence have comparable performance in most cases; therefore,

we will mainly compare Java, Python and C++.

While each language has its pros and cons, in term of runtime performance

Java and C++ are considered to be faster languages than Python. One of the

main aspects working against Python is that it is an interpreted language, therefore

unlike Java and C++, which compile the code into an intermediate state one time,

Python has to perform this for each run which adds a large overhead. Between Java

and C++ the comparison is much more nuanced; while one may be faster in some

aspects, the other can be faster in others. For example, in [EKWF16] the authors

show that Java can obtain C level performance with proper optimizations like the
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use of JIT. However, memory management of Java using the garbage collector is

considered to be less efficient than what can be achieved in C++. Since C++ allows

for more fine-grained control in areas such as memory management in general, highly

optimized code can be written in C++ that can outperform Java. This is especially

important in deep learning frameworks to develop highly optimized kernel codes. In

order to achieve comparable performance, most if not all Python-based frameworks

rely on native code libraries and kernels written in C++ to do most of the heavy

lifting. This is the strategy used by PyTorch, while the framework is written in

Python, it mostly acts as a glue code, and all the computationaly heavy tasks

are done using C++ code; therefore performance-wise, PyTorch does not have any

drawbacks caused by Python.

Twister2DL also leverages kernel code libraries written in native C++. This is

done through the use of Intel MKL libraries which are written in C++. This allows

Twister2DL to alleviate some of the overheads caused by the JVM during runtime.

However, all the other dataflow features are implemented on pure Java therefore,

the framework does suffer from some overheads caused by the JVM. This is made

evident to some extent with Cylon [WPA+20], which is a framework developed by

the authors as a follow-up project to Twister2 with a C++ core; Cylon provides

a subset of Twister2 capabilities. For the supported operations, Cylon is able to

outperform Twister2 due to the excellent memory management and highly optimized

code.

5.5.2 Autoencoder

Autoencoders are a well-known network model used in deep learning for various

tasks. To evaluate the performance of Twister2DL, we implement a couple of simple
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autoencoders in both Twister2DL, BigDL and PyTorch to observe the execution

times.

The first experiment was done to evaluate how each framework performs with

increased workloads in a distributed setting. The training was performed on 10

compute nodes, with each node running four processes, amounting to a parallelism of

40. The autoencoder had 9 layers having 1024, 768, 576, 432, 324, 432, 576, 768, 1024

units in each layer respectively. Relu was used as the activation function for the

autoencoder. Training was done with Adam as the optimizer and mean square error

as the loss criterion. The data size increased from 320K data points to 1280K data

points. The mini-batch size is set to 8000 data points in all the runs. The training

is done for 100 epochs. Each runtime depicted in the graph is taken from an average

of 3 identical runs. The results of this evaluation are summarized in 5.5. From the

results it is clear that Twister2DL performs better than Intel BigDL framework; for

320K data points BigDL takes roughly 40% more time. PyTorch performs better

than both Twister2DL and BigDL; this is expected since PyTorch is a framework

that is dedicated for deep learning and implemented using optimized c++ kernels.

However, being able to perform with only a 20-25% execution time difference while

providing all the dataflow capabilities mentioned in earlier sections is encouraging.

Twister2DL is able to further improve training performance by leveraging its

MKL-DNN support. Figure 5.6 show the evaluation results, which also include

executions done with MKL-DNN enabled in Twister2DL. While Pytorch does sup-

port MKL-DNN to optimize computations, currently, that features does not work

for distributed data parallel (DDP) jobs. BigDL also supports MKL-DNN; how-

ever when executing the experiments with the setting enabled, execution time in-

creased. We suspect this might be caused by some bug in the BigDL framework

since, theoretically, it should improve performance; therefore, the results of BigDL
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Figure 5.5: Training time for varying data sizes with different frameworks for 9 layer
autoencoder. 100 epochs, mini-batch size 8000, parallelism 40

with MKL-DNN enabled are not presented in the evaluations. As seen in the results,

MKL-DNN is able to provide an additional 10-15% performance improvement for

Twister2DL. For 1280K data points Twister2DL only takes a 12.6% performance

hit compared to PyTorch, while BigDL takes a 53.0% performance hit.

The two main components that contribute to the training time is the computa-

tion time and the framework overheads. Compute time refers to all the calculations

that need to be done for forward propagation, backward propagation and other

gradient calculations. The framework overheads include the time taken to commu-

nicate between parallel processes to synchronize and share intermediate data. In

deep learning, local gradients which are shared among parallel workers at each it-

eration. Figure 5.7 shows a breakdown of the two components for each framework.

As expected PyTorch has minimal overheads since the only overhead it incurs is

the gradient communication. For Twister2 and BigDL it is slightly more complex.
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Figure 5.6: Training time for varying data sizes with different frameworks for 9 layer
autoencoder. 100 epochs, mini-batch size 8000, parallelism 40

Since both frameworks support dataflow model, there are several layers that are

in place between the application logic and the execution to support the dataflow

model. These layers add more overhead during execution time. First, looking at

the compute times, all frameworks have roughly equal compute times, Twister2DL

is written in Java which is generally slower than c++ which is used in PyTorch

for the computation kernels; however, the use of MKL libraries have enabled the

framework to match the computation performance of PyTorch, with MKL-DNN en-

abled Twister2DL is able to outperform PyTorch compute time by roughly 12-14% .

Looking at the overhead times, Twister2DL has significantly lower overheads when

compared with Intel BigDL. The lower overheads observed in Twister2DL can be

attributed to the BSP style approach taken by Twister2DL and the highly optimized

communication operations in the Twister2 framework.

Scalability is one of the most important aspects of any distributed framework.
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Figure 5.7: Execution time breakdown for 9 layer AE training with different frame-
works with 640K,1280K data points on 40 parallel workers

In an ideal framework, the time taken to process a job would half when the number

of parallel workers is doubled for the same dataset. However, in practice, it is not

possible to achieve a perfect speedup due to various overheads and inefficiencies.

In order to evaluate the scalability of Twister2DL another set of experiments were

performed. In this experiment, an autoencoder with an input size of 2048 and 11

layers (including the input and output layers) was trained with a dataset of 2.3

million synthetic data points. Parallelism was increased from 36 workers to 288

workers, doubling each time. For each run the total batch size was kept at 288K,

which meant the mini-batch size was 64K when running with 36 workers and 8K

when running with 288 workers. Keeping the total batch size constant allows the

number of iterations to be constant throughout all the runs. The training was done
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for 10 epochs. The results of the evaluation are shown in figure 5.8. Each point in

the graph was calculated from an average of 3 identical runs. The results show that

the training time decreases with the number of workers. From 36 to 72 workers, the

training time decreases by 1.75x, which is good. However, the decrease from 144 to

288 workers is only around 1.2x; this is because the amount of work allocated for

each worker per iteration is small; hence the reduction in computation time is offset

by the increase in other overheads in the system to some extent.

Figure 5.8: Training time for 11 layer AE with increasing parallelism, 2.3 million
data points and 10 epochs

5.5.3 Convolutional Neural Network

Convolutional Neural Networks or commonly known as CNN’s is a widely used

neural network model in the deep learning domain. CNN’s are most well known

for image related deep learning applications such as image recognition applications.

They are good at learning patterns in grid-like data like images or time series. At
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their most basic form, CNN’s are constructed using convolution layers and max-

pooling layers. Similar to weights in the MLP models CNN’s learn a set of filters

and weights that embed patterns present in the training image data.

MNIST [LC10] is a well-known image data set that contains a set of handwritten

digit images. The dataset has 70K images where each image is a 28x28 pixel image.

This dataset is widely used to evaluate image classification networks by training the

network with 60K images and evaluating the accuracy based on the predictions for

the other 10K images. Figure 5.9 shows a network model that is used to perform digit

recognition on the MNIST dataset. Since the aim of the evaluations for Twister2DL

is to access its performance, the model has been chosen just for that and not based

on the result accuracy of the model, as there could be better models that produce

higher accuracy numbers. The code that needs to be written to implement this

network in Twister2DL is listed in Algorithm 5. The users simply need to define the

network, and the framework will internally do all the additional work transparent

to the user.

Figure 5.9: Convolutional Neural Network (CNN) for MNIST handwritten digit
image data classification
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In order to evaluate the performance of Twister2DL the same model was im-

plemented in both Intel BigDL and PyTorch. Again PyTorch is only used as a

reference since it is not functionally the same as Twiter2DL and BigDL. The per-

formance evaluation is mainly focused on how well Twister2DL performs against

BigDL. In order to be able to change the number of data points during evaluation,

synthetic data is used instead of the actual MNIST data set. Since the accuracy

of the trained model is not important in this context the use of synthetic data is

justified. For the first set of experiments, the model is trained on 12 nodes with

each node running 4 workers using the distributed data parallel approach. Training

performed for 100 epochs, the number of images in the dataset is increased step-wise

from 60K to 240K to observe how the training time increases with increased data

load. The mini-batch size is set to 256 for each run. The results of the evaluation

are shown in Figure 5.10. Each data point represented in the graph is obtained from

an average of 3 identical runs.

From the results, it can be observed that Twister2DL performs significantly

better than Intel BigDL. For 60K images, BigDL took roughly 56% more time for

training. As expected PyTorch performed better than both dataflow frameworks.

However, Twister2DL is able to perform competitively. This, considering the addi-

tional overheads in the framework that are needed to provide the ease of use and

other distributed data processing capabilities it provides, is more than satisfactory.

For example, for 120K images, Twister2DL only takes 25.8% more training time

while BigDL takes 84.5% more time to process the images.

In order to further understand the training time and which operations make up

the total training time figure 5.11 shows the breakdown of the training time separat-

ing the computation time from the framework overheads. From the breakdown, it is

clear that Twister2DL adds minimal overhead to the training time when compared
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Figure 5.10: Training time for varying data sizes with different frameworks for
MNIST CNN model. 100 epochs, mini-batch size 256, parallelism 48

to Intel BigDL. And as expected PyTorch has almost no overheads since the only op-

eration that happens in PyTorch other than the computation is the communication

operation. Twister2DL also shows a slightly better (roughly 15-20%) computation

time when compared to BigDL. This can be attributed to better memory and data

structure re-use in the Twister2DL framework. PyTorch edges slightly better com-

pared to both, which is expected since the computations kernels in PyTorch are

implemented in optimized c++ code.

Similar to the previous application, training of MNIST CNN model was evalu-

ated under scaling. The MNIST CNN model shown in 5.9 is trained for 50 epochs

with 250K (245760) synthetic images. The parallelism is increased from 12 parallel

workers to 192 parallel workers doubling the number of workers each time. The
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Figure 5.11: Execution time breakdown for MNIST CNN model training with dif-
ferent frameworks with 120K,240K image data points on 48 parallel workers

mini-batch size is decreased from 4096 for parallelism of 12 to 256 for the paral-

lelism of 192; this is to keep the effective batch size equal for each run. with 50

epochs, this results in 250 iterations in each run, parameters are synchronized at

the end of each iteration. Figure 5.12 shows the training times for Twister2DL, Intel

BigDL and PyTorch for this evaluation. The graph also shows the corresponding

compute times as a dotted line. The results show that throughout all parallelisms,

Twister2DL outperforms Intel BigDL. PyTorch performs significantly better than

Twister2DL for lower parallelisms; for higher parallelisms, the performance differ-

ence becomes negligible. Another important observation that can be made is the

gap between computation time and total training time in each framework. For both

Twister2DL and PyTorch the difference is small; this is because the overheads added
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Figure 5.12: Training time for MNIST CNN with increasing parallelism, 250K
images and 50 epochs

by the system are minimized. Achieving small overheads in PyTorch is straightfor-

ward since it does not provide any dataflow abstraction; however achieving minimal

overhead in Twister2DL is much more challenging because of the dataflow model it

supports. The design that is rooted in HPC principles has allowed Twister2DL to

achieve these minimal overhead numbers. This is made more evident when looking

at the difference in compute and total training time in BigDL framework which also

has the burden of supporting a dataflow model. The overhead added by the frame-

work is evident in the time difference between compute and total training time. As

parallelism is increased, training time lost to overheads also increase. Going from

96 workers to 192 workers, the compute time decreases as expected, but the total

running time increases for BigDL; this is because the framework overhead increase
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is larger than the advantage gained by decreasing compute time. The scale exper-

iments solidify the ability of Twister2DL to scale into a large number of compute

nodes with minimum synchronization overheads.

Figure 5.13: Speedup achieved by frameworks compared to Ideal speedup for MNIST
CNN training

Another way to look at how well an application scales is to look at the speedup

it gains with the increase of parallelism. In an ideal application, the execution time

would half each time the parallelism is doubled. Therefore the speedup going from

12 workers to 24 workers would be 2. Figure 5.13 shows the speedup of all three

frameworks obtain compared to the ideal speedup. While both Twister2DL and

PyTorch perform well, reaching good speedup (10.6x and 9.7x respectively at 16x)

BigDL is not able to achieve a similar speedup (only 4.3x at 16x). This further

shows the ability of TwisterDL to scale well when compared to BigDL.
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5.5.4 MDS with Autoencoder

Finally, we loosely evaluate the autoencoder based MDS application that was intro-

duced in section1.2 as one of the motivational applications for Twister2DL. While

this is not the optimal example to illustrate the end to end use of Twister2 TSet’s

and Twister2DL, it does work as a good reference application that shows how data

pre-processing can a major portion of the end to end data processing pipeline. As

described in section1.2 the autoencoder based MDS application has a heavy pre-

processing step that is needed to calculate Smith-Waterman distances.

The evaluation was done on 8 compute nodes, with each running 2 workers.

For evaluations we slightly change the number of gene sequences that are used

for training from 170K to 144K, so they can be evenly distributed among parallel

workers. Training was done for 100 epochs with a mini-batch size of 1000 data

points. The autoencoder is kept similar to the one presented in [WF] which is

InputSizex128x3x128xInputSize. Leveraging the distributed data processing ca-

pabilities in Twister2DL, the Smith-Waterman calculations and the autoencoder

training are performed in a distributed manner utilizing all 16 workers. For the

PyTorch implementation, the Smith-Waterman calculations were performed as a

python script running on a single node. Autoencoder training was performed using

PyTorch DDP using all 16 workers. It is important to note that one could per-

form the Smith-Waterman calculations in a parallel manner by using Twister2 TSet

or some other big data framework by generating an intermediate data file and then

loading that intermediate data file in PyTorch. However, this use of two frameworks

is the main issue that Twister2DL aim’s to address; therefore use a python script for

data pre-processing which would be the approach many data scientists with little

experience in distributed applications take. Table 5.2 show times taken by each

framework to execute the two main components of the application. This is further
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illustrated in Figure 5.14. From the results, it is clear that even though PyTorch

trains the autoencoder faster than Twister2DL, it takes almost 11X more time for

the Smith-Waterman calculation. This is because Twiter2DL is able to perform

the pre-processing in the same distributed application. The Smith-Waterman cal-

culation could be easily parallelized because it is a pleasingly parallel application,

but the power Twister2DL is that you can write much more complex data pre-

processing steps that might require distributed machine learning capabilities easily

with Twister2 TSet’s.

Figure 5.14: Total execution time for MDS with autoencoder, the time includes
pre-processing time for Smith-Waterman calculations and the training time for the
autoencoder, 100 epchocs
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Framework Smith-Waterman Calculations Autoencoder Training

Twister2DL 773 36

PyTorch 8476 26

Table 5.2: Execution times for MDS with autoencoder in seconds
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Algorithm 5: Twister2DL data parallel training for CNN model

1 SourceTSet<MiniBatch> trainSource =

DataSetFactory.createImageMiniBatchDataSet(env, trainData, 1, 28, 28,

miniBatchSize, dataSize, parallelism, false);

2 SourceTSet<MiniBatch> testSource =

DataSetFactory.createImageMiniBatchDataSet(env, testData, 1, 28, 28,

miniBatchSize, testDataSize, parallelism, false);

3 int featureSize = 3 * 3 * 64;

4 Sequential model = new Sequential();

5 model.add(convolutionMN(1, 32, 5, 5));

6 model.add(new ReLU());

7 model.add(convolutionMN(32, 32, 5, 5));

8 model.add(new SpatialMaxPooling(2, 2, 2, 2));

9 model.add(new ReLU());

10 model.add(new Dropout(0.5, false));

11 model.add(convolutionMN(32, 64, 5, 5));

12 model.add(new SpatialMaxPooling(2, 2, 2, 2));

13 model.add(new ReLU());

14 model.add(new Dropout(0.5, false));

15 model.add(new Reshape(new int[]featureSize));

16 model.add(new Linear(featureSize, 256));

17 model.add(new ReLU());

18 model.add(new Dropout(0.5, false));

19 model.add(new Linear(256, 10));

20 model.add(new LogSoftMax());

21 AbstractCriterion criterion = new CrossEntropyCriterion();

22 //Define Oprimizer;

23 Optimizer<MiniBatch> optimizer = new DistributedOptimizer(env, model,

trainSource, criterion);

24 optimizer.setOptimMethod(new Adam());

25 optimizer.setEndWhen(Triggers.maxEpoch(epoch));

26 optimizer.optimize();

27 double accuracy = model.predictAccuracy(testSource, batchSize,

testDataSize);
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CHAPTER 6

CONCLUSION

We see the development of an end-to-end framework for both distributed data

processing and distributed deep learning as a vital tool that is needed with the in-

creased adaptation of deep learning. This will allow deep learning technologies to be

leveraged in both existing data processing pipelines and new solutions that are built

for various problems. Dataflow allows for an easy to use interface so that domain

experts can easily use for machine learning and deep learning techniques in a dis-

tributed setting without having to learn extensively about parallel and distributed

computing. The results obtained thus far show that the solution presented is viable

and the HPC principles infused into the framework allows it to out perform rival and

comparable frameworks significantly. The framework presented was able to achieve

the goal of building a framework that seamlessly integrates distributed data process-

ing and deep learning around the dataflow model. The authors are actively working

on further improvements to the Twister2DL framework in terms of performance and

support for a wider array of deep learning models. The potential for improvement on

the TwisterDL framework is vast and can span in many different directions. With

the ever changing technology landscape in the deep learning domain the authors

see many aspects that can be developed to improve the framework. Quantization,

Specialized hardware support (such as TPU’s) and inbuilt popular deep learning

models are a few such areas of promising future work.
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CHAPTER 7

FUTURE WORK

Both distributed data processing and deep learning are ever evolving domains,

therefore frameworks need to keep innovating and upgrading in order to keep their

relevance. In our research we introduced frameworks backed by HPC principles

to improve performance, however there are many areas that can be improved fur-

ther. For Twister2 TSet’s there is wide variety improvements that can be done

to improve ease of use such as in built data connectors that can gather data from

various data sources or in built machine learning algorithms similar to MLlib that

is provided by Apache Spark, such work is left as future work. For Twister2DL

the areas that can be further extended are countless. The most straightforward

future work would be to support many more layer types so that Twister2DL can

support network models such as LSTM, RNN, GAN, etc. Similarly more support

for optimizer’s, loss functions, etc. is also left as future work. Another major area

left as future work is quantization, which would allow for a smaller memory foot

print. Finally Twister2DL can be extended to support GPU computations. Intel

MKL-DNN which is more recently known as OneDNN[one] recently added limited

support for GPU’s. OneDNN is a direct successor of Intel MKL-DNN and supports

direct migration. This would be the most straigt forward path to add GPU support,

however implementing based on cuda directly should provide better performance.
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CHAPTER 8

RESEARCH GOALS IN ACTION

The focused research problems and research goals have been transformed to

practical research outcomes as follows.

1. Research on the limitations and shortcomings in current distributed dataflow

frameworks Our initial research into big data frameworks was motivated by

[EKWF16] where we were looking into the performance of java thread and

process based parallel machine learning algorithms. This work lead us to ex-

plore the inner working of distributed big data processing frameworks and

to compare and contrast machine learning algorithms that are implemented

using HPC frameworks such as OpenMPI versus big data frameworks such

as Apache Spark and Flink [KWEF18]. The findings that showed the sig-

nificant lack of performance in existing big data frameworks when compared

to OpenMPI paved the path to further research in this area. This research

work culminated into the development of Twister2 [KGW+20] which was a

distributed data processing framework that was built from scratch with HPC

best practices and principles in mind. Twister2 showed excellent performance

that was comparable to OpenMPI and far out performed Spark and Flink in

many cases [KGW+20]. With the foundation in place with a dataflow model

based highly optimized communication library, we were motivated to further

explore how we could extend the framework so higher level dataflow abstrac-

tions similar to Apache Spark RDD’s could be implemented while providing

performance comparable to HPC frameworks.

2. Research into the applicability of a dataflow abstraction on top of HPC princi-

ples based on the Twister2 framework Dataflow model based abstractions are

more user friendly and was widely adopted with the popularity of big data
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frameworks such as Apache Hadoop, Apache Spark and Apache Flink. The

data based abstraction is more intuitive and hence easier to program with when

compared to HPC frameworks which are mostly based on the MPI standards.

However in our initial research [KWEF18, KGW+20] showed the inefficiencies

of those frameworks and how HPC principles can improve performance. We

further researched into supporting fully fledged dataflow abstractions ontop

of the Twister2 framework to provide users performance of HPC frameworks

and the ease of use of dataflow model. The research led to the design and

development of Twister2 TSet’s [WKG+19]. TSet’s where able to provide a

powerful dataflow abstraction while significantly out performing state of the

art distributed data processing frameworks such as Apache Spark in many

areas.

3. Research into HPC strategies and concepts which would help boost performance

of the high level dataflow abstraction within Twister2 While developing the

Twister2 TSet [WKG+19] we researched into various HPC strategies and prin-

ciples that can be leveraged to improve performance of the TSet abstraction

layer. This research was especially focused on how iterations are handled in

traditional big data frameworks vs how they are handled in HPC systems.

The findings of the research led to a worker level iteration model being imple-

mented in Twister2 TSet’s. This iteration model contributed towards improv-

ing performance of the TSet abstraction enabling it to provide performance

comparable to MPI implementations such a OpenMPI.

4. Research into integrating distributed dataflow and distributed deep learning

With the capabilities and popularity of deep learning, it has become an essen-

tial component in many data processing and analysis workflows. However in

the current big data and deep learning framework echo systems as shown in
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figure 1.1, there is a disconnect which forces users to perform pre-processing

and deep learning in separate frameworks. In order to fully understand this

disconnect and propose a viable solution we researched deeper into this area.

While there were several attempts made to bridge this gap by supporting deep

learning frameworks such as Tensorflow on big data frameworks like Spark,

each had drawbacks which prevented them from being widely adopted. Our

research into integrating distributed dataflow and distributed deep learning

motivated and set the foundation to extend the Twister2 framework to na-

tivley support distributed deep learning. The developed framework extension

named Twister2DL was able to provide seamless integration between data

processing and deep learning in a distributed setting.

5. Research into the applicability of HPC based dataflow model for distributed

deep learning As with Twister2 TSet’s the aim of the research was to em-

ploy best practices used in the HPC domain to build Twister2DL. In order to

achieve this we looked into how current state of the art deep learning frame-

works are developed and how the computations are performed internally. The

aim was to extract the core components that are needed and identify how

a HPC based dataflow model would be able to implement them. With the

knowledge gathered through the initial research we were able to design the

necessary components while adding as little overhead as possible. BSP model

fits well with data parallel training that is commonly used in deep learning for

distributed training, therefore we opted to leverage the BSP model support in

Twister2 to build up Twister2DL.

6. Research into performance optimizations and optimized kernel libraries appli-

cable to deep learning frameworks on CPU’s Execution time of deep learning

workloads generally are dominated by the computation operations which are
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used calculate gradients through forward and backward propagation. Even in

a distributed training environment the computation workload is responsible

for the majority of the training time. Therefore it is essential to have highly

optimized kernel operations. State of the art deep learning frameworks such as

PyTorch implement these kernels in optimized c++ libraries. To support opti-

mized kernels in the JVM for Twister2DL we researched kernel libraries which

are optimized for CPU operations. While GPU’s are seen as the go to solution

for deep learning workloads, we focused on CPU taking several conditions into

account. First, the aim of Twister2DL is to provide both data pre-processing

and deep learning in a single framework. Data pre-processing workloads are

generally executed on CPU clusters so initially supporting CPU’s for deep

learning make the transition more streamlined. Second, GPU’s are extremely

expensive when compared to CPU’s so for smaller data processing/deep learn-

ing applications CPU’s would be more financially feasible as well. We do un-

derstand the merits on supporting GPU for computations and leave that work

as future work. Our research into optimized CPU kernels lead adopt Intel

MKL and Intel MKL-DNN libraries which allowed Twister2DL to perform on

par with PyTorch with regard to CPU computations.

7. Implement and evaluate an end-to-end solution for dataflow based distributed

data processing and distributed deep learning, based on findings of aforemen-

tioned research All the research and literature review done culminated with

the development of Twister2 TSet’s and Twister2DL. There two layers pro-

vide the end-to-end solution for distributed data processing and distributed

deep learning on top of Twister2. Design and implementation decisions that

were grounded on solid research made it possible to achieve the high perfor-

mance number that are presented for both components. Twister2 TSet’s was
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able produce performances number comparable to HPC frameworks such as

OpenMPI and vastly out perform state of the art big data frameworks such as

Apache Spark and Apache Flink. All while providing an easy to use high level

dataflow programming abstraction. Similarly Twister2DL was able to support

an easy to use deep learning programming API and out perform Intel BigDL

for deep learning applications in a distributed setting. While it was not able

to match the performance of PyTorch which is a framework built specifically

for deep learning, it was only a modest 15-20% slower. This is expected since

Twister2DL provides more ease of use features through its dataflow model

and seamless integration with distributed data pre-processing. The combined

performance and ease of use for end to end data processing pipelines make the

combination of Twister2DL and Twister2 TSet’s a highly desirable framework

for data engineers and scientists.
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