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In 1906 the great San Francisco earthquake and fire destroyed the city. As we

approach this event’s 100 year anniversary, a critical concern is when the next

great San Francisco earthquake will occur. In this paper we present a new

probabilistic risk analysis for future great earthquakes, based on simulations

of earthquake fault systems. We find there is a 5% chance of an event with
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magnitude m ≥ 7.0 occurring on the San Andreas Fault near San Francisco

prior to 2009 and a 55% chance by 2054.

The great San Francisco earthquake (18 April 1906) and subsequent fires killed more than

3,000 persons, and destroyed much of the city leaving 225,000 out of 400,000 inhabitants home-

less. As we approach the hundred year anniversary of this event, the question of when the next

great San Francisco earthquake will occur is of great concern. In this paper we present prob-

abilistic forecasts based on a new computer simulation approach. The 1906 San Francisco

earthquake occurred on a470 km segment of the San Andreas Fault that runs from the San

Francisco Bay north to Cape Mendocino (Fig. 1) and is estimated to have had a moment mag-

nitudem = 7.9 (1). Observations of surface displacements across the fault were in the range

2.0 − 5.0 m (2). The San Andreas Fault is the major boundary between the Pacific and North

American plates, which move past each other at an average rate of49 mm yr−1 (3), implying

that to accumulate2.0− 5.0 m of displacement,40− 100 years are needed.

One of the simplest hypotheses for the recurrence of great San Francisco earthquakes is that

they will occur at approximately these40−100 year time intervals. This would indicate that the

next earthquake may be imminent. However, there are two problems with this simple “periodic”

hypothesis. The first is that it is now recognized that only a fraction of the relative displacement

between the plates occurs on the San Andreas Fault proper. The remaining displacement occurs

on other faults in the San Andreas system, which in northern California is primarily in the east

San Francisco Bay region, on the Hayward and Calaveras faults (see Fig. 1). A variety of studies

(4) indicate that the mean displacement rate on just the northern part of the San Andreas Fault is

closer to24 mm yr−1. With the periodic hypothesis this would imply recurrence interval of80

to 200 years. The second and more serious problem with the periodic hypothesis involves the

existence of complex interactions between the San Andreas Fault and other adjacent faults. It

is now recognized (5) that these interactions lead to chaotic and complex non-periodic behavior
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so that exact prediction of the future evolution of the system is not possible. Only probabilistic

hazard forecasts can be made. It is the purpose of this paper to make such a forecast, utilizing

direct numerical simulations of fault system physics that include complex fault interactions.

Simulation-based approaches to forecasting and prediction of natural phenomena have been

used with great success for weather and climate. The latter are often referred to asGeneral

Circulation Models(6,7). Many of the phenomena are represented by parameterizations of the

dynamics, and the equations are typically solved over spatial grids having length scales of a

few degrees. Although even simple forms of the fluid dynamics equations are known to display

chaotic behavior (8), general circulation models have repeatedly shown their value.

A simulation-based approach to earthquake risk assessment calledVirtual California was

developed by Rundle (9). This model was developed to include stress accumulation and release

as well as stress interactions including the San Andreas and other adjacent faults. The model

was based on a set of mapped faults with estimated slip rates, a prescribed plate tectonic motion,

earthquakes on all faults, and elastic interactions. An updated version of Virtual California is

used in this paper (10–12). The faults in the model are those that have been active in recent

geologic history. Earthquake activity data and slip rates on these model faults are obtained from

geologic databases (13–15). A similar type of simulation has been developed by Ward (16).

Virtual California is abackslipmodel in that the loading of each fault segment occurs due

to the accumulation of “backwards slip”, orslip deficit, at the prescribed slip rate of the fault

segment. The vertical rectangular fault segments are embedded in an elastic half space and

interact elastically. Earthquake initiation is controlled by the coefficients of static and kinetic

friction along with the space- and time-dependent shear and normal stresses on fault segments.

Both shear and normal stresses on segments are computed by means of boundary element meth-

ods (17). To prescribe the friction coefficients, we use historical earthquakes having moment

magnitudesm ≥ 5.0 in California during the last∼ 200 years. A consequence of our fault
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segmentation is that our simulations do not generate earthquakes having magnitudes less than

aboutm ≈ 5.8.

The topology of Virtual California is shown in Fig. 1 superimposed on a LandSat image.

The 650 strike-slip fault segments are represented by red, blue, and yellow lines. The blue and

yellow lines represent the San Andreas fault, stretching from the Salton trough in the south to

Cape Mendocino in the north. The yellow line represents the “San Francisco section” of the

San Andreas fault, about 250 km in length, and is the section of the fault whose rupture would

be strongly felt in San Francisco. Our goal is to forecast waiting times until the next great

earthquake on the yellow section of the fault for two minimum magnitudes: (i)mSF = 7.0 and

(ii) mSF = 7.3. We use the subscript SF to indicate that the earthquake is on the San Andreas

fault near San Francisco. Using standard seismological relationships (18), we estimate that an

earthquake withmSF = 7.0, an average slip of 4 m, and a depth of 15 km, would rupture

approximately a 20 km length of fault. With similar conditions, an earthquake withmSF = 7.3

would rupture a 66 km length of fault. Earthquakes like these would produce a large amount of

damage in San Francisco.

Using Virtual California, we advance our model in 1 year increments, and simulate 40,000

years of earthquakes on the entire San Andreas Fault system. It is important to note that although

the average slip on the fault segments and the average recurrence intervals are tuned to match

the observed averages, the variability in the simulations is a result of the fault interactions.

Slip events in the simulations display highly complex behavior, with no obvious regularities or

predictability.

Synthetic aperture radar interferometry (InSAR) is routinely used to obtain the coseismic

displacements that occur after earthquakes (19). The displacements associated with two sets of

our model earthquakes are illustrated in Fig. 2 as interferometric patterns. Each interferometric

fringe corresponds to a displacement of 28 mm.
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We will now consider only the model earthquakes on the section of the northern San Abdreas

fault shown in yellow in Fig. 1. Over the 40,000 year simulation, we obtained 395mSF ≥ 7.0

events having an average recurrence interval of 101 years, and 159mSF ≥ 7.3 events having

an average recurrence interval of 249 years.

Using the time intervals between successive events, we construct probabilistic forecasts of

when the next great San Francisco earthquake will occur. The timet is measured forward

from the time of occurrence of the last great earthquake. The timet0 is the time since the last

great earthquake. For San Franciscot0 = 2005 − 1906 = 99 years. The waiting time∆t is

measured forward from the present, thust = t0 + ∆t. We express our results in terms of the

cumulative conditional probabilityP (t, t0) that an earthquake will occur in the waiting time

∆t = t − t0 if the elapsed time since the last great earthquake ist0 (20). We will compare our

results with the Weibull distribution which gives the cumulative distribution of interval times

between earthquakes as

P (t) = exp

[
−

(
t

τ

)β
]

, (1)

whereβ andτ are fitting parameters. Although many distributions have been applied to earth-

quake interval times, the Weibull distribution is one of the most widely used (21). Sieh et al. (22)

fit this distribution to the interval times of great earthquakes on the southern San Andreas fault

with τ = 166.1 ± 44.5 years andβ = 1.5 ± 0.8. For the Weibull distribution, the cumulative

conditional probability is given by (23)

P (t, t0) = 1− exp

[(
t0
τ

)β

−
(

t

τ

)β
]

. (2)

This is the cumulative conditional probability that an earthquake will have occurred at a timet

after the last earthquake if the earthquake has not occurred at a timet0 after the last earthquake.

From our simulations we first determine the distribution of interval timest between earth-

quakes for a specified minimum earthquake magnitude. The cumulative distribution of interval
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timesP (t, 0) for mSF ≥ 7.0 is given in Fig. 3a and formSF ≥ 7.3 in Fig. 3b. These are the

curves that pass throught = 0. Also included are the Weibull distributions from Eq. (1) that

best fit the data. FormSF ≥ 7.0 in Fig. 3a our best fit requiresβ = 1.67 andτ = 114 years, for

mSF ≥ 7.3 in Fig. 3b our best fit requiresβ = 2.17 andτ = 289 years.

We next determine the cumulative conditional probabilities that an earthquake will occur at a

time t after the last earthquake if it has not occurred at a timet0. To do this we remove interval

times that are less than or equal tot0 and plot the cumulative distribution of the remaining

interval times. The resulting distributionsP (t, t0) are given in Fig. 3a formSF > 7.0 with

t0 = 25, 50, 75, 100, 125, and150 years and in Fig. 3b formSF > 7.3 with t0 = 50, 100, 150,

200, 250, and300 years. With the fitting parametersβ andτ used to fit Eq. (1) to the cumulative

distributions of waiting timesP (t, t0), we compare the predictions of the Weibull distribution

from Eq. (2) with our simulations in Fig. 3. We see that the agreement is quite good.

The results given in Fig. 3 are presented differently in Fig. 4. The stars in Fig. 4 are the

median waiting times∆t, P (t0, t0 + ∆t) = 0.5, to the next great earthquake as a function of

the timet0 since the last great earthquake. These stars are the intersections of the dashed red

lines withP (t, t0) = 0.5 with the cumulative distributions in Fig. 3. Also given as circles in

Fig. 4 are the waiting times forP (t, t0 + ∆t) = 0.25 (lower limit of the yellow band) and for

P (t, t0 + ∆t) = 0.75 (upper limit of the yellow band). The dashed red lines are the forecasts of

risk based on the Weibull distributions from Eq. (2).

Immediately after a great earthquake, i.e., in 1906, we havet0 = 0 years. At that time,

Figs. 3a and 4a indicate that there was a 50% chance of having earthquakemSF ≥ 7.0 in the

next t = 90 years, i.e., in 1996. Also at that time (t0 = 0 years), there was a 50% chance of

having an earthquake withmSF ≥ 7.3 in the nextt = 249 years, as shown in Figs. 3b and 4b.

However, in 2006 it will have been 100 years since the last great earthquake occurred in 1906.

The cumulative conditional distributions corresponding to this case havet0 = 100 years. We
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see from Figs. 3a and 4a that there is a 50% chance of having a great earthquake (mSF ≥ 7.0)

in the next∆t = 45 years (t = 145 years). This is the red star in Fig. 4a. It can also be seen

that there is a 25% chance for such an earthquake in the next∆t = 20 years (t = 120 years),

and a 75% chance of having such an earthquake in the next∆t = 250 years (t = 350 years).

During each year in this period, to a good approximation, there is a 1% chance of having such

an earthquake.

Similarly, Figs. 3b and 4b indicate that there is a 75% chance of having a great earthquake

with mSF ≥ 7.3 in the next∆t = 250 years, a 50% chance in the next∆t = 180 years (the red

star in Fig. 4b), and a 25% chance in the next∆t = 75 years. To a good approximation, there

is a 0.3% chance of having such an earthquake during each year in this period.

For the past fifteen years a purely statistical approach has been used by the Working Group

on California Earthquake Probabilities to make risk assessments for northern California. Their

statistical approach is a complex process that uses observational data describing earthquake

slips, lengths, creep rates and other information on regional faults as inputs to a San Francisco

Bay Regional fault model. This model is used in turn as an input to a procedure which utilizes

an assumed probability density function to characterize the segments of each fault that is likely

to rupture in an earthquake, as well as the timing and frequency of rupture on the segments.

In their most recent study (24) the WGCEP 2003 utilized the Brownian passage time prob-

ability distribution (also known as an inverse Gaussian distribution). The mean and standard

deviations of the distributions for event times on the fault segments were constrained by geolog-

ical and seismological observations. The statistical weighting factors and observations selected

for use are determined by “expert opinion” formed through a consensus-building procedure in-

volving group voting. The fundamental assumption is that the correct forecast is likely to lie

among the various ideas and opinions expressed by the group.

In applying these methods to the northern San Andreas Fault, the WGCEP 2003 divided
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the section that ruptured in 1906 into four parts on the basis of geological data: (i) SAS (San

Andreas South) from roughly San Juan Bautista to San Jose; (ii) SAP (San Andreas Peninsula)

from San Jose to San Francisco; (iii) SAN (San Andreas North) from San Francisco to just north

of Pt Arena; (iv) SAO (San Andreas Ocean) from Pt Arena to Cape Mendocino. We note that

the “Northern San Andreas Fault” in our analysis (yellow line) includes approximately SAS +

SAP + southern half of SAN, so the forecast probabilities found by the WGCEP 2003 are not

directly comparable to the forecasts computed by our method. Using their forecast algorithm,

the WGCEP 2003 found that, for earthquakes havingM ≥ 6.7 during the 30 year period 2002–

2031 is 18.2%.

There are major differences between the simulation-based forecasts given in this paper,

and the statistical forecasts given by the WGCEP 2003. In our approach, it is not necessary

to prescribe a probability distribution of inter-event times. The distribution of event intervals

is obtained directly from our simulations, which include the physics of fault interactions and

dynamics. Since both methods use the same database for mean fault slip on fault segments,

they give approximately equal mean inter-event times. The major difference between the two

methods lies in the way in which inter-event times and probabilities for joint failure of mul-

tiple segments are computed. In our simulation approach, these times and probabilities come

from the modeling of fault interactions. In the WGCEP 2003 statistical approach, times and

probabilities are embedded in the choice of an applicable probability distribution function, as

well as choices associated with a variety of other statistical weighting factors describing joint

probabilities for multi-segment events.

It is important to note that our results represent an initial probabilistic forecast of the next

great San Francisco earthquake. The accuracy of our forecast depends on the degree to which

our simulations include the essential features of the fault interactions and by the quality and

quantity of the data available to constrain the parameters for each fault segment in the model.
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If different slip rates are prescribed the mean waiting times will change accordingly. However,

the statistical distribution of waiting times is likely to remain unchanged. This variability is the

result of fault interactions and the simulations reported here are the first time these interactions

have been modeled. The statistical distribution of waiting times has long been a subject of con-

troversy. The Weibull distribution utilized here is one of a number of distributions previously

proposed (23). If β = 1 the Weibull distribution of waiting times reduces to a Poisson distri-

bution. Waiting times are independent of the time since the last earthquake (no memory). In

the limit β → ∞ the intervals are constant and earthquakes are periodic. We findβ = 1.67

for mSF ≥ 7.0 andβ = 2.17 for mSF ≥ 7.3. The larger earthquakes are more periodic and

less random. The validity of the Weibull distribution places important constraints on future

probabilistic assessment of the earthquake hazard.
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Fig. 1. Faults segments making up Virtual California. The model has 650 fault segments, each

approximately 10 km in length along strike and a 15 km depth. The yellow and blue segments

make up the San Andreas fault. In this paper we consider earthquakes only on the yellow “San

Francisco” segment of the San Andreas fault.

Fig. 2. Interferometric patterns of the coseismic deformations associated with two sets of model

earthquakes. Each interferometric fringe corresponds to a displacement of 56 mm.

Fig. 3. (a) The conditional cumulative probabilityP (t, t0) that a greatmSF ≥ 7.0 earthquake

will occur on the San Andreas Fault near San Francisco at a timet years after the last great

earthquake, if the last great earthquake occurredt0 years ago in the past. Results are given for

t0 = 0, 25, 50, 75, 100, 125, and150 years. Also included are the fits to the data of the Weibull

distribution. First, the best fit of Eq. (1) to the complete distribution of interval times (t0 = 0)

is obtained takingβ = 1.67 andτ = 117 years. These values are then substituted into Eq. (2)

takingt0 = 25, 50, ...,150 years. The Weibull fits are shown as colored curves. (b) Results for

mSF ≥ 7.3. In this case we taket0 = 0, 50, 100, 150, 200, and250 years. The best fit of Eq.

(1) to the complete distribution of interval times (t0 = 0) requiresβ = 2.17 andτ = 289 years.

Fig. 4. The stars (corresponding to the 50% probability of the distributions in Fig. 3) and the

green solid line give the median waiting times until the next great earthquake as a function of

the timet0 since the last great earthquake. The red triangle is the median waiting time (50%

probability) from today. The yellow band represents waiting times with 25% probability (lower

edge of yellow band) to 75% probability (upper edge of yellow band). The dashed red lines are

the forecast using the Weibull distribution in Eq. (2) (a) formSF ≥ 7.0 and (b) formSF ≥ 7.3.
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Figure 1. Rundle et al., Science 2004



Figure 2. Rundle et al., Science 2004
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