
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MLPerf HPC: Benchmarking Machine Learning Workloads on
HPC Systems
Anonymous Author(s)

ABSTRACT
Scientific communities are increasingly adopting machine learning
and deep learning models in their applications to accelerate scien-
tific insights. High performance computing systems are pushing
the frontiers of performance with a rich diversity of hardware re-
sources and massive scale-out capabilities. There is a critical need
to understand fair and effective benchmarking of machine learn-
ing applications that are representative of real-world scientific use
cases emerging today. MLPerf is a community-driven standard to
benchmark machine learning workloads, focusing on end-to-end
performance metrics. In this paper, we introduce MLPerf HPC, a
benchmark suite of large-scale scientific machine learning training
applications. We present the results from the first submission round
with systematic analyses of our findings across a diverse set of some
of the world’s largest HPC systems, characterizing each benchmark
with compute, memory and I/O behaviours.

KEYWORDS
Deep Learning, Benchmarks, Supercomputers, Scientific Applica-
tions

1 INTRODUCTION
Scientific applications are leveraging the potential of AI to acceler-
ate scientific discovery. This trend is prevalent in multiple domains,
such as cosmology, particle physics, biology and clean energy. These
applications are innately distinct from traditional industrial use
cases regarding complexity of the models, volume, and type of data.
There have been significant success stories where AI-driven appli-
cations led major insights on the scientific discoveries that would
have taken many more years, otherwise. A recent breakthrough in
addressing one such grand challenge in biology for 50 years was the
development of an AI model that solved the protein folding problem
with the AlphaFold tool by Google’s Deepmind [47]. Scientific ex-
periments will see a growth of data at an unprecedented scale with
the advancement of large-scale experiments. The authors of [34]
highlight the challenges faced with understanding the exponen-
tial experimental data and present opportunities of using machine
learning techniques to advance science. The AI for Science report
[50] put forth by stakeholders from leadership computing facilities,
DOE labs, and academia details a vision for leveraging AI in science
applications critical to US DoE missions. The vision outlined in this
report emphasizes the need for a systematic understanding of how
these applications perform on diverse supercomputers.

An ideal benchmark suite will help assess HPC system perfor-
mance while driving innovation in systems and methods. Devel-
oping one is difficult because of the inherent trade-off between
building generalizable and representative proxies of real AI work-
loads and building high-fidelity proxies that probe specific features
of an HPC system. Benchmarks of the former type are general
enough to capture what the average user on a large multi-user

system is doing with AI while benchmarks of the latter type fo-
cus on how a specific kernel performs on the system. Scientific
machine learning applications implement models such as 3D im-
age segmentation with sparse datasets, UNet, and custom-designed
models that are generally distinct from widely used traditional ones.
Implementation of the complex models on supercomputers at full
scale poses challenges that are not typically exposed on small-scale,
say a few number of nodes. The massive datasets used by these
applications exhibit stress the I/O subsystem. Hence, adopting ex-
isting benchmarking approaches for scientific machine learning
problems would not be able to capture realistic behaviour of the
scientific applications.

There have been significant efforts in benchmarking supercom-
puters with traditional HPC workloads with major ones listed in
Table 1. TOP500[23] ranks supercomputers across the world and
publishes their performance numbers (in Flops) with High Perfor-
mance Linpack (HPL). It captures many of the general features that
large-scale scientific applications share, such as domain decompo-
sition and heavy use of linear algebra solvers. A single benchmark
can be run across the entire system in a weak-scaling fashion. One
of the limitations is that the HPL benchmark is not particularly rel-
evant to address scientific machine learning applications. Green500
[48] ranks supercomputers based on their energy efficiency. The
list reports the performance per rated watt using the LINPACK
benchmark at double precision format. Similar to Top500, Green500
is currently limited by the characteristics of a benchmark that is
not representative of the problems at scale.

Several benchmarking efforts have previously aimed to character-
ize performance of machine learning workloads, including Deep500
[26], HPCAI500 [35], and HPL-AI [10]. The largest dataset used
across these attempts is obtained from the ExtremeWeather Dataset
[45], coming in at roughly 1.65 TB. These efforts are summarized
in Table1. DAWNBench [32] is a benchmark suite for end-to-end
deep learning training and inference with time-to-accuracy as the
performance metric. The analyses [31] highlight that specialized
hardware units such as tensor cores are heavily under-utilized.
DeepBench [5], TBD [55], Fathom [24] provide a systematic ap-
proach to analyze deep learning applications across the stack of
implementation on hardware. ParaDNN [52], HPE DLBS [9] pro-
vide a set of implementations of few neural networks where the
target workloads are limited when running on large-scale super-
computers. XSP [40] proposed methods to characterize machine
learning workloads on GPUs. Mahon et al. [41] evaluate different
deep learning framework implementations on HPC systems. The
challenges and limitations of existing benchmarking drive the need
to develop a benchmark suite with science applications that run at
scale.

In this paper, we present MLPerf HPC benchmark suite aimed to
address the limitations of prior efforts. This is driven by MLCom-
mons [11], an open engineering consortium that aims to accelerate

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Supercomputing’21, November 2021, St. Louis, MO, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: HPC Machine Learning Benchmarks

Benchmark Performance
metrics

Application
Domain

Data volume Comments

HPL, HPL-AI Flops,
Flops/Watt

Random dense
system of lin-
ear equations

Variable Used in Top500 and Green500 to rank supercomputers. Problem size scaled to optimize
the performance for machine size. HPL measures performance at double precision, HPL-AI
measures performance in mixed precision

HPCAI500 Valid
Flops, Valid
Flops/Watt

Image clas-
sification,
Weather
analytics

150 GB and 1.65 TB Convolution and GEMM layers measure the performance in valid Flops which impose
penalty based on failure to meet target accuracy. Limited to Microbenchmarks, Object
Detection and Image Classification tasks with microscopic view of common deep learning
models (Faster-RCNN, ResNet)

Deep500 Throughput,
Time to
solution

any machine
learning
application

150 GB Helps evaluate different framework implementations and multiple levels of operators.
Challenging to integrate into scientific applications. Evaluated with ImageNet dataset.

MLPerf HPC Time to
train

Cosmology
and Weather
analytics

5.1 TB and 8.8 TB Targets representative scientific machine learning applications with massive datasets. Provi-
sion of two types submissions, closed and open enable novel optimizations. Time to solution
metric and focused timing captures holistic model performance

machine learning innovation through MLPerf benchmarks, pub-
lic datasets, and best practices. MLPerf Training benchmarks[43]
aim to measure the performance of training models while MLPerf
Inference benchmarks [46] aim to measure how fast systems can
produce results using a trained model. MLCommons takes a neutral
stand about any form of comparison of results across submissions.
The primary contributions of this work are:

(1) discuss the two scientific machine learning applications of
MLPerf HPC benchmark suite viz CosmoFlow, and DeepCAM
and explain the benchmarking methodology and process.

(2) throughly investigate the performance trends in submitted re-
sults by leading supercomputing platforms in the world

(3) characterize compute, memory, network, and IO behaviours of
benchmarking applications.

(4) demonstrate 2.61 × and 1.12 × improvements in performance
of Cosmoflow and DeepCAM applications respectively through
hyperparameters tuning and gradient skipping techniques over
closed division implementations on GPU clusters.

(5) demonstrate 3.38 × improvement in performance of Cosmoflow
application leveraging hyperparameters tunings over closed
division implementation on CPU clusters.

2 MLPERF HPC BENCHMARK SUITE
The MLPerf HPC benchmarks aim to fill the gaps left by exist-
ing benchmark frameworks regarding the ability to characterize
performance on large scale systems and remain relevant. These
are holistic in the sense that they capture fundamental features
of emerging scientific AI workloads, massive data volume, large
complex models, and training schemes which incorporate data-
parallelism, model-parallelism, and hyper-parameter optimization -
making them relevant to industry and academia alike.

The MLPerf HPC benchmarks drive innovation in system and
software design alike - impacting not only machine learning work-
loads, but the entire set of applications which depend heavily
on accelerator devices for fast compute, interconnects for high-
bandwidth, low-latency communication, or I/O subsystems that
govern the rate at which data can be accessed and moved on multi-
user systems. Additional requirements of the benchmark suite, such
as training to convergence, profile generation, and coarse-grained
time reporting enable each individual benchmark’s performance to

Table 2: MLPerf HPC Benchmarks Overview

Benchmark Quality Target #Runs Tunable
Hyperparameters

CosmoFlow MAE < 0.124 10 batch size, learning rates
DeepCAM IOU > 0.82 5 optimizer (LAMB or AdamW)

batch size, learning rates

be characterized relative to its utilization of a system’s I/O, commu-
nication, memory, and compute capabilities. This makes the MLPerf
HPC benchmark suite uniquely capable of characterizing the ability
of existing HPC systems to run an exciting class of new workloads,
while simultaneously providing engineers a sorely needed stan-
dard set of benchmarks for informing the design of tomorrow’s
large-scale high performance computers.

The first version of the MLPerf HPC benchmark suite includes
two benchmark applications, CosmoFlow and DeepCAM. The ref-
erence implementations of these applications are available at [12].

2.1 CosmoFlow
The CosmoFlow benchmark is based on the work by Mathuriya
et. al. [42], continued by the ECP ExaLearn project [6]. The task
is to predict cosmological parameters from the distribution and
structure of dark matter in the universe. The dataset comes from
N-body cosmology simulations produced by the ExaLearn team [4]
binned into 3D histograms of size 5123 with four channels rep-
resenting different red-shift values. These large volumes present
considerable challenges for training models due to the large re-
quired memory footprint, and so, similar to what is done in [42],
the samples are split into smaller cubes of size 1283 with four red-
shift channels. The target quantities are four cosmology parameters,
Ω𝑀 , 𝜎8,𝑛𝑠 , and𝐻0, which are important to describe the evolution of
the universe. The final dataset used for this benchmark has 262,144
samples for training and 65,536 samples for testing and is stored in
TFRecord [21] files.

The CosmoFlow reference model was adapted from [25] which
introduced some modifications with respect to the original pub-
lished work. The model is a 3D convolutional neural network with
five convolutional layers and three fully-connected layers. Each
convolutional layer has kernel size 2 with 32 × 𝑖 filters in the 𝑖th
layer. The first two fully connected layers have sizes 128 and 64,
respectively. The final layer has output size 4, corresponding to

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems Supercomputing’21, November 2021, St. Louis, MO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

the predicted target quantities. All hidden layers have leaky ReLU
activations, with the exception of the output layer which has a tanh
activation scaled by a factor 1.2. After each convolutional layer,
there is a 3D Max-Pool operation reducing the sample size by half
along each dimension. Finally, the model has dropout layers after
the first two fully connected layers with dropout probability 0.5.
The model is trained with a mean-squared-error (MSE) loss func-
tion and the standard SGD optimizer with an initial learning rate of
0.001 which is dropped to 2.5 × 10−4 at 32 epochs and 1.25 × 10−4
at 64 epochs. The global batch size is set to 64.

The target quality is chosen to be mean-absolute-error (MAE)
< 0.124, which allows for good convergence when scaling the
batch size and learning rate above the reference configuration.
CosmoFlow training exhibited high variability in the number of
epochs to converge, which motivated a requirement of 10 training
runs to get a reliable measurement of the time to solution.

2.2 DeepCAM
DeepCAM [39] implements a convolutional encoder-decoder seg-
mentation architecture trained on CAM5 climate simulation data
with TECA generated heuristic segmentation masks [44] to identify
extreme weather phenomena such as atmospheric rivers and trop-
ical cyclones. DeepCAM was the first Deep Learning application
which scaled to the full OLCF Summit system and was awarded
the ACM Gordon Bell Prize in 2018 [38]. Since then, the model
developed into its current form: the ResNet-50 [33] encoder back-
end was replaced with an Xception [30] network and the input
skip-connection was dropped because the network could achieve
pixel-level accuracy without it. Furthermore, batch normalization
was re-introduced and the original ADAM/LARS optimizer [37, 53]
was dropped in favor of the more modern LAMB [54]. The most
notable features of this network are 20 residual blocks comprised
of depthwise-separable convolutions, which are themselves com-
prised of grouped convolutions withmaximal group count, followed
by a point-wise convolution. The bottleneck layer employs atrous
spatial pyramid pooling [29] with various filter sizes, as well as
global average pooling to extract features at different scales. The
results of those operations are concatenated and fed to the decon-
volutional decoder. Outside the residual blocks, the network has a
single skip connection which propagates low level features directly
to the decoder without routing them through the bottleneck layer.

The network takes 16×1152×768 sized input tensors and predicts
1152× 768 sized segmentation masks for three classes (background,
tropical cyclone/hurricane, atmospheric river). There are 121,266
training and 15,158 testing samples and no data augmentation is
used. DeepCAM is trained with weighted cross-entropy loss, to
account for the high class imbalance (about 95% of the pixels are
background). The target score is the intersection-over-union (IOU)
between the predictions and the targets. The scientifically moti-
vated target score is 0.82, which corresponds to a similarity of 82%.

Unique Characteristics: It is critical to understand what makes
these benchmarks different from traditional industrial applications.
CosmoFlow is trained on volumetric (3D) data, rather than the 2D
data commonly employed in training image classifiers. DeepCAM
is trained on images with 768 × 1152 pixels and 16 channels, which

is substantially larger than standard vision datasets like ImageNet,
where the average image is 469×387 pixels with at most 3 or 4 chan-
nels. Moreover, the massive datasets (5.1 TB for CosmoFlow and
8.8 TB for DeepCAM, compared to 150GB for ImageNet) introduce
significant I/O challenges that expose storage and interconnect
performance limitations.

3 BENCHMARKING PROCESS
The MLPerf HPC benchmark methodology is closely modeled af-
ter the MLPerf Training benchmark, including the general design,
metrics, division rules, and submission and review procedures. For
instance, the MLPerf HPC benchmarks use the same holistic view
of performance and report time to train as the primary metric. This
choice captures end-to-end performance including both system
speed and accuracy. A few changes were made in the rules to im-
prove the relevance of the benchmarks for scientific workloads in
the HPC setting. For example, one motivation is the need to cap-
ture the impact of data-movement for massive scientific datasets
on large HPC parallel file systems and node-local accelerated stor-
age, for which we introduce a rule to include data staging in the
measured benchmark time.

3.1 Measurement
Here we describe the finer details and rules relating to measuring
time to train performance in the benchmarks.

3.1.1 Divisions: MLPerf HPC has two types of submissions, closed
division and open division. In the closed division, the submissions
need to be equivalent to the reference implementation. This means
that they must have mathematically equivalent model definitions
and training algorithms. Such a process enables a direct comparison
of the systems. In the open division, submitters are allowed to
change the model architectures and training procedure freely but
are restricted to evaluate the quality metric in the same way as the
reference. This division aims to encourage innovations to further
optimize the benchmarks.

3.1.2 Timing rules: Each submission reports the performance met-
ric in time to solution. At the start of a run, the benchmark dataset
must sit on the parallel file system of the HPC center. On-node
caches must be reset, though we do not require system-level caches
to be reset due to the difficulties in doing so consistently across
systems without severe system disruption. The benchmark timer
begins as soon as the dataset is touched, which includes staging
into node-local storage. The timer stops when the convergence
criteria, as described in the rules, is met.

3.1.3 Run results: ML model training is inherently stochastic due
to random initializations, dataset shuffling, etc. Therefore, to get
an accurate measurement of the expected time to train, submitters
must run the benchmark applications a specified number of times
to convergence. In the final scoring, we drop the fastest and slowest
results and report the arithmetic mean of the remaining.

3.1.4 Logging: The benchmarks use the mlperf-logging library [13],
which provides logging utilities and helper functions for all sub-
missions. These help in collecting metadata and evaluating if the
submissions meet compliance checks with the set run rules.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Supercomputing’21, November 2021, St. Louis, MO, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Submission
The submission process is designed to be fair, robust, and repro-
ducible. This is achieved through the enforcement of a required
structure for submissions and a peer review process. A submission
schedule specifies when benchmarks and rules are finalized, when
the submission window opens, the deadline for all submissions, as
well as the schedule for the reviews and final deadline for results.

3.2.1 Structure: Submitters must upload their full code used to
produce results, as well as system descriptions and the result log
files containing the timing information. The submissions must
conform to a specified file and directory structure and naming
scheme for parsing, summarizing, and peer-review. The required
submission structure is described in [7].

3.2.2 Review: After the submission deadline, the peer-review pro-
cess begins. A set of scripts from the mlperf-logging library are
first used to check submissions and log files for compliance with the
rules. Then, submitters review each other’s implementations and
results to further verify that they are compliant, sensible, and com-
prehensible. During the review stage, submitters are also allowed
to do “hyperparameter borrowing”, in which they may perform ad-
ditional sets of training runs using the hyperparameter settings of
other submissions (but still using their original implementations).
This is to allow all submitters to benefit from the hyperparam-
eter tuning performed by everyone, to prevent giving an unfair
advantage to submitting teams that can dedicate significantly more
resources to hyperparameter tuning.

4 RESULTS
The inaugural MLPerf HPC submission round (v0.7)† took place
during the summer of 2020. The results from submissions on 7
supercomputers, released in November, showcased the capabilities
of state-of-art systems for training large-scale scientific problems.
The results are summarized in Table 4 for both closed and open di-
visions. Benchmark performance is reported with the mean time to
solution. Details of the participating HPC systems are listed in Table
3. This section will present a detailed analysis of the submissions,
with highlights and observations from each submitter.

4.1 Analysis
The time to solution, broken into data staging, training and evalua-
tion components, is illustrated in Fig. 1 for each submission.

4.1.1 Discussion of data staging time: The data staging time (𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔)
is shown in Table 5 for the systems where it was measured, along
with the ratio to the average epoch time, 𝑇𝑒𝑝𝑜𝑐ℎ . We observe that
the staging times are very different for the two benchmarks. By
interpolation, ABCI handles staging for CosmoFlow more than
5× faster than for DeepCAM in absolute terms. This difference
comes not only from the fact that DeepCAM’s data set is 73% larger
than CosmoFlow’s, but also from the data reduction ratio by com-
pression, which is 88% for CosmoFlow, whereas it is only 23% for
DeepCAM.

†naming chosen to be consistent with the submission round in MLPerf Training

Figure 1: Relative breakdown of time to solution into stag-
ing (green), evaluation (orange) and training (blue). Upper
12 submissions: CosmoFlow, lower 3: DeepCAM.

[Lukas: clearly separate DeepCAM from CosmoFlow in figure]

To understand the relative importance of staging (𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔) in
time to solution (𝑇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛), we assume the runtime model

𝑇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔 +𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 +𝑇𝑒𝑥𝑡𝑟𝑎 . (1)

With 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑇𝑒𝑝𝑜𝑐ℎ · #𝑒𝑝𝑜𝑐ℎ𝑠 and 𝑇𝑒𝑥𝑡𝑟𝑎 ≈ 0 (Fig. 1), we get

𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔

𝑇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
≈

𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔/𝑇𝑒𝑝𝑜𝑐ℎ
𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔/𝑇𝑒𝑝𝑜𝑐ℎ + #𝑒𝑝𝑜𝑐ℎ𝑠 . (2)

The ratio𝑇𝑠𝑡𝑎𝑔𝑖𝑛𝑔/𝑇𝑒𝑝𝑜𝑐ℎ (the last column of Table 5) quantifies the
relative overhead in units of compute epochs that staging adds to
time to solution irrespective of convergence∗. Furthermore, this
number also corresponds to the ratio between compute and staging
throughput.

Since CosmoFlow has a large number of epochs to converge as
we will see later (4×more than for DeepCAM on ABCI-submissions,
Table 6), by equation 2 the staging overhead will be marginal com-
pared to the overall runtime (< 5% in all cases in Figure 1). The
opposite is true for DeepCAM, where data staging takes 19% of the
runtime on the ABCI submissions (only 2.2%& 1.5% for CosmoFlow).
This can be explained by both the fewer epochs to converge and
the compute-to-staging throughput ratio, which is about 2.5− 3.5×
higher for DeepCAM, which DeepCAM also has higher 𝑇𝑒𝑝𝑜𝑐ℎ .

Fugaku’s CosmoFlow staging times are highest at 8,192 pro-
cessors because of 16-way replication of the data set for 8,192
processors (4-way for 16,384). This is an extra overhead of model-
parallelism that could be avoided by optimizing data reading and
broadcasting across MPI ranks.

From these observations we conclude that staging adds an rela-
tive overhead that strongly depends on the application, in the sense
of data compressibility and model convergence and that smaller
systems with fewer number of epochs are generally more sensitive
to it than larger ones.

4.1.2 Analysis of compute time: This subsection presents an analy-
sis of the compute time (𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 in eq. 1), that is the time spent
in training and evaluation, after data staging is completed. It rep-
resents ≥ 90% of time to solution in CosmoFlow and ≥ 80% in
DeepCAM as shown in Figure 1. We start with a detailed analysis
of CosmoFlow and DeepCAM, before comparing the two.

∗Note that this number depends on the batch size, though, because𝑇𝑒𝑝𝑜𝑐ℎ does
4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems Supercomputing’21, November 2021, St. Louis, MO, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 3: HPC System details

System #Nodes Processors (per node) Accelerators (per
node)

Memory (per node) Node-local Storage (per node) Interconnect (topology) to-do: clean this col-
umn

Piz Daint [20] 5,704 1x Intel Xeon E5-2690 v3 1x NVIDIA P100 (16
GB)

64 GB N/A Cray Aries [9.7 GB/s internode bi-directional]
(Dragonfly)

ABCI [1] 1,088 2x Intel Xeon Gold 6148 4x NVIDIA V100 (16
GB)

384 GB 1600 GB (SSD + NVMe) InfiniBand EDR (100Gbps) ×2, full-bisection
bandwidth in the same rack (34 compute nodes)

Cori-KNL [3] 9,688 1x Intel Xeon Phi 7250 N/A 96 GB DDR4 + 16 GB
MCDRAM

N/A Cray Aries (Dragonfly)

Cori-GPU [2] 18 2x Intel Xeon Gold 6148 8x NVIDIA V100 (16
GB)

384 GB DDR4 930 GB (NVMe) 4 dual-port Mellanox MT27800 (ConnectX-5)
EDR InfiniBand network cards

HAL [36] 16 2x IBM POWER 9 model 2.2 4x NVIDIA V100 (16
GB)

256 GB DDR4 N/A Infiniband EDR

Frontera-RTX [49] 90 2x Intel Xeon E5-2620 v4 4x NVIDIA Quadro
RTX 5000 (16 GB)

128 GB DDR4 240 GB (SSD) FDR (Fat Tree)

Fugaku [19] 158,976 1x Fujitsu A64FX N/A 32 GB TofuD [68GB/s x2 (in/out)] (6D Mesh/Torus
Network)

ThetaGPU [22] * 24 2x AMD EPYC 7742 8x NVIDIA A100 (40
GB)

1 TB DDR4 15TB SSD, 3.84TB NVMe 20Mellanox QM9700 HDR200 40-port switches
in a fat-tree topology, 25 GB/s bandwidth

Summit [51] * 4,600 2x IBM 3.07 GHz POWER9 6x NVIDIA V100 (16
GB)

512 GB DDR4 1.6TB (NVMe SSD) dual-rail EDR InfiniBand network

* Measured performance metrics but did not submit for v0.7 submissions

Table 4: Performancemetrics (time to solution inminutes) from submissions in closed and open divisions. The average per-run
std deviation is 1.7% for DeepCAM, 2.8% for ★ABCI-2048/★Fugaku-16384 and 11.1% for all other CosmoFlow submissions.

Division System Submission Software #Processors #Accelerators CosmoFlow DeepCAM

Closed Piz Daint Piz-Daint-128 TensorFlow 2.2.0 128 128 461.01 -
Piz Daint Piz-Daint-256 TensorFlow 2.2.0 256 256 327.01 -
ABCI ABCI-1024 PyTorch 1.6.0 512 1,024 - 11.71
ABCI ABCI-512 TensorFlow 2.2.0 256 512 34.42 -
Fugaku Fugaku-512 TensorFlow 2.2.0 + Mesh TensorFlow 512 0 268.77 -
Fugaku Fugaku-8192 TensorFlow 2.2.0 + Mesh TensorFlow 8,192 0 101.49 -
Cori-GPU Cori-GPU-64 PyTorch 1.6.0 16 64 - 139.29
Cori-GPU Cori-GPU-64 TensorFlow 1.15.0 16 64 364.73 -
Cori-KNL Cori-KNL-512 TensorFlow 1.15.2 512 0 536.06 -
HAL HAL-64 TensorFlow 1.15.0 32 64 265.59 -
Frontera-RTX Frontera-RTX-64 TensorFlow 1.15.2 32 64 602.23 -

Open ABCI ★ABCI-1024 PyTorch 1.6.0 512 1,024 - 10.49
ABCI ★ABCI-2048 TensorFlow 2.2.0 1,024 2,048 13.21 -
Fugaku ★Fugaku-16384 TensorFlow 2.2.0 + Mesh TensorFlow 16,384 0 30.07 -
Cori-KNL ★Cori-KNL-1024 TensorFlow 1.15.2 1,024 0 419.69 -

Table 5: Data staging time

Benchmark Submission Staging time
(minutes)

Compute-to-staging
throughput ratio

CosmoFlow Cori-GPU-64 16.49 ± 0.61 2.55
ABCI-512 0.76 ± 0.004 2.27

★ABCI-2048 0.20 ± 0.004 1.56
Fugaku-512 1.55 ± 0.11 0.64
Fugaku-8192 3.77 ± 0.51 3.59

★Fugaku-16384 0.88 ± 0.08 4.93

DeepCAM ABCI-1024 2.20 ± 0.01 5.55
★ABCI-1024 1.96 ± 0.08 5.45

Compute analysis for CosmoFlow: Using𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑇𝑒𝑝𝑜𝑐ℎ ·
#epochs, we observe that the number of epochs to convergence is
primarily an algorithmic property of SGD, and as such, only depen-
dent on the optimizer and choice of hyperparameters (the data and
model are held fixed), but not the particular system or implemen-
tation (up to floating point precision). On the other hand, 𝑇𝑒𝑝𝑜𝑐ℎ
is a system-specific property that depends on both the hardware
and the specific parallel implementation of the model as well as the
choice of optimizer, but not necessarily on all hyperparameters. In
fact, from the rule set in Table 2, 𝑇𝑒𝑝𝑜𝑐ℎ only depends on the value
of the batch size hyperparameter.

Therefore, we provide analysis of the epoch throughput 𝑇−1
𝑒𝑝𝑜𝑐ℎ

and # epochs to solution separately for each of the submissions by
means of Figure 2. We focus on the number and type of compute
unit (accelerators for GPU-based systems, processors for CPU-based
systems) to characterize the system and the batch size as most im-
portant parameters. The choice of these parameters for each of the
submissions is shown in Figure 2 a). The ratio of batch size to #
compute units is proportionate to the average amount of computa-
tion per compute unit that occurs in every step of distributed SGD.
Since the synchronization of weights shared by different compute
units is required before the next training step can be processed,
we use the inverse of this ratio to quantify the communication
intensity of a submission (constant along diagonal level lines). The
communication intensity does not directly determine the parallel
implementation for a given system, but all submissions in round
v0.7 with a batch size to # compute units ratio ≥ 1 chose a purely
data-parallel implementation, whereas those with < 1 used a hy-
brid form of model- and data-parallelism that will be discussed in
subsection .

Epoch scaling in CosmoFlow: In Figure 2 (b), we show the scal-
ing of epochs required to converge as a function of the batch size

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Supercomputing’21, November 2021, St. Louis, MO, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(dependent variable on the x-axis!). As discussed above, this is a
system-independent property up to floating point precision. The
level lines along the diagonal identify points of an identical number
of training steps to the solution, which puts a limit on data-parallel
scalability. That is, once an increase in the batch size leads to a
larger number of training steps to solution, a system can no longer
train a model faster by growing the compute resources propor-
tionally (ignoring caching effects). The submissions ★ABCI-2048
and ★Fugaku-16384 are close to this limit and the specialized tech-
niques to converge efficiently at these very large batch sizes will
be discussed in greater detail in subsection 4.2.1. The remaining
submissions all closely follow the reference implementation. These
turn out to scale efficiently to a batch size of 256 with only 1.3×
increase in # epochs to converge compared to batch size 64, but
past this point becomes significantly harder to train and less stable
(1.6× mean & 7× standard deviation in # epochs for doubling the
batch size). Hence these submissions accumulated at batch size 512
as the largest for closed division. The submission ★Cori-KNL-1024
discussed in subsection 4.2.3, managed to overcome the conver-
gence issues at batch size 1,024 by slightly modifying the learning
rate schedule of the closed division.

Throughput scaling in CosmoFlow: In Figure 2 (c), throughput
is shown as a function of the number of compute units and the
batch size, which jointly determine the communication intensity
of training. For each submission, we plot sample throughput (left
axis) for training (▲) and evaluation (×) as well as the combined
average sample throughput (distribution, the curved lines rooted at
the mean only illustrate the averaging by holding the point cloud
together) according to the split of the data set (80% training and
20% evaluation) at the abscissa corresponding to the # compute
units (bottom). This is illustrated on the submission ABCI-512. On
the diagonal we find lines of constant per-accelerator throughput,
commonly used to analyze scaling efficiency. Dividing the com-
bined training and evaluation throughput by the overall number
of samples in the data set, we obtain the epoch throughput, 𝑇−1

𝑒𝑝𝑜𝑐ℎ
,

which can be read off for the distribution from the right scale. To
specify the algorithmically relevant throughput, we plot the train-
ing batch size at which a particular epoch throughput has been
achieved (⋄, batch size scale on top in fixed 1:1 ratio to # compute
units). Where batch size and # compute units disagree, we draw a
dashed line parallel to the x-axis between the ⋄ and the distribution
on the ordinate of the epoch throughput (the direction and length
of this line showing the communication intensity). The scheme
is exemplified on ★Fugaku-16384, which used model-parallelism.
The resulting plot allows us to understand the scaling efficiency
of training, evaluation, and combined average (total) throughput
for submissions that relate through weak or strong scaling (or ex-
trapolation thereof) and corresponding insights will be discussed
in subsection 4.2.

Interestingly, for GPU-based systems, there is a transition occur-
ring from smaller systems to those with 256 GPUs and more, where
the gap between training and evaluation throughput becomes very
high. Evaluation is inherently bound by data access speed in Cos-
moFlow and it turns out that the memory configurations of these
systems is exactly such that the larger ones - Piz-Daint-256, ABCI-
512 and ★ABCI-2048 - benefit from caching the data set in RAM.

As a result, these systems spend very little (< 5% ) of their time in
evaluation (Figure 1).

Compute time from throughput- and epoch-scaling in CosmoFlow:
Figure 2 (d) shows the outcome of the competition between epoch-
and throughput-scaling when growing the system. To obtain it, we
join the epoch- (Fig. 2 b) and throughput-scaling (Fig. 2 c) of each
submission on the batch size along the shared axes. The compute
time 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑇𝑒𝑝𝑜𝑐ℎ · #epochs is constant along diagonal level
lines indicated. We find e.g. that while Fugaku-512 has a higher
sample throughput than HAL-64, the smaller batch size of HAL-64
causes it to still converge slightly faster in time overall. A similar
observation can be made when comparing e.g. ★Cori-KNL-1024 to
Piz-Daint-256. As a further insight, we are able to trace back the
run-to-run variation in time to solution (Table 4) to the number
of epochs rather than system throughput. Finally, the technique
of graphically joining throughput- and epoch-scaling on the batch
size allows the inexpensive prediction of compute time to conver-
gence at system configurations other than the ones used in the
submissions. This can be done either by (a) additional throughput
measurements in Figure 2 c) at batch size with known epochs to
convergence or (b) approximately by data-parallel extrapolation of
throughput along diagonal lines of constant throughput per acceler-
ator (weak scaling since batch size to # compute unit ratio remains
constant) and joining that value with the known epoch scaling
from Figure 2 b) on the batch size.This concludes our discussion
of CosmoFlow’s compute time for now with further details being
presented in Section 4.2.

Compute analysis for DeepCAM:. We observe from Figure 1
that more than a third (36.3%) of time to solution is spent in the
evaluation phase on Cori-GPU whereas it is comparably negligible
on ABCI (4% for closed, 1.3% for open). The reason for this is not
primarily due to the different evaluation throughput as seen in Table
6), but the fact that evaluation is triggered after a fixed number
of training steps instead of once per epoch. As a consequence,
Cori-GPU calculates the IOU score 8× as often as ABCI’s closed
division submission and 36× as often as ABCI’s open submission,
where the evaluation frequency has been further decreased. As
DeepCAM uses training steps to define its evaluation rhythm, a
compute analysis similar to CosmoFlow’s, but based on training
steps instead of epochs to solution would be possible. However, we
omit this here due to the lack of space and instead discuss the results
for DeepCAM in comparison with CosmoFlow in the following.

4.1.3 Benchmark differences: In Table 6, we present the compute
characteristics of both CosmoFlow and DeepCAM on systems with
submissions to both benchmarks. We see that DeepCAM requires
fewer epochs to converge than CosmoFlow (20-25%), which as
a function of the batch size grows at a rate that is roughly the
same as in CosmoFlow, but with much more stable convergence.
For sample throughput, we find that (1) CosmoFlow has higher
throughput in both training (3 − 5×) and evaluation (7 − 20×),
which can be attributed to the lower number of layers, whereas (2)
DeepCAM has a much smaller gap between training and evaluation
throughput (1.4× vs. 5.7×) Comparing the resource footprint, we
find that to reach convergence, the compute budget for CosmoFlow
is 1.5−2.6× larger than for DeepCAM, with correspondingly higher

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems Supercomputing’21, November 2021, St. Louis, MO, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 2: Compute analysis of CosmoFlow with figures on a) parameter choice, b) epoch scaling (dependent variable on x-axis),
c) throughput scaling (arrows in ★Fugaku-16384 explain how to read x-axis, in ABCI-512 how to read y-axis), and d) compute
time. Note that axes are shared along rows (y-axis in a & b: batch size, in c & d: epoch throughput) and columns (x-axis in a &
c: # compute units, in b & d: # epochs to solution).

time to solution that is 2.6 − 2.9× that of DeepCAM for closed
division. Notably, though, we see for both benchmarks that despite
a relatively large increase in number of # accelerators by 8 − 16×,
the compute budget with the right optimizations can be constrained
and a decrease in ∼ 10× time to solution is reliably possible.

4.2 Highlights
The MLPerf HPC submission round has an entry with the largest
scale of runs so far in any MLPerf benchmarking submissions.
The entry on the Fugaku system has implemented CosmoFlow in a
model parallel fashion on amassive scale with 16,384 processors.We

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Supercomputing’21, November 2021, St. Louis, MO, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Scaling of required epochs, throughput, time to solution and compute budget in CosmoFlow vs. DeepCAM.

Benchmark Submission Batch size # Epochs # Accelerators
Training

throughput/# acc.
(samples/second)

Evaluation
throughput/# acc.
(samples/second)

Time to solution
(minutes)

Compute
budget
(h · acc)

CosmoFlow Cori-GPU-64 64 53.88 ± 4.85 64 12.07 ± 0.09 21.17 ± 0.56 364.73 ± 32.77 389.04
ABCI-512 512 100.00 ± 13.50 512 26.59 ± 0.90 151.88 ± 0.68 34.42 ± 4.03 293.03

★ABCI-2048 2,048 98.50 ± 2.56 2,048 16.79 ± 0.23 149.21 ± 0.28 13.21 ± 0.35 450.96

DeepCAM Cori-GPU-64 128 10.00 ± 0.00 64 3.56 ± 0.13 3.55 ± 0.18 139.29 ± 3.63 148.58
ABCI-1024 2,048 24.00 ± 0.00 1,024 5.24 ± 0.02 7.37 ± 0.01 11.71 ± 0.02 199.78
★ABCI-1024 2,048 23.67 ± 1.16 1,024 5.57 ± 0.13 4.67 ± 0.82 10.49 ± 0.23 178.95

now present additional details of the implementations and present
highlights from several systems.

0

0.2

0.4

0.6

0.8

1

1.2

0

50

100

150

200

250

300

350

512 2048 4096 8192

R
el

at
iv

e 
ti

m
e 

to
 s

o
lu

ti
o

n

N
u

m
b

er
 o

f 
ep

o
ch

s

Number of CPUs

Number of epochs

Time to solution

Figure 3: Plot showing the time to solution and the number
of epochs using data parallelism with increasing CPU count
on Fugaku, using a local batch size one (for open division).

4.2.1 Fugaku: Submissions on the Fugaku supercomputer utilized
hybrid data and model parallel execution. These parallelism schema
are implemented by a technique described in the section below. The
local batch size per CPU is set to one, which means that the number
of CPUs and the number of nodes are the same. Data reformatting
by compressing and archiving multiple files was effective to reduce
data staging time. Training data is staged in RAM disks in advance.
Only in the case of the 512-node submission, RAM disks do not
have enough capacity, so data staging is performed on local SSDs
on I/O nodes that are assigned to each unit of 16 nodes. Also, the
data cache function of TensorFlow (tf.data.Dataset.cache) is
used to improve the bandwidth of data loading during training.

For the open division, the following accuracy improvement tech-
niques were applied: (1) use linear learning rate decay scheduler,
(2) apply data augmentation, (3) disable dropout layers. Training
time scaled up to batch size 4,096 with local batch size one for the
open division on Fugaku after the hyperparameter tuning. Figure 3
shows the scaling of time to solution and the number of epochs
for the open division. The scaling of time to solution is limited to
4,096, because the number of epochs to convergence increases as
the global batch size increase.

Since the accuracy could not reach the target using the batch size
larger than 4096 even after the hyperparameter tuning, model paral-
lelism is necessary to scale beyond 4,096 processors. Therefore, a hy-
brid approach utilizing data and model-parallelism is implemented
for CosmoFlow on Fugaku. Model parallelism in TensorFlow is im-
plemented by extending Mesh TensorFlow so that multi processes
of both data and model parallelism are enabled. Model parallelism
is applied in Conv3d layers by spatially partitioning input tensors
in two dimensions. Figure 4 illustrates an example of the spatial

partitioning for two processes. The hybrid parallelism enables scal-
ing the number of CPUs up to 8,192 with 4x4 spatial partitioning
for the closed division and 16,384 with 4x1 spatial partitioning for
the open division (2.62× and 1.98× speedup of training throughput
by model-parallelism compared to Fugaku-512/an extrapolation
thereof to batch size 4,096). There is still room for improving the
scaling efficiency further by reducing the communication overhead.

Conv3D_to_Dense Layer

Process 0 Process 1

Allgather

Data Loader

Conv3D Layers

Dense Layers

Figure 4: Spatial partitioning for CosmoFlow.

4.2.2 ABCI:. For both of the benchmarks, data reformatting by
compressing and archiving multiple files was effective to reduce
data staging time. Data shuffling was applied for intra-node GPUs
after each epoch, since the dataset is too large to fit on local storage
and a partial dataset is shared only intra-node after data staging.

For CosmoFlow, the following performance optimizations were
applied to improve training and evaluation throughput: (1) improve
data loader bandwidth using NVIDIA Data Loading Library (DALI),
(2) apply mixed-precision training, (3) increase validation batch
size. Training time scales up to batch size 512 with local batch size
one for the closed division. For the open division, after the same
hyperparameter tuning techniques mentioned in section 4.2.1 were
applied, batch size 2,048with local batch size onewas optimal. Using
a larger batch size than 2,048 did not achieve additional speedup
because network bandwidth degraded due to congestion and the
number of epochs increases with an increase in the batch size.

For DeepCAM, page-locked memory (a.k.a pinned memory) is
used to improve memory bandwidth, and four additional worker
processes were forked for data loading to improve I/O bandwidth.
The distributed data shuffling were applied for intra-node GPUs,
and hyper-parameters were tuned, including the warmup steps
to reduce the number of epochs to convergence. Training time
scales up to batch size 2,048 with local batch size two for closed and
open divisions on ABCI after hyperparameter tuning. Especially
tuning the warmup steps was effective to reduce the number of

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems Supercomputing’21, November 2021, St. Louis, MO, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

epochs to convergence. For the open division submission on ABCI,
the Gradient Skipping (GradSkip) technique, one of the Content-
Aware Computing (CAC) techniques developed by Fujitsu, was
also applied. GradSkip avoids updating weights in some layers in
the training process, by finding layers which have little effect on
accuracy, based on automatic analysis of the content of data during
the training process.

4.2.3 Cori/Cori-GPU:. Submissions on the Cori supercomputer
at NERSC utilized both the primary KNL partition as well as the
Cori-GPU testbed. System details are available at [2, 3].

CosmoFlow was trained on Cori KNL on 512 nodes in the closed
division and 1024 nodes in the open division. For the open division
submission, an additional learning rate decay was added in order to
enable convergence at global batch size 1024. The implementation
used Intel-optimized TensorFlow with MKL-DNN for optimized
performance on the Intel processors. Runtime settings for inter-
and intra-parallelism threads, OpenMP threads, and affinity were
tuned for maximal throughput. Shifter containers were used to
launch training, which prevented scalability issues in shared li-
brary loading from the parallel file system at scale. These results
show that large CPU systems like Cori can still be useful for training
computationally-expensive deep learning models. CosmoFlow was
additionally trained on the Cori GPU system on 8 nodes (64 V100
GPUs). Horovod with NCCL-based allreduce was used to achieve
efficient data-parallel training. Additionally, node-local SSDs were
used to store local partitions of the full dataset. The staging time
from the Cori scratch filesystem to the node-local SSDs was consid-
erably longer than other submissions with data-staging, indicating
there is further room for optimization in future MLPerf HPC sub-
mission rounds.

DeepCAM was similarly trained on the Cori GPU system uti-
lizing 64 V100 GPUs. The implementation in PyTorch utilized the
NVIDIAApex library for automatic mixed precision and used NCCL
for optimized distributed data-parallel training.

4.2.4 Piz Daint: On Piz Daint [20], we focused on two data-parallel
submissions in the closed division of CosmoFlow with 128 and 256
GPUs, one GPU per node. By using Sarus [27], a container engine
with near-native performance for Docker-compatible containers,
we were able to rapidly test and tune distributed training with
Horovod and NCCL for fine-grained communication to obtain near
optimal weak scaling in the range of 100-1000 nodes as shown in
Figure 5. A low cycle time, tensor fusion threshold and the usage
of the hierarchical, tree-based allreduce implementation proved to
be key to achieve this performance.

To find the optimal batch size at a fixed node count, throughput
scaling due to increased (local) GPU data-parallelism (Figure 5)
has to be traded off against epoch scaling (Fig. 2 b). In particular,
we find from Figure 5 that the throughput ratio for a local batch
size 4, 2, and 1 relative to a maximum local batch size of 8 that fits
on the P100’s memory roughly coincides with the strong scaling
efficiency, which at a batch size of 1,024 is 91%, 64%, and 35%. With
the epoch scaling as demonstrated in Figure 2 b), and a measured
59 epochs to converge for batch size 128, this causes a local batch
size of 2 to give the fastest time to convergence for both of our
configurations. Interestingly, this is even the case on 256 nodes,
where the +70% throughput increase due to higher GPU-parallelism

Figure 5: Weak-scaling of training throughput on Piz Daint
before (hollow symbols, dashed lines) and after (filled sym-
bols, solid lines) Hovorod/NCCL-optimizations in the batch
size region 128-1024.

Table 7: Memory bandwidth measurements

Benchmark System Tool Memory Bandwidth (GB/sec)

CosmoFlow ABCI Nvprof 335.4
CosmoFlow Fugaku Perf 95.0
CosmoFlow Summit Nsight 233.1
CosmoFlow ThetaGPU Nsight 194.5
DeepCAM ABCI Nvprof 153.1
DeepCAM Summit Nsight 254.7

from local batch size 1 to 2 outweighs the +62% increase in epochs
to convergence when moving from batch size 256 to 512, leaving a
narrow 5% improvement in the time to solution. On the other hand,
increasing the local batch size on 128 nodes from 2 to 4 is expected
to increase the time to solution by 13%. To further reduce time
to solution by strong scaling, we expect an alternative approach
to data-parallelism (which would only give 11% improvement for
scaling out by another factor of 2) to be more efficient.

Curiously, in Figure 2 c), we find that throughput scales faster
than ideal from 128 to 256 GPUs - +8% compared to what is expected
for training and a full +167% for evaluation, respectively. As a result,
the time to solution is 12% faster on 256 than expected based on
the epoch scaling. This scaling is a result of being able to cache the
data set in RAM with 256 nodes, whereas with 128 nodes, parallel
file system I/O becomes a bottleneck, which more directly impacts
evaluation and could be alleviated using near-compute storage.

In summary, we have identified fine-grained communication
together with the addition of near-compute storage as key opti-
mizations for CosmoFlow on Piz Daint.

5 WORKLOAD CHARACTERIZATION
In this section, we present the workload characterization of these
benchmark applications on various HPC systems. We measure
performance metrics to help understand their memory, network
and I/O behaviours. It is to be noted that these metrics are captured
in additional runs separate from v0.7 submissions. For CosmoFlow,
we used 65,536 training samples and 16,384 validation samples for
2 epochs with local batch size of 1. For DeepCam, we used all data
samples (121,266 for training and 15,158 for validation validation
samples) for 2 epochs with local batch size of 2.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Supercomputing’21, November 2021, St. Louis, MO, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 8: Network bandwidth (BW) measurements

Benchmark System Tool BW
(GB/sec)

size (MB)

CosmoFlow (512 GPUs) ABCI Horovod Timeline 3.41 19.97
CosmoFlow (512 CPUs) * Fugaku Mpitrace 0.75 21.71
CosmoFlow (256 GPUs) Piz Daint Horovod Timeline 1.86 2.21
CosmoFlow (510 GPUs) Summit Horovod Timeline 2.24 22.0
CosmoFlow (128 GPUs) ThetaGPU Horovod Timeline 1.95 15.20
DeepCAM (512 GPUs) ABCI Timer-based 3.73 37.77
DeepCAM (510 GPUs) Summit Timer-based 4.50 225.0

* without model parallelism
Table 9: I/O bandwidth measurements

Benchmark System Tool I/O Bandwidth (GB/sec)

CosmoFlow ABCI Nvprof 1.65
CosmoFlow Fugaku Timer-based 2.57
CosmoFlow Summit Darshan 1.46
CosmoFlow ThetaGPU Darshan 1.98
CosmoFlow Piz Daint Darshan 8.08
DeepCAM ABCI Darshan 2.36

5.1 Memory Bandwidth
We measure memory traffic of these benchmark implementations
to estimate how much bandwidth is used for memory reads and
writes to the off-chip DRAM on respective systems. More concisely,
we measure the accelerator memory bandwidth (except Fugaku?)
aggregated across the system. Global memory bandwidth is usually
influenced by the underlying cache implementations and may not
reflect the memory traffic in its entirety. Hence, we measure DRAM
read and write throughput. Table 7 lists the average bi-directional
bandwidth (read and write) across different systems.

On ABCI, we used Nvidia to calculate the average memory
bandwidth of all kernels based on the elapsed time for each CUDA
kernel and the memory bandwidth between L2 cache and HBM
memory. Since Fugaku does not have GPUs, we used Perf [18]
to extract read and write memory bandwidths measured at 1ms
intervals and the average bandwidths are calculated for each. While
nvprof measures the bandwidth of CUDA kernel time only, perf
measures the bandwidth of the training interval at regular intervals.
On ThetaGPU and Summit we used Nvidia Nsight compute [17]
to extract the memory bandwidth of all kernels using the metric
dram__bytes.sum.per_second.
Observations: From Table 7, it can be observed that the measured
memory bandwidth is, in general, higher on GPU-based systems
than CPU-based systems owing to better caching mechanisms on
the former. We observe the memory bandwidths on Fugaku appear
to be smaller than those of ABCI by at least 1.6X times. We expect
this is because the CPU system can make use of the L1/L2 cache on
CPU more efficiently. In fact, the A64FX CPU has a 32MB L2 cache,
which is larger than a 6.1MB L2 cache on the V100 GPU.

5.2 Network Bandwidth
Distributed implementations of deep learning applications typically
spend significant time in collective communication calls. Optimiz-
ing worker node communication is critical for high-throughput. To
understand this behavior, we profiled the heavy collective commu-
nication calls, AllReduce operations across implementations. This
included calls to MPI_AllReduce or NCCL_AllReduce based on the

communication substrate used. Figure 6(a-b) presents the commu-
nication patterns (percentage communication time) of CosmoFlow
while Figure 6-(c) shows similar measurements for DeepCAM.

Since CosmoFlow’s reference implementation uses Horovod, we
used Horovod Timeline [8] to obtain the average network band-
width for collective communications as mpitrace [15] failed for us
to correctly capture overlapping communication and computation.
The average network bandwidth is calculated based on the NCCL
time obtained from the Horovod timeline, excluding the waiting
time for data fusions. On the other hand, DeepCAM does not use
MPI communication through Horovod in the reference implementa-
tion and instead uses NCCL communication through NVIDIA Apex
[16]. Therefore, synchronization operations and timers are inserted
before and after the collective communications of NVIDIA Apex to
measure the communication time. Then we calculate the average
communication bandwidth from the amount of actual data trans-
ferred. On Fugaku, as we used Mesh-TensorFlow for CosmoFlow,
Horovod timeline cannot be used for the performance measure-
ment and we use mpitrace and mpiP [14] together to calculate the
average communication bandwidth.
Observations: The percentage of the application training time
spent in collective communications with either MPI or NCCL to the
total application time is roughly 10-40% as we scale across GPUs on
the evaluated systems. On Fugaku, for the data parallel execution,
the computation time scales with the number of CPUs, while the
MPI communication time does not. Besides, for the model parallel
execution, the scalability of the computation time is lower than that
of the data parallel execution. This is because model parallelism
is applied only to the conv3d layer and not to the fully-connected
layer. Also, the communication time increases as the degree of
model parallelism is increased. This is due to the communication
overhead caused by the data transfer in the halo region when per-
forming spatial partitioning in the conv3d layer.

5.3 I/O Bandwidth
As the MLPerf HPC benchmarks have massive input data sets, it is
important to understand the I/O performance. Table 9 shows the
average I/O bandwidth per worker on different systems. We used
Darshan [28] to get the average I/O bandwidth that captures all
I/O-related activity, such as types and number of files and aggregate
performance combined with shared and unique files worked by all
ranks on certain systems. OnABCI, Darshan cannotmeasure the I/O
volume accurately since our implementation of CosmoFlow used
NVIDIA DALI which partly performs mmap-based I/O. Hence, we
used Nvprof to measure the time of the kernel (TFRecordReader)
that is performing I/O to calculate the average I/O bandwidth. On
Fugaku, we insert timers before and after the data loads, and calcu-
lated from the elapsed time and the amount of data.
Observations: It is challenging to accurately capture the time spent
in I/O due to the overlap in computation with the I/O activity.
However, from Table 9, it can be observed that the measured I/O
bandwidth is similar among the systems, and we can expect that
I/O bandwidth is high enough to hide I/O behind computation. For
example, for DeepCAM on ABCI, I/O bandwidth is 2.36 GB/s per
process, using 256 processes with a full training dataset consisting
of 7.7TB. In this case, estimated I/O time per epoch is 7700[GB] /

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems Supercomputing’21, November 2021, St. Louis, MO, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32 36 64 66 128 132 256 258

Pe
rc

e
n
ta

g
e
 C

o
m

m
u
n
ic

a
ti

o
n
 T

im
e

Number of GPUs

ABCI
Piz Daint
RTX
ThetaGPU
Summit

(a) CosmoFlow : GPU

 0

 20

 40

 60

 80

 100

512 1024 2048 4096 512 1024 2048 4096

Model Parallelism Data Parallelism

Pe
rc

e
n
ta

g
e
 C

o
m

m
u
n
ic

a
ti

o
n
 T

im
e

Number of CPUs

Fugaku 

Fugaku

(b) CosmoFlow : CPU

 0

 20

 40

 60

 80

 100

32 36 64 66 128 132 256 258 510 512

Pe
rc

e
n
ta

g
e
 C

o
m

m
u
n
ic

a
ti

o
n
 T

im
e

Number of GPUs

ABCI
Summit

(c) DeepCAM : GPU

Figure 6: Communication patterns in CosmoFlow and DeepCAM applications.

256 / 2.36[GB/s] = 12.8 seconds, while measured average run time
per epoch that includes the I/O time is 99.6 seconds.

6 KEY INSIGHTS
While MLPerf HPC benchmarks have and will continue to provide
insights for individual systems on performance, additional insights
can be drawn from the v0.7 results and experience that inform
the wider HPC community on challenges and best practices in
supporting scientific ML workloads.

• Data movement and read performance are important pieces of
the overall workflow performance on massive datasets, especially
for systems with accelerators. Accelerated storage solutions like
on-node SSDs are critical, but one also has to optimize the data-
staging part of the pipeline as well.

• Model convergence at scale with large batch sizes is still a chal-
lenge, limiting how much we can accelerate ML training. Sub-
mitting teams struggled to push CosmoFlow beyond a batch size
of 512 in the closed division rules. Additional studies are needed
to develop best practices for scaling ML training on scientific
datasets. This challenge also reinforces the need for hybrid par-
allel training methods, e.g. in order to scale CosmoFlow training
beyond 512 nodes on Fugaku.

• Model specific tuning is effective to scale training. For Cos-
moFlow, batch size is increased from 512 to 4,096 by optimizing
learning rate scheduler, applying data augmentation, and dis-
abling dropout layers. For DeepCAM, batch size is increased up
to 2,048 by optimizing warmup steps and multi step learning
scheduler.

• Performance tuning for throughput is also beneficial. For data
staging throughput, data reformatting by compressing and archiv-
ing multiple files is effective. For training and evaluation through-
put, improve data loader bandwidth using NVIDIA DALI, apply-
ing mixed-precision, and increasing validation batch size, apply-
ing data shuffling only for intra-node GPUs are found effective.

• Efficiently using HPC networks is critical to get good perfor-
mance on supercomputers - existing frameworks may need spe-
cific tuning for fine-grained communication to effectively overlap
communication and computation

• to-do: add run-to-run variability

7 CONCLUSION
In this paper we presented MLPerf HPC, a benchmark suite aimed
at representative scientific machine learning applications. The ini-
tial release included two benchmark applications, CosmoFlow and
DeepCAM with terabytes of input data sets. We presented the re-
sults and analysis of initial submissions from leadership supercom-
puters globally. Later, we discussed the application characteristics
in terms of memory, I/O bandwidth, and network bandwidth. In
the next release of the benchmark suite, we aim to address the
limitations of the existing benchmarks and add applications from
state-of-art models, such as transformers from science domains.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Supercomputing’21, November 2021, St. Louis, MO, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

REFERENCES
[1] [n.d.]. AI Bridging Cloud Infrastructure (ABCI). https://abci.ai/en/about_abci/.
[2] [n.d.]. Cori GPU Nodes. https://docs-dev.nersc.gov/cgpu/.
[3] [n.d.]. Cori System. https://docs.nersc.gov/systems/cori/.
[4] [n.d.]. CosmoFlow Datasets. https://portal.nersc.gov/project/m3363/.
[5] [n.d.]. DeepBench. https://github.com/baidu-research/DeepBench.
[6] [n.d.]. ExaLearn Project. https://petreldata.net/exalearn/.
[7] [n.d.]. General MLPerf Submission Rules. https://github.com/mlcommons/

policies/blob/master/submission_rules.adoc.
[8] [n.d.]. Horovod Timeline. https://horovod.readthedocs.io/en/stable/timeline_

include.html.
[9] [n.d.]. HPE Deep Learning Benchmarking Suite. https://github.com/

HewlettPackard/dlcookbook-dlbs/.
[10] [n.d.]. HPL-AI Mixed-Precision Benchmark. https://icl.bitbucket.io/hpl-ai/.
[11] [n.d.]. MLCommons. https://mlcommons.org/en/.
[12] [n.d.]. MLPerf HPC Benchmark Suite. https://github.com/mlcommons/hpc.
[13] [n.d.]. MLPerf Logging Library. https://github.com/mlcommons/logging.
[14] [n.d.]. mpiP profiling tool. https://github.com/LLNL/mpiP.
[15] [n.d.]. MPItrace tool. https://github.com/IBM/mpitrace.
[16] [n.d.]. Nvidia Apex Extension. https://github.com/NVIDIA/apex.
[17] [n.d.]. Nvidia Nsight Compute Profiler. https://developer.nvidia.com/nsight-

compute.
[18] [n.d.]. Perf profiling tool. https://perf.wiki.kernel.org/index.php/Main_Page.
[19] [n.d.]. The Supercomputer Fugaku. https://www.r-ccs.riken.jp/en/fugaku/

project/outline.
[20] [n.d.]. The Supercomputer Piz Daint. https://www.cscs.ch/computers/piz-daint/.
[21] [n.d.]. TFRecord. https://www.tensorflow.org/tutorials/load_data/tfrecord.
[22] [n.d.]. ThetaGPU. https://www.alcf.anl.gov/alcf-resources/theta.
[23] [n.d.]. Top500 List: November 2020. https://www.top500.org/lists/2020/11/.
[24] R. Adolf, S. Rama, B. Reagen, G. Wei, and D. Brooks. 2016. Fathom: reference

workloads for modern deep learning methods. In 2016 IEEE International Sympo-
sium on Workload Characterization (IISWC). 1–10. https://doi.org/10.1109/IISWC.
2016.7581275

[25] Jan Balewski. [n.d.]. CosmoFlow. https://bitbucket.org/balewski/cosmoflow.
[26] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoefler. 2019. A

Modular Benchmarking Infrastructure for High-Performance and Reproducible
Deep Learning. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 66–77. https://doi.org/10.1109/IPDPS.2019.00018

[27] Lucas Benedicic, Felipe A Cruz, Alberto Madonna, and Kean Mariotti. 2019. Sarus:
Highly Scalable Docker Containers for HPC Systems. In International Conference
on High Performance Computing. Springer, 46–60.

[28] Philip H. Carns, Robert Latham, Robert B. Ross, Kamil Iskra, Samuel Lang, and
Katherine Riley. 2009. 24/7 Characterization of petascale I/O workloads.. In
CLUSTER. IEEE Computer Society, 1–10. http://dblp.uni-trier.de/db/conf/cluster/
cluster2009.html#CarnsLRILR09

[29] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. 2017. DeepLab: Semantic Image Segmentation with
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
arXiv:1606.00915 [cs.CV]

[30] François Chollet. 2017. Xception: Deep Learning with Depthwise Separable
Convolutions. arXiv:1610.02357 [cs.CV]

[31] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian
Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2019. Analysis
of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark.
SIGOPS Oper. Syst. Rev. 53, 1 (July 2019), 14–25. https://doi.org/10.1145/3352020.
3352024

[32] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. [n.d.]. Dawn-
bench: An end-to-end deep learning benchmark and competition. ([n. d.]).

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[34] Tony Hey, Keith Butler, Sam Jackson, and Jeyarajan Thiyagalingam. 2020. Ma-
chine learning and big scientific data. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 378 (03 2020), 20190054.
https://doi.org/10.1098/rsta.2019.0054

[35] Zihan Jiang, Lei Wang, Xingwang Xiong, Wanling Gao, Chunjie Luo, Fei Tang,
Chuanxin Lan, Hongxiao Li, and Jianfeng Zhan. 2020. HPC AI500: The Method-
ology, Tools, Roofline Performance Models, and Metrics for Benchmarking HPC
AI Systems. arXiv:2007.00279 [cs.PF]

[36] Volodymyr Kindratenko, Dawei Mu, Yan Zhan, John Maloney, Sayed Hadi
Hashemi, Benjamin Rabe, Ke Xu, Roy Campbell, Jian Peng, and William Gropp.
2020. HAL: Computer System for Scalable Deep Learning. In Practice and Ex-
perience in Advanced Research Computing (Portland, OR, USA) (PEARC ’20).
Association for Computing Machinery, New York, NY, USA, 41–48. https:
//doi.org/10.1145/3311790.3396649

[37] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[38] Thorsten Kurth, Sean Treichler, Joshua Romero,MayurMudigonda, Nathan Luehr,
Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, Prabhat, and Michael Houston. 2018. Exascale Deep Learning for Climate
Analytics. arXiv:1810.01993 [cs.DC]

[39] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh,
M. Matheson, J. Deslippe, M. Fatica, P. Prabhat, and M. Houston. 2018. Exascale
Deep Learning for Climate Analytics. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. 649–660. https://doi.
org/10.1109/SC.2018.00054

[40] C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W. Hwu. 2020. XSP: Across-
Stack Profiling and Analysis of Machine Learning Models on GPUs. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 326–327.
https://doi.org/10.1109/IPDPS47924.2020.00042

[41] S. Mahon, S. Varrette, V. Plugaru, F. Pinel, and P. Bouvry. 2020. Performance
Analysis of Distributed and Scalable Deep Learning. In 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID).
760–766. https://doi.org/10.1109/CCGrid49817.2020.00-13

[42] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Simon J. Penny-
cook, Kristyn J. Maschhoff, Jason Sewall, Nalini Kumar, Shirley Ho, Michael F.
Ringenburg, Prabhat, and Victor W. Lee. 2018. CosmoFlow: using deep learn-
ing to learn the universe at scale. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage, and Analysis, SC
2018, Dallas, TX, USA, November 11-16, 2018. IEEE / ACM, 65:1–65:11. http:
//dl.acm.org/citation.cfm?id=3291743

[43] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy
Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao,
Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost,
Vijay Janapa Reddi, Taylor Robie, Tom St John, Carole-Jean Wu, Lingjie Xu,
Cliff Young, and Matei Zaharia. 2020. MLPerf Training Benchmark. In Pro-
ceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze (Eds.), Vol. 2. 336–349. https://proceedings.mlsys.org/paper/2020/file/
02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

[44] Prabhat, Oliver Rübel, Surendra Byna, KeshengWu, Fuyu Li, MichaelWehner, and
Wes Bethel. 2012. TECA: A Parallel Toolkit for Extreme Climate Analysis. Procedia
Computer Science 9 (2012), 866–876. https://doi.org/10.1016/j.procs.2012.04.093
Proceedings of the International Conference on Computational Science, ICCS
2012.

[45] Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Kahou, Mr. Prabhat,
and Chris Pal. 2017. ExtremeWeather: A large-scale climate dataset for
semi-supervised detection, localization, and understanding of extreme weather
events. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 3405–3416. http://papers.nips.cc/paper/6932-
extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-
localization-and-understanding-of-extreme-weather-events.pdf

[46] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu, B. Anderson,
M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Coleman, S. Davis, P. Deng,
G. Diamos, J. Duke, D. Fick, J. S. Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J.
Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P.
Micikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan,
A. Zhong, P. Zhang, and Y. Zhou. 2020. MLPerf Inference Benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
446–459. https://doi.org/10.1109/ISCA45697.2020.00045

[47] Andrew Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim
Green, Chongli Qin, Augustin Žídek, Alexander Nelson, Alex Bridgland, Hugo
Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David
Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. 2020. Improved
protein structure prediction using potentials from deep learning. Nature 577 (01
2020), 1–5. https://doi.org/10.1038/s41586-019-1923-7

[48] S. Sharma, Chung-Hsing Hsu, and Wu-chun Feng. 2006. Making a case for a
Green500 list. In Proceedings 20th IEEE International Parallel Distributed Processing
Symposium. 8 pp.–. https://doi.org/10.1109/IPDPS.2006.1639600

[49] Dan Stanzione, John West, R. Todd Evans, Tommy Minyard, Omar Ghattas, and
Dhabaleswar K. Panda. 2020. Frontera: The Evolution of Leadership Computing at
the National Science Foundation. In Practice and Experience in Advanced Research
Computing (Portland, OR, USA) (PEARC ’20). Association for Computing Machin-
ery, New York, NY, USA, 106–111. https://doi.org/10.1145/3311790.3396656

[50] Rick Stevens, Valerie Taylor, Jeff Nichols, Arthur Barney Maccabe, Katherine
Yelick, and David Brown. 2020. AI for Science. (2 2020). https://doi.org/10.2172/
1604756

[51] S S Vazhkudai, B R de Supinski, A S Bland, A Geist, J Sexton, J Kahle, C J Zimmer,
S Atchley, S H Oral, D E Maxwell, V G Vergara Larrea, A Bertsch, R Goldstone,
W Joubert, C Chambreau, D Appelhans, R Blackmore, B Casses, G Chochia, G

12

https://abci.ai/en/about_abci/
https://docs-dev.nersc.gov/cgpu/
https://docs.nersc.gov/systems/cori/
https://portal.nersc.gov/project/m3363/
https://github.com/baidu-research/DeepBench
https://petreldata.net/exalearn/
https://github.com/mlcommons/policies/blob/master/submission_rules.adoc
https://github.com/mlcommons/policies/blob/master/submission_rules.adoc
https://horovod.readthedocs.io/en/stable/timeline_include.html
https://horovod.readthedocs.io/en/stable/timeline_include.html
https://github.com/HewlettPackard/dlcookbook-dlbs/
https://github.com/HewlettPackard/dlcookbook-dlbs/
 https://icl.bitbucket.io/hpl-ai/
https://mlcommons.org/en/
https://github.com/mlcommons/hpc
 https://github.com/mlcommons/logging
https://github.com/LLNL/mpiP
https://github.com/IBM/mpitrace
https://github.com/NVIDIA/apex
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.r-ccs.riken.jp/en/fugaku/project/outline
https://www.r-ccs.riken.jp/en/fugaku/project/outline
https://www.cscs.ch/computers/piz-daint/
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.alcf.anl.gov/alcf-resources/theta
https://www.top500.org/lists/2020/11/
https://doi.org/10.1109/IISWC.2016.7581275
https://doi.org/10.1109/IISWC.2016.7581275
https://bitbucket.org/balewski/cosmoflow
https://doi.org/10.1109/IPDPS.2019.00018
http://dblp.uni-trier.de/db/conf/cluster/cluster2009.html#CarnsLRILR09
http://dblp.uni-trier.de/db/conf/cluster/cluster2009.html#CarnsLRILR09
https://arxiv.org/abs/1606.00915
https://arxiv.org/abs/1610.02357
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1145/3352020.3352024
https://arxiv.org/abs/1512.03385
https://doi.org/10.1098/rsta.2019.0054
https://arxiv.org/abs/2007.00279
https://doi.org/10.1145/3311790.3396649
https://doi.org/10.1145/3311790.3396649
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1810.01993
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1109/IPDPS47924.2020.00042
https://doi.org/10.1109/CCGrid49817.2020.00-13
http://dl.acm.org/citation.cfm?id=3291743
http://dl.acm.org/citation.cfm?id=3291743
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1016/j.procs.2012.04.093
http://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf
http://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf
http://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1109/IPDPS.2006.1639600
https://doi.org/10.1145/3311790.3396656
https://doi.org/10.2172/1604756
https://doi.org/10.2172/1604756


1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems Supercomputing’21, November 2021, St. Louis, MO, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Davison, M A Ezell, E Gonsiorowski, L Grinberg, B Hanson, B Hartner, I Karlin,
M L Leininger, D Leverman, CMarroquin, AMoody, MOhmacht, R Pankajakshan,
F Pizzano, J H Rogers, B Rosenburg, D Schmidt, M Shankar, F Wang, P Watson, B
Walkup, L DWeems, and J Yin. [n.d.]. The Design, Deployment, and Evaluation of
the CORAL Pre-Exascale Systems. ([n. d.]). https://www.osti.gov/biblio/1489443

[52] Yu Wang, Gu-Yeon Wei, and David Brooks. 2019. Benchmarking TPU, GPU, and
CPU Platforms for Deep Learning. CoRR abs/1907.10701 (2019). arXiv:1907.10701
http://arxiv.org/abs/1907.10701

[53] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Large Batch Training of
Convolutional Networks. arXiv:1708.03888 [cs.CV]

[54] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bho-
janapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2020.
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes.
arXiv:1904.00962 [cs.LG]

[55] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee, B.
Schroeder, and G. Pekhimenko. 2018. Benchmarking and Analyzing Deep Neural
Network Training. In 2018 IEEE International Symposium on Workload Character-
ization (IISWC). 88–100. https://doi.org/10.1109/IISWC.2018.8573476

13

https://www.osti.gov/biblio/1489443
https://arxiv.org/abs/1907.10701
http://arxiv.org/abs/1907.10701
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1904.00962
https://doi.org/10.1109/IISWC.2018.8573476

	Abstract
	1 Introduction
	2 MLPerf HPC Benchmark Suite
	2.1 CosmoFlow
	2.2 DeepCAM

	3 Benchmarking Process
	3.1 Measurement
	3.2 Submission

	4 Results
	4.1 Analysis
	4.2 Highlights

	5 Workload Characterization
	5.1 Memory Bandwidth
	5.2 Network Bandwidth
	5.3 I/O Bandwidth

	6 Key insights
	7 Conclusion
	References

