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Abstract—Generalized sparse matrix-matrix multiplication
(SpGEMM) is a key primitive kernel for many high-performance
graph algorithms as well as for machine learning and data
analysis algorithms. Although many SpGEMM algorithms have
been proposed, such as ESC and SPA, there is currently no
SpGEMM kernel optimized for vector engines (VEs). NEC SX-
Aurora is the new vector computing system that can achieve
high performance by leveraging high bandwidth memory of
1.2TB/s and long vector of VEs, where the execution of scientific
applications is limited by memory bandwidth. In this paper, we
demonstrate significant initial work of SpGEMM kernel for a
vector engine and implement it to vectorize several essential
graph analysis algorithms: Butterfly counting and Triangle count-
ing. We propose a SpGEMM algorithm with a novel hybrid
method based on sparse vectors and loop raking to maximize the
length of vectorizable code for vector machine architectures. The
experimental results show that the vector engine has advantages
on more massive data sets. This work contributes to the high
performance and portability of the SpGEMM kernel to a new
family of heterogeneous computing systems, which is Vector Host
(VH) equipped with different accelerators or VEs.

Index Terms—Sparse Linear Algebra Kernel, NEC Vector
Engine, Graph

I. INTRODUCTION

Generalized sparse matrix-matrix multiplication
(SpGEMM) is a primitive kernel for many high-performance
Graph analytics and Machine Learning algorithms. Although
many SpGEMM algorithms have been proposed, there is
currently no SpGEMM kernel optimized for vector engines.
The NEC SX-Aurora TSUBASA is a vector processor
of the NEC SX architecture family[1], a CPU Machine
with Vector Engine (VE) for accelerated computing using
vectorization. The concept is that the full application runs
on the high-performance Vector Engine, and the operating
system tasks are taken care of by the Vector Host (VH),
which is a standard x86 server.

As shown in Figure 1, a NEC SX-Aurora node, also called
a Vector Island (VI), is comprised of a Vector Host (VH)
and one or more Vector Engines (VEs). The VH is an x86

server with one or more standard server CPU running Linux
operating system. One or multiple VEs are connected to each
VH CPU. Inside each VE, it has 8 cores and dedicated
memory.

Fig. 1. Hardware configuration of NEC SX-Aurora VH and VEs

Figure 2 shows the detailed architecture of a VE. The
Vector Engine Processor integrates 8 vector-cores and 48
GB of high bandwidth memory (HBM2), providing a peak
performance of up to 2.45 TeraFLOPS. The computational
efficiency is achieved by the unrivaled memory bandwidth of
up to 1.2 TB/s per CPU and by the latency-hiding effect of
the vector architecture. The single Vector Engine Processor
core arithmetic unit can execute 32 double-precision floating-
point operations per cycle with its vector registers holding 256
floating-point values. With 3 fused-multiply-add units (FMA),
each core has a peak performance of 192 FLOP per cycle or up
to 307.2 GigaFLOPS (double precision). The Vector Engine
has a peak performance of up to 2.45 TeraFLOPS.

In this paper, we design a new SpGEMM kernel for the
vector engine (VE) as an addition to the family of accelerators
and further study two subgraph counting algorithms: Triangle
counting [2] and Butterfly counting [3]. Our main contribu-
tions in this paper are:



Fig. 2. NEC SX-Aurora VE architecture

• We propose a unique hybrid method that enlarges vector
length for non-zeros values and leverages the High Band-
width Memory (HBM). This enables vector architectures
to exert their potentials at 1.2TB/s of HBM and 256
elements of long vector length.

• We deploy loop raking to vectorize a loop and increase
the memory access efficiency.

• The SpGEMM kernel is used to implement several im-
portant graph analysis algorithms on the vector machine.

The experimental results show that the vector engine achieves
high performance on large data sets. We implemented the
algorithms in C++ and have made the open-source code
available on Github1[4].

II. RELATED WORK

Counting subgraphs from a large network is fundamental in
graph problems. It has been used in real-world applications
across a range of disciplines, such as in bioinformatics [5],
social networks analysis, and neuroscience [6]. Many graph
algorithms have been previously presented in the language
of linear algebra [7], [8]. The matrix-based triangle counting
algorithm we use is mainly based on the text [2]. [3] proposed
a fast butterfly counting algorithm, which we converted into
a matrix operation form. We make it highly parallel and take
full advantage of vector machines.

SX-Aurora TSUBASA is a vector engine developed by
NEC. Comparison of SX-Aurora TSUBASA with other com-
puting architectures includes: [9][10]. The hybrid SpGEMM
algorithm we propose is based on the following related work:
ESC Algorithm [11], Hash-based SpGEMM [12] [13], and
SPA Algorithm [14]. They will be explained in the next
section, together with our implementation.

III. IMPLEMENTATION OF SPGEMM ON VECTOR ENGINE

In the Compressed Sparse Row (CSR) format, we represent
a matrix Mm×n, by three 1-D arrays or vectors called as A,

1https://github.com/dsc-nec/frovedis matrix

IA, JA. Let NNZ denote the number of non-zero elements
in M.

Fig. 3. CSR representation of a sparse matrix

The A vector is of size NNZ, and it stores the values of
the non-zero elements of the matrix. The values appear in
the order of traversing the matrix row-by-row. The JA vector
stores the column index of each element in the A vector. The
IA vector is of size m+1 stores the cumulative number of non-
zero elements up to (not including) the i-th row. For example,
to calculate the number of non-zero elements in row 0, just
calculate IA[1]-IA[0] = 2 = NNZrow0.

SpGEMM can be used for various kinds of graph al-
gorithms, including triangle counting and butterfly counting
that are addressed in this paper. Since both of the matrices
are sparse, its implementation is not straightforward; there
exist several algorithms called ESC algorithm, the hash-based
algorithm, and sparse accumulator (SPA).

Figure 4 shows basic structure of SpGEMM algorithm. It
shows C = A ·B ; we assume that the sparse matrices are in
CSR format.

Fig. 4. Basic structure of SpGEMM algorithm

Here, each row of A·B creates each row of C; we focus on
kth row. The kth row of A has two non-zero elements, whose
column indices are i and j. Because other elements are zero,
we only need to care about ith and jth row of the matrix B.
They are multiplied by the corresponding non-zero elements
of the kth row of A and added to create the kth row of C.
There are several algorithms to add these sparse vectors.

We implemented these algorithms on SX-Aurora TSUB-
ASA using the technique called loop raking, and propose a
novel hybrid method. To the best of our knowledge, this is the
first attempt to implement SpGEMM on a vector architecture.

A. Loop raking

Loop raking is a long-forgotten technique that was proposed
in the early ’90s to implement radix sort [15]. However, it is



an essential technique to enhance vectorization and enlarge
vector length. The key idea of loop raking is viewing each
element of a vector register as a virtual processor. Here we
take the union of sets as an example to introduce the loop
raking technique.

Set operations (union, intersection, merge, difference, etc.)
of sorted integer can be easily implemented, but vectorizing
them is not trivial.

The traditional algorithm compares two lists one by one,
and the result of the comparison will determine which pointer
is increased. It contains the following steps:

1) Set the pointers to the first elements of the sets.
2) Compare the data of the pointers.
3) Output smaller data and increase the pointer of it; If the

data are the same, output it and increase both pointers.
4) Goto 2).
In contrast, the loop raking method divides the data set into

many groups (in our case, 256 groups, since the length of
vector register is 256), and comparing the first element in all
groups at the same time. It consists of the following steps:

1) Divide the data into groups.
2) The first unused element of each group is placed in the

vector register.
3) Compare the two vector registers (vectorized).
4) Goto 2).

1
3
7
8
...

2
3
5
6
...

1

...

1
3
7
8
...

2
3
5
6
...

1
2

...

1
3
7
8
...

2
3
5
6
...

1
2
3

...

1
3
7
8
...

2
3
5
6
...

1
2
3
5
...

1<2
Output 1

3>2
Output 2

3=3
Output 3

7>5
Output 5

(a) Sequential algorithm

3
7
8

10
17
23
27
38
40
41

2
3
5
6
9
11
13
17
29
30
42

1 1741 ..

1

2 1742 ..

T F T ..

F T F ..

Mask Registers

Vector
register
(left)

.. ..

left < right ?

left == right ?

Compare
Vector
register
(right)

1 17 41

Output
(b) Loop Raking

Fig. 5. Comparison of sequential algorithm and loop raking.

Loop raking makes it possible to vectorize a loop that
cannot be vectorized otherwise. Besides, it can be used to
enlarge vector length. However, it has several drawbacks. One
drawback is that memory access becomes non-contiguous.
Especially, if the memory access becomes scatter or gather
(e.g., access like a[b[i]]), the performance of memory access
becomes non-optimal. Another drawback is the performance

of the branch. If the computation of each virtual processor
becomes complex, it might contain a branch. A loop that
contains a branch can be vectorized, but it is implemented
using a mask register. That is, the value of the condition is
stored in the mask register, and the instruction is executed
regardless of the condition; the result is reflected to register
or memory according to the mask value. Therefore, if the
condition becomes complex, many of the results end up
unused.

B. ESC Algorithm

ESC algorithm [11] is proposed by Bell et al. for GPU.
It consists of three phases, which are expansion, sorting, and
compression. In the expansion phase, it creates sparse vectors
multiplied by non-zeros of A, as explained above. This phase
is done for all the rows of A (and C) in parallel. In the sorting
phase, the resulting non-zeros of the sparse vectors are sorted
according to the row and column indices. In the compression
phase, the non-zeros that have the same row and column index
are added to one non-zero value. The result becomes the matrix
C. Each phase of this algorithm has a high parallelism. As for
the sorting phase, which is the most time-consuming part of
this algorithm, we used radix sort based on loop raking that
is proposed in [15].

Fig. 6. Esc Algorithm

In the implementation of vector architecture, we separate the
matrix A into blocks and do the steps block by block to utilize
the cache (LLC), which is similar to the strategy proposed by
Dalton et al. [16].

Besides, we added individual case support for matrices that
have only 0 or 1 as the values (which means non-zero values
are always 1). This is typical if the matrix is an adjacency
matrix, and the edge weights of the graph are always 1. In
this case, we can speed up the sort phase, because we only
sort indices instead of pairs of index and value.

C. Hash based Algorithm

The SpGEMM algorithm in the cuSPARSE library uses the
hash table for the addition of sparse vectors [12]. Where the
column index becomes the key of the hash table; the value is
inserted if the key is not stored in the hash table. Otherwise,
the value is accumulated to the already stored value. After this
process, we can get the result row by extracting the stored key



value pairs from the hash table. We can do this process for all
the rows in parallel.

We used loop raking technique to implement hash based
algorithm; each virtual processor (element of vector register)
processes different rows. In this case, each virtual processor
updates the hash table for the corresponding rows sequentially;
we do not have to worry about the parallel update of the
hash table. To handle the collision, if a collision occurs, the
key is stored in a different array; the contents of the array is
processed again by adding 1 to the hash value, which realizes
open address linear probing.

The column indices of the result matrix are not sorted in
the case of the hash-based algorithm. Since some algorithms
assume that they are sorted, we added an option to sort them,
though it decreases the performance.

Fig. 7. Hash based Algorithm

D. Sparse Accumulator (SPA)

Sparse accumulator (or SPA) is a classic algorithm proposed
by Gilbert et al. [14]. It uses dense vectors whose size is the
same as the number of columns of C. The sparse vectors are
added into the dense vector. There is another flag vector that
contains the information if the index of the vector contains
a value or not. If the corresponding index of the flag vector
is false, it is set to true, and the index is saved into another
vector; this vector stores the non-zero part of the dense vector
after the process. By using this vector, the non-zero part can
be known without scanning the flag vector or the dense vector
that contains the value.

Fig. 8. SPA Algorithm

Though SPA is a quite efficient algorithm, implementations
of SpGEMM for highly parallel architectures, such as GPUs,
usually avoid it. This is because if multiple rows of A are
processed in parallel, the required number of the dense vectors
is the number of parallelisms, which is too large and not
affordable memory size.

In the implementation of vector architecture, adding sparse
vectors into the dense vector is processed in a vectorized way
without loop raking technique to avoid using too many dense
vectors. In this case, parallelism (which corresponds to vector
length) is limited by the number of non-zeros of each sparse
vector. Saving the non-zero index is done by loop raking
manner; separate memory space is assigned to each virtual
processor, and indices are stored independently. Like the hash-
based algorithm, The column indices of the result matrix is not
sorted. We also added an option to sort them.

E. Hybrid Algorithm

As described above, The parallelism of SPA is limited by
the number of non-zero elements of each sparse vector. In
practical applications, the number of non-zero elements per
row will vary greatly, as they usually follow the power-law
distribution. Therefore, we propose a novel hybrid method. It
combines SPA and other methods according to the average
numbers of the non-zeros of intermediate sparse vectors. For
example, that of kth row of A in Figure 4 is (3 + 4) / 2 = 3.5.

First, the average number of non-zeros of each row is
calculated, and the rows are sorted according to this value.
Then, the matrix is divided by the user-defined threshold;
the part with a higher average number of the non-zeros is
processed by SPA, another part is processed by ESC or hash-
based algorithm.

Liu et al. proposed a method that separates the matrix
into bins and uses different algorithms for each bin [17]. It
is similar to our method in that it uses multiple algorithms.
However, our method is unique in that it uses an efficient SPA
algorithm for the part where the average number of the non-
zeros is high to enlarge vector length for vector architecture.

F. Parallelization of SpGEMM with Vector Engine

SpGEMM can be parallelized by dividing the matrix by
row and assigning them to each processor. However, to get
better scalability, it is essential to assign tasks evenly to the
processors for load balancing. In our implementation, we count
the number of non-zero of intermediate sparse vectors and
divide the matrix according to the number, which achieved
better load balancing.

Figure 9 illustrates this process. For the two operand ma-
trices of SpGEMM - A and B, we applied 1D decomposition
[18] by row for the left side matrix, i.e., we leave the right side
matrix B untouched, but for the left side matrix A we split it
into row blocks. However, to achieve better load balancing, we
do not split the rows evenly but based on the number of non-
zeros (denoted by a solid dot). In this example, matrix A is
split into 4 slices. Although the number of rows is not the same
for each slice, getting the non-zeros evenly distributed can help
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Fig. 9. Parallelizing SpGEMM using MPI with partitioned row blocks

achieve better load balance. We utilize MPI for parallelization,
and each slice is assigned to a different MPI process so that
the work can be conducted in parallel on the VE cores. For
actual datasets, the split number could be in thousands.

G. Evaluation
We evaluated our implementation using sparse matrices

from the SuiteSparse Matrix Collection [19] that are com-
monly used in papers like [13]. Table I shows the matrix used
for evaluation.

TABLE I
MATRICES FOR EVALUATION

nnz/row max nnz/row intermed. nnz
Protein 119.3 204 555,322,659
FEM/Accelerator 21.7 81 79,883,385
webbase 3.1 4700 69,524,195
cit-patents 4.4 770 82,152,992
wb-edu 5.8 3841 1,559,579,990
Circuit 5.6 353 8,676,313

The performance is evaluated by A2. The FLOPS is cal-
culated as (the number of non-zero of intermediate sparse
vectors) * 2 / (execution time), which is commonly used as
SpGEMM evaluation. The execution time does not contain I/O
but contains the counting cost for load balancing.

We measured the performance using 1, 2, 4, and 8 VEs.
Since SX-Aurora TSUBASA (A300-4) contains 4 VEs per
server. We used two servers for evaluation of 8 VEs, which are
connected via InfiniBand. We used MPI also for parallelization
within the VE (flat-MPI); in the case of 8 VEs, there are 64
ranks in total.

To compare absolute performance, we also evaluated
the performance on Xeon using Intel MKL. We used 1
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Fig. 10. Performance improvement over CPU. Calculated by
NEC-Hybrid GFLOPS

CPU GFLOPS . NEC-Hybrid has an average performance improvement of
139% over CPU, with a maximum performance improvement of 6.43x.

and 2 sockets of Xeon 6126 Gold. The API we used is
mkl_sparse_spmm and mkl_sparse_order; the API
mkl_sparse_order is for sorting the index of the result.
We utilized shared memory parallelization for MKL that is
provided by the library.

Figure 11 shows the evaluation result. Hybrid is a hybrid of
ESC and SPA method. We used the single-precision floating-
point as the value and 32bit integer as the index. All the results
include the sorting time of the index.

The matrices are grouped into three categories. As for
Protein and FEM/Accelerator, the NNZ per row is relatively
large. Therefore, SPA performs better than other methods. As
for webbase and cit-patents, NNZ per row is small; There-
fore, the ESC shows better performance than the SPA. For
wb-edu, the network size is relatively large, and the maximum
NNZ per row is much larger than average. Therefore, our
hybrid method performs the best. Our hybrid method shows
stable performance. Although it is not the best performer in
all situations, it avoids some of the noticeable shortcomings
of ESC and SPA. In all the cases, the hash-based method
does not show better performance than other methods. Since
it consists of a complex branch in the loop raking technique
to implement the hash table; the overhead of loop raking
caused poor performance. Our implementation shows better
performance than CPU and also shows good scalability.

IV. VECTORIZATION OF GRAPH ALGORITHMS WITH
SPGEMM

We have implemented a high-performance linear algebra
kernel SpGEMM on the vector engine. In this section, we will
introduce two important graph analysis algorithms: triangle
counting and butterfly counting. We will use linear algebra
operations, mainly SpGEMM, to implement these algorithms
so they can take advantage of the NEC vector engine.

A. Triangle Counting

A triangle is a special type of a subgraph that is commonly
used for computing important measures in a graph. The
triangle counting algorithm consists of the following steps:
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Fig. 11. Evaluation of SpGEMM kernels on VE

1) Split A into a lower triangular L and an upper trian-
gular U: Given an adjacency matrix A, as shown in figure
12 (a) and (b), the algorithm splits A into a lower triangular
and an upper triangular pieces via A = L+U.

2) Calculate B = LU: In graph terms, the multiplication
of L by U counts all the wedges of (i, j, k) form where j
is the smallest numbered vertex. As shown in Figure 12 (c),
only one wedge (5, 2, 3) between node 5 and node 3 satisfies
2 < 5 and 2 < 3. Correspondingly, B5,3 = 1.

3) Calculate U. ∗B, the element-wise multiplication of A
and B: The final step is to find if the wedges close by doing
element-wise multiplication with the original matrix.

B. Butterfly Counting

Butterfly refers to a loop of length 4 in the bipartite
graph. It is the simplest cohesive higher-order structure in a

(a) Input graph G. There is only
one 2-path (3,2,5) between node 3
and node 5 that satisfies 2 < 3
and 2 < 5. Path (3,4,5) is not
considered since 4 > 3.
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Fig. 12. Adjacency matrix

Algorithm 1: Triangle counting
input : Graph G = (V,E)
output: number of triangles in G

1 Generate the adjacency matrix A
2 Split A into a lower triangular L and an upper triangular

U
3 B = LU // SpGEMM Kernel
4 C = U. ∗B // Element wise multiplication
5 return

∑
Ci,j

bipartite graph. [3] presented exact algorithms for butterfly
counting, as shown in algorithm 2, which can be considered
as state-of-the-art. Although this algorithm is fast, it is a loop-
based, sequential algorithm. To achieve parallelization and
vectorization, we have improved algorithm 2 to algorithm 3
which fully utilize the linear algebra kernels. Our Butterfly
counting algorithm consists of the following steps:

1) Create the adjacency matrix A: Let G = (V =
(L,R), E) be a bipartite graph, where L and R are its left
and right parts, respectively. Suppose L = {L1, L2, . . . , Lm},
R = {R1, R2, . . . , Rn}. Then we can represent the adjacency
matrix of G as Am×n. Ai,j = 1 if and only if Li and Rj is
connected, otherwise, Ai,j = 0. In this case, A is sometimes
called the biadjacency matrix.

2) Calculate AAᵀ: According to the properties of the
adjacency matrix[20], we have: If B = AAᵀ, then the matrix
Bi,j gives the number of walks of length 2 from vertex Li

to vertex Lj . As shown in Figure 13, there are three paths
of length 2 between L1 and L2, which are marked in three
colors: red, blue, and green.

3) Set the element on the diagonal of matrix B to 0 and
add up: Since each butterfly is made up of two paths of length
2, the two paths share endpoints in L (or R). Thus, if there are
Bi,j paths between Li and Lj , then the number of butterflies



Algorithm 2: ExactBFC: Sequential Butterfly Counting
input : Graph G = (V = (L,R), E)
output: Butterfly(G)

1 if
∑

u∈L(du)
2 <

∑
v∈R(dv)

2 then
2 A← R
3 else
4 A← L

5 for v ∈ A do
6 C ← hashmap
7 for u ∈ Neighbour(v) do
8 for w ∈ Neighbour(u) do
9 C[w]← C[w] + 1

10 for w ∈ C do
11 Butterfly(G)← Butterfly(G) +

(
C[w]
2

)
12 return Butterfly(G)/2

Algorithm 3: Vectorized butterfly counting
input : Graph G = (V = (L,R), E)
output: number of butterflies in G

1 Generate the adjacency matrix A

2 B← AAᵀ // SpGEMM kernel
3 Set the element on the diagonal of matrix B to 0.
4 return 1

2

∑
i,j

(
Bi,j

2

)

with Li, Lj as the endpoint is
(
Bi,j

2

)
. Note that we only count

2-paths that differ from the start and endpoints, so we set the
elements on the diagonal of matrix B to 0 to exclude those
paths where the start and endpoints are the same. For example,
the matrix in Figure 13 is transformed into the following form

B =

3 3 1
3 4 2
1 2 2

→
 0

(
3
2

) (
1
2

)(
3
2

)
0

(
2
2

)(
1
2

) (
2
2

)
0

 =

0 3 0
3 0 1
0 1 0


3×3

Finally, we calculate 1
2

∑
i,j

(
Bi,j

2

)
to get the exact number

of “butterflies”.

V. EXPERIMENTS ON SUBGRAPH COUNTING
AND MACHINE LEARNING ALGORITHMS

A. System Architecture and Implementation
In the experiments, we use: 1) a single node of dual-socket

Intel(R) Xeon(R) Gold 6126 (architecture Skylake), 2) a single
node of a dual-socket Intel(R) Xeon(R) CPU E5-2670 v3
(architecture Haswell), 3) a single NEC Aurora node with 4
VEs. More details of the testbed hardware can be seen in Table
II.

B. Execution Time Breakdown

We have applied the NEC SpGEMM algebra kernels in
our triangle counting and butterfly counting implementation.
We instrumented the code to show the normalized time spent
breakdown on different portions of the code with different

(a) Input bipartite graph and 2-
paths between L1 and L2.

©­«

R1 R2 R3 R4
L1 1 1 1 0
L2 1 1 1 1
L3 0 0 1 1

ª®¬
(b) Biadjacency matrix A of
input graph.

B = AA⊺ =

1 1 1 0
1 1 1 1
0 0 1 1


·


1 1 0
1 1 0
1 1 1
0 1 1


=


3 3 1
3 4 2
1 2 2

3×3
(c) Line 2 of algorithm 3: B = AAᵀ. B1,2 and B2,1 represents the
number of 2-paths between L1 and L2.

Fig. 13. Adjacency matrix of bipartite graph
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Fig. 14. Normalized execution time breakdown.

datasets. The results are shown in Figure 14 for both triangle
counting and butterfly counting. The fact that the two computa-
tion kernels (SpGEMM and Element-wise Product) consume
the majority of the execution time was the motivation why
we have implemented and optimized the algebra kernels on
the NEC Aurora platform. We can see from the figure that
with the increasing number of cores used, the two kernels
are consuming less proportional time which suggests that the
parallel execution of the kernels has decreased the overall
execution time. On another hand, the proportion of the time
spent on non-parallelized code, which includes the preparation
of the data and other overhead introduced with handling multi-
processes (split, transpose operations, and MPI communication
and synchronizations) is increasing.



TABLE II
HARDWARE SPECIFICATIONS AND DATASETS USED

Arch Model frequency
(GHz)

physical
cores

Vector reg-
ister width
(bits)

Vector
register

Peak Per-
formance

memory
bandwidth
(GB/s)

memory
capacity
(GB)

L1
cache
(KB)

L2
cache
(MB)

L3
cache
(MB)

CPU
Skylake

Xeon Gold
6126 2.6 12 512 2 998GF(SP) 119 125 768 12 19.25

CPU
Haswell

E5-2670
v3 2.3 12 256 1x24 883GF(SP)

441GF(DP) 95 125 768 3 30

Vector
Engine

SX-Aurora
TSUB-
ASA

1.4 8 16384 256 4.91TF(SP)
2.45TF(DP) 1200 48 32x8 2 16

TABLE III
GRAPH DATASETS USED IN THE EXPERIMENTS

Data Vertices Edges Avg Deg
mouse-gene 29.0M 28.9M 2.00
coPaperDBLP 540k 30.5M 112.83
soc-LiveJournal1 4.8M 85.7M 35.36
wb-edu 9.8M 92.4M 18.78
cage15 5.2M 94.0M 36.49
europe-osm 50.9M 109.1M 4.25
hollywood-2009 1.1M 112.8M 197.83
DBPedia-Location 172K+53K 293K 1.30
Wiki-fr 288K+3.9M 22M 5.25
Twitter 175K+530K 1.8M 2.55
Amazon 2.1M+1.2M 5.7M 1.73
Journal 3.2M+7.4M 112M 10.57
Wiki-en 3.8M+21.4M 122M 4.84
Deli 833K+33.7M 101M 2.92
web-trackers 27.6M+12.7M 140M 3.47

C. Execution Time Evaluation

We used the datasets in Table III to evaluate the performance
on a different number of processes utilizing the up to 32 cores
of the 4 VEs on the single NEC Aurora node. For butterfly
counting, we also compared the execution with the reference
BFC exact [3] running on Haswell CPU. Figure 15 shows the
execution time of triangle counting and butterfly counting for
the different datasets on single VE (1 core and 8 cores) and
4 VEs (32 cores being utilized). Figure 16 shows the speedup
of our algorithm while using one single VE comparing to the
BFC Exact result (normalized to 1). We can see from this
figure that for the larger datasets, single VE (with all 8 cores
being utilized) achieved better performance with a factor of 3-
5 comparing to the BFC Exact algorithm running on Haswell
CPU.

D. Strong Scaling Evaluation

The execution time breakdown shown in Figure 14 has
already suggested that the algebra kernels helped achieve good
strong scaling. Here we are showing this more clearly in
Figure 17 and Figure 18. Figure 17 shows the speedup when
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Fig. 15. Execution Time of Triangle counting and Butterfly counting
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Fig. 16. Butterfly counting speedup (1VE vs BFC Exact on CPU)

utilizing multiple VE cores comparing to one core on the left
side; and on the right side, it shows the results from the work
in [2]. For the scaling on VE most datasets showing close
to linear scalability till the number of processes reached over
10, which is better than the right side chart. Figure 18 shows
similar results for Butterfly counting, although it decreases
after 8 processes when comparing to the Triangle counting



results.
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Fig. 17. Triangle counting scalability test on single process
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Fig. 18. Butterfly counting scalability with increasing number of processes

E. SpGEMM Kernel Algorithms and Parameter Options

The SpGEMM kernel provided multiple algorithms to
choose from, among HASH, SPA, SPA SORT, ESC, and
hybrid of any two of these. For the hybrid algorithm, a user
can change the default threshold parameters as part of the
function call. The evaluation we have done was using the
hybrid algorithm of ESC and HPA/HPA SORT with default
parameters. In this section, we are showing the results of alter-
native algorithms and parameters. We used triangle counting
as an example on three different datasets to show the impact
of the algorithms and parameters options. For the algorithms,
We tested the ESC alone, SPA SORT, and the hybrid of the
two; For parameters choice of the hybrid mode, a user can
specify 3 parameters N1, N2, N, meaning number of columns
to process at a time for the first separated matrix, the number
of columns to process for the second matrix, and the threshold
to separate the two matrices, respectively. The default values
for these 3 parameters are 256, 4096, and 64, in that order.
We used default values, the increased values by timing 4,
and the decreased values by dividing 4 from the default
parameters. The results are shown in Figure reffig:spgemm-
options. The columns are the SpGEMM breakdown time from
the overall execution time of running triangle counting on the
testing datasets. The left-most column for each dataset is the
hybrid algorithm with default parameters setting. We can see
from figure 19 that while this may not be the best-performed

choice among all, the hybrid mode with default parameters can
produce balanced and good enough results without the need
to get more details of the dataset beforehand. As mentioned
before in the SpGEMM kernel evaluation section, knowing
the characteristics of the dataset, e.g., the distribution of the
NNZ per row, could help choose the best algorithm/parameter
options, but our experiments were done with hybrid mode and
default parameters already show good results. For the SPA and
SPA SORT options, the difference is that with SPA SORT the
column indices of the result matrix are sorted while for SPA,
they are not. While sorting added more overhead compared
to the non-sorted version, this feature is especially useful
if the result matrix is to be chained as input to another
algorithm that assumes the column indices are sorted. E.g.,
in our triangle counting application, we have an element-wise
multiplication step after SpGEMM, which utilized another
kernel that requires the input matrices to be sorted with column
indices. Thus we would need to use the hybrid algorithm of
ESC and SPA SORT. While for butterfly counting, the order
of the column indicators does not affect the counting result.
Thus we use the hybrid algorithms of ESC and SPA to get
better performance.
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Fig. 19. SpGEMM Time from Triangle Counting Execution Breakdown using
Different SpGEMM Algorithms and Parameter Options

VI. CONCLUSION

In this paper, we have introduced a new vectorized
SpGEMM algorithm for butterfly counting in bipartite graphs
and also adapted another vectorized triangle counting algo-
rithm, on the NEC Aurora platform. The algorithms are all
vectorized, makes it very suitable to run on the vector engine
of the NEC Aurora system.

In the SpGEMM kernel evaluation (section III-G), NEC-
Hybrid has an average performance improvement of 139%
over CPU, with a maximum performance improvement of
6.43x. In the test of the triangle counting algorithm, our
implementation shows high scalability compared to related
work [2]. In the test of the butterfly counting algorithm, our
implementation on large datasets has achieved up to 6 times
faster performance even with a single VE, and more than 10
times faster when multiple VEs are used from one node. With
the optimized linear algebra kernels such as SpGEMM, both



Graph algorithms demonstrate good performance and scalabil-
ity. This work can be extended to support other applications
and architecture-specific code optimizations in future work.
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