

Final Report

AFRL SBIR Phase 2 Project

FA8650-06-C-4404

Anabas Sensor-Centric Grid of Grids Middleware
Management System

September 24, 2008

 ii

Notice and Signature Page

 iii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE
Final Report (Draft)

3. DATES COVERED (From - To)
 6/19/06 – 6/18/08

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8650-06-C-4404

Grid of Grids for Information Management

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Alex Ho, Geoffrey Fox

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Anabas, Inc.
AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

580 California Street
Suite 1600
San Francisco
CA 94104

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRE SS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A major challenge faces the United States (US) warfighter as we enter the 21st century. The very composition and
nature of the war fighting operation required to win a war has shifted from being dependent on industrial
technologies to information technologies. The solutions to these challenges are forcing the warfighter to assimilate
and process vast amounts of information from a broad spectrum of domains. The Global Information Grid (GiG)
will provide the global connectivity in the net-centric environment for the information to get to where it’s needed.
However the information will still need to be processed and converted to knowledge to empower the warfighter to
make the right decisions and succeed. This project focuses on developing the Net-Centric Collaboration Grid
Middleware, and in particular Sensor-Centric Grid Middleware, that is needed to build domain specific warfighter
command & control (C2), decision support solutions within a sensor-centric grid-enabled environment.

15. SUBJECT TERMS
Net-centric, Sensor-centric, Grid of Grids, Collabo rative, UDOP, COP, Global Information Grid

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Alex Ho

a. REPORT

b. ABSTRACT

c. THIS PAGE

No 282

19b. TELEPHONE NUMBER (include area
code)
415-637-4198
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 iv

List of Figures

Figure 2-1 Integrating modeling and simulation systems with real-time and archived GPS

sensor streams into Sensor-Centric Grid of Grids ..5
Figure 2-2 A typical variance pattern, observed for a ‘talking head’ video segments. 9
Figure 2-3 Region dectection on a typical video zooming and panning sequence........... 10
Figure 2-4 Region detection on another typical video panning sequence. 11
Figure 2-5 Fast changing region detection in an Impromptu client.................................. 12
Figure 2-6 A sample template grid design.. 14
Figure 2-7 An Eclipse-based Grid Builder Tool Layout Design 15
Figure 2-8 Resource management architecture in Grid Builder 16
Figure 2-9 An NCCGBT supported EMF model view of BPEL-extended elements....... 19
Figure 2-10 A GEF-based editor for Grid Builder.. 20
Figure 2-11 An updated design for Grid Builder to support ServoGrid/Quakesim.......... 22
Figure 2-12 An enhanced BPEL editor for Grid Builder..23
Figure 2-13 An enhanced, distributed resources viewing interface for Grid Builder....... 25
Figure 2-14 A distributed grid service management architecture..................................... 26
Figure 2-15 A high-level Grid Builder architecture ... 28
Figure 2-16 A bootstrap service interface for the Grid services management system 29
Figure 2-17 A management interface for managing a Narada Brokering fabric 30
Figure 2-18 An illustration of the QuakeSim2 portal interface .. 34
Figure 3-1 A conceptual any time, anywhere, anything Grid of Grids system 35
Figure 3-2 SCGMMS overall architecture.. 37
Figure 3-3 Structure of A Sensor Client Program .. 40
Figure 3-4 Computational Service.. 40
Figure 3-5 An overview of the Grid Builder architecture... 42
Figure 3-6 Class Diagram of Grid Builder ... 44
Figure 3-7 Domain Management .. 46
Figure 3-8 Manager and Service Adapters ... 47
Figure 3-9 Registry and WS-Context ... 48
Figure 3-10 System Health Check (SHC) Initialization ... 52
Figure 3-11 Adding Service Adapter.. 53
Figure 3-12 System Health Check (SHC) Maintaining System State 54
Figure 3-13 Class diagram of classification scheme in SCGMMS 56
Figure 3-14 SCGMMS sensor filtering mechanism in a distributed architecture 57
Figure 3-15 Event flow when starting a sensor grid domain .. 60
Figure 3-16 Starting BootstrapService of a Domain... 61
Figure 3-17 Normal Health Check Sequence (Stage 1)..62
Figure 3-18 Normal Health Check Sequence (Stage 2)..63
Figure 3-19 Registered Service Adapter (RSA) Health Check Sequence 64
Figure 3-20 Message flow of service adapter discovery in a sensor grid......................... 65
Figure 3-21 Deploying a GPS Sensor... 67
Figure 3-22 Disconnecting a sensor by using the Grid Builder management console 68
Figure 3-23 Overall Architecture of Sensor Grid and related Modules............................ 70
Figure 3-24 SG System Management ... 73
Figure 3-25 Class Diagram of SG, Sensor and Application Client 74

 v

Figure 3-26 Message flow between a Sensor Grid (SG), applications and sensors 78
Figure 3-27 A Sensor Grid startup sequence .. 79
Figure 3-28 Message flow when depolying a sensor through the Grid Builder 80
Figure 3-29 Sensor Grid message flow during periodic sensor filtering 81
Figure 3-30 Message flow when an application joins a sensor grid 82
Figure 3-31 Message flow from deployed sensors to applications in a sensor grid 83
Figure 3-32 Message flow from a sensor grid to a subscribing application 84
Figure 3-33 Message flow of filter setup in a sensor grid .. 84
Figure 3-34 Message flow of control messages from applications to sensors in a sensor

grid .. 85
Figure 3-35 Message flow when disconnecting a deployed sensor from a sensor grid.... 86
Figure 3-36 SCGMMS Application Programming Interface.. 88
Figure 3-37 A high-level architecture of the Sensor Service Abstractioon Layer (SSAL)

... 89
Figure 3-38 A detailed SSAL architecture for general sensor sercvices 91
Figure 3-39 A detailed SSAL architecture for computation as a sensor service 93
Figure 4-1 UDOP Architecture... 96
Figure 4-2 Role of SCGMMS... 97
Figure 4-3 Distributed Architecture for Data Access... 99
Figure 4-4 A sample GUI-based sensor selection filter.. 101
Figure 4-5 UDOP Management .. 102
Figure 4-6 UDOP Service Architecture.. 104
Figure 4-7 System view of UDOP Template management .. 105
Figure 4-8 Dataflow of saving a UDOP template to UDOP service 105
Figure 4-9 Dataflow of retrieving a UDOP template from UDOP service..................... 106
Figure 5-1 A map sharedlet shows live GPS streams of sensor locations from all over the

world ... 108
Figure 5-2 A map sharedlet shows the live GPS stream from Supercomputing 2007

(SC07) in Reno, Nevada ... 109
Figure 5-3 A map sharedlet shows the live GPS stream from San Francisco, California

... 109
Figure 5-4 A map sharedlet shows the live stream from Bloomington, Indiana 110
Figure 5-5 A map sharedlet shows the live GPS stream from the Hong Kong International

Airport... 110
Figure 5-6 SCGMMS Multi-location, multi-robot, multi-sensor demonstration scenario

... 112
Figure 5-7 GPS and video sensor streams from Irvine and Bloomington 113
Figure 5-8 GPS and video sensor streams from Irvine and Hong Kong 114
Figure 5-9 A UDOP dynamically created from remote sensor streams 115
Figure 5-10 A video, Wii Remote and motion edge detection operational picture 116
Figure 5-11 A UDOP for situational awareness around the Irvine demonstration site .. 117
Figure 5-12 Live alert of disconnected GPS sensor.. 118
Figure 5-13 Disconnected sensors in Irvine.. 118
Figure 5-14 A collaborative UDOP user-interface ... 119
Figure 5-15 A UDOP composed by selecting from an extensible list of sensor streams120
Figure 5-16 A Video Sharedlet shares four live feeds from four different cities 121

 vi

Figure 5-17 A Geo-spatial sharedlet integrating real-time GPS sensor streams 122
Figure 5-18 A UDOP shows and shares RFID signal strength of ten active RFID tags 123
Figure 5-19 A UDOP shows the geo-spatial locations of deployed robots and an observer

... 123
Figure 5-20 Transformation of live video into live edge-detected video 124
Figure 5-21 Aggregated view of an NXT Robot .. 125
Figure 5-22 A UDOP shows and shares the eight real-time sensor streams carried by 2

robots with their respective geo-spatial information .. 126
Figure 5-23 A UDOP shows and shares 4 sensor streams delivered by a Tribot robot.. 126
Figure 5-24 A UDOP shows and shares 4 sensors streams delivered by a Humanoid robot

... 127
Figure 5-25 A UDOP shows and shares RFID signal strength of ten active RFID tags 127
Figure 9-1 Sensor Service Abstraction Layer... 149
Figure 9-2 Screenshot of Grid Builder deployment.. 162
Figure 9-3 Screenshot of Sensor Client Program (SCP) extration 162
Figure 9-4 Overview of Application API ... 164
Figure 9-5 GB Domain Management ... 185
Figure 9-6 GB Package... 187
Figure 9-7 GB Management Console ... 188
Figure 9-8 Step by step ensor deployment overview.. 193
Figure 9-9 User-interface to start the Bootstrap Service in the ROOT domain............. 215
Figure 9-10 A Bootstrap Console showing statuses of a sensor grid sub-domains 216
Figure 9-11 An initial view of a Grid Builder Management Console 217
Figure 9-12 Overview of Sensor Sharedlet... 240
Figure 9-13 Sensors on SG sensor hierarchy highlighted in different colors 241
Figure 9-14 Grouping sensors into hierarchies... 242
Figure 9-15 Dragging a Lego Mindstorm NXT Humanoid Robot to the top right panel243
Figure 9-16 Visualization of NXT Humanoid Robot sensor streams............................. 244
Figure 9-17 A panel displaying data from GPS device is expanded 245
Figure 9-18 Control panel for NXT Humanoid Robot ... 248
Figure 9-19 Control panel for XNT Tribot Robot .. 248
Figure 9-20 VED with Edge Detection Control ... 248
Figure 9-21 VED with Region Finding Control ... 249
Figure 9-22 Sensor List before Filtering... 251
Figure 9-23 Sensor List after Filtering.. 251
Figure 9-24 Setting the Source of Video Service ... 252
Figure 9-25 Source of VED has been set.. 253
Figure 9-26 Panel for setting mode of operating picture .. 254
Figure 9-27 View of meeting host in Strictly Synchronous Mode 254
Figure 9-28 View of meeting participant in Strictly Synchronous Mode....................... 254
Figure 9-29 View of meeting host in Loosely Synchronous mode 255
Figure 9-30 View of meeting participant in Loosely Synchronous mode...................... 255
Figure 9-31 The Geo-Spatial Sharedlet .. 256
Figure 9-32 Information of a sensor ... 257
Figure 9-33 View of meeting participants .. 257

 vii

List of Tables
Table 3-1 Fields of Sensor Property ... 55
Table 5-1 A sample sensor types and attributes table used in Supercomputing 2007

demonstration.. 107
Table 9-1 A sensor property object... 150
Table 9-2 A sensor adapter objecct... 156
Table 9-3 A sensor grid resource interface ... 167
Table 9-4 A sensor policy interface.. 168
Table 9-5 A sensor property interface .. 169

Table of Contents
NOTICE AND SIGNATURE PAGE... II

REPORT DOCUMENTATION PAGE.. III

LIST OF FIGURES.. IV

LIST OF TABLES.. VII

TABLE OF CONTENTS ... VII

1 SUMMARY ... 1

2 GRID OF GRIDS MIDDLEWARE FOR NET-CENTRIC OPERATIONS 3

2.1 INTRODUCTION... 3
2.2 HYBRID SHARED DISPLAY (HSD) COLLABORATIVE SERVICE.. 6

2.2.1 Lossless Compression .. 6
2.2.1.1 Entropy Coding...6
2.2.1.2 Huffman Coding ...6
2.2.1.3 Shannon-Fano ...7
2.2.1.4 Dictionary-based Coding..7
2.2.1.5 LZ77 ..7
2.2.1.6 LZ78 ..7
2.2.1.7 LWZ...7
2.2.1.8 Lossless Predictive Coding ..7

2.2.2 Lossy Compression .. 8
2.2.2.1 Lossy Predictive Coding ..8
2.2.2.2 Transform Coding...8
2.2.2.3 Wavelet Coding...8

2.2.3 Implementation Choices... 8
2.2.4 Initial HSD Prototype .. 8
2.2.5 Integrated Hybrid Shared Display in Impromptu Collaboration... 11

2.3 NET-CENTRIC COLLABORATION GRID BUILDER TOOL (NCCGBT)...12
2.3.1 Design Requirements ... 12
2.3.2 Template Grids... 13
2.3.3 Challenging Issues in Design of NCCGBT .. 14
2.3.4 Inteface Design for Net-Centric Collaboration Grid Builder Tool.. 15

2.4 NCCGBT WITH EARTHQUAKE GRID AND SERVOGRID SUPPORT... 16
2.4.1 Refined Grid Builder Design and Initial Earthquake Grid Template .. 16
2.4.2 Support for ServoGrid/QuakeSim and Earthquake Grid Workflow... 21

2.5 GRID SERVICES MANAGEMENT ARCHITECTURE AND SYSTEM...25
2.6 SUMMARY – GENERALIZING AND PROTOTYPING EXTENDED GRID OF GRIDS TECHNOLOGY 30

2.6.1 Problem Statement ... 30
2.6.2 Challenges ... 31

 viii

2.6.3 General Goals.. 31
2.6.4 Research Objectives... 31
2.6.5 Research Methodology... 31
2.6.6 Research Approach.. 32
2.6.7 Research Tasks... 32
2.6.8 Part 1 Implementation Status... 32
2.6.9 CTS 2007 Demonstration... 33
2.6.10 The Implication of The Demostration .. 34

3 SENSOR-CENTRIC GRID OF GRIDS ... 35

3.1 PROJECT GOAL ... 35
3.2 SENSOR-CENTRIC GRID M IDDLEWARE MANAGEMENT SYSTEM ARCHITECTURE....................... 37

3.2.1 Grid Builder (GB) .. 38
3.2.2 Sensor Grid (SG).. 38

3.2.2.1 Sensor/Sensor Grid flow ..38
3.2.2.2 Application/Sensor Grid flow ..38
3.2.2.3 Grid Builder/Sensor Grid flow...39
3.2.2.4 Application/Sensor flow...39

3.2.3 Sensor-Centric Grid Middleware Management System (SCGMMS) API 39
3.2.4 Sensor... 39

3.2.4.1 Sensor Client Program..39
3.2.4.2 Computational Service ...40
3.2.4.3 Supported sensors ...40

3.2.5 Sensor Service Abstraction Layer (SSAL).. 41
3.3 GRID BUILDER ... 42

3.3.1 An Overview of the Grid Builder Architecture... 42
3.3.2 Significant Classes ... 44

3.3.2.1 Class Diagram...44
3.3.2.2 Class Description ..49

3.3.3 Important Features .. 52
3.3.3.1 System Health Check..52
3.3.3.2 Classification Scheme...55
3.3.3.3 Filtering Mechanism...57

3.3.4 Detailed Description.. 60
3.3.4.1 Starting a Domain ...60
3.3.4.2 Starting BootstrapService of a Domain...61
3.3.4.3 Normal Health Check Sequence (Stage 1) ..62
3.3.4.4 Normal Health Check Sequence (Stage 2) ..63
3.3.4.5 Registered Service Adapter Health Check Sequence ...64
3.3.4.6 Service Adapter Discovery...65

3.3.5 Deploying and Disconnecting sensors ... 67
3.3.5.1 Deploying a GPS Sensor ..67
3.3.5.2 Disconnecting a Sensor ..68

3.4 SENSOR GRID ... 70
3.4.1 Overall Architecture of Sensor Grid and Related Modules ... 70

3.4.1.1 Message Brokering ...71
3.4.1.2 Application Management ...73

3.4.2 Significant Classes ... 74
3.4.2.1 Class Diagram...74
3.4.2.2 Class Description ..75

3.4.3 Important Features .. 77
3.4.3.1 NB Data Flow and Topic Management...77

3.4.4 Detailed Description.. 79
3.4.4.1 Sensor Grid Startup...79
3.4.4.2 Deploying a Sensor...80
3.4.4.3 Periodic Filtering ..81
3.4.4.4 Application Client Joining A Sensor Grid (SG) ...82
3.4.4.5 Sensor Publishing Data...83
3.4.4.6 Subscribing Sensor Data ..83

 ix

3.4.4.7 Setting a Filter ...84
3.4.4.8 Sending Control to a Sensor...85
3.4.4.9 Disconnecting a Sensor ..86

3.5 SCGMMS APPLICATION PROGRAM INTERFACE (API) .. 87
SENSOR SERVICE ABSTRACTION LAYER (SSAL) ... 89

3.5.1 Overall Sensor Service Abstraction Layer Architecture .. 89
3.5.2 SSAL Architecture for General Sensor Services.. 91

3.5.2.1 Sensor Deployment...92
3.5.2.2 Data Publishing...92
3.5.2.3 Performing Actions on Sensor Client Program...92

3.5.3 SSAL Architecture for Computation as a Sensor Service... 93
3.5.3.1 Sensor Deployment...94
3.5.3.2 Subscribe Sensor Data ..94

4 ADVANCED USER-DEFINED OPERATIONAL PICTURES 95

4.1 UDOP OVERVIEW.. 95
4.1.1 Definitions.. 95
4.1.2 Why UDOP is Needed.. 95
4.1.3 UDOP Architecture.. 96

4.1.3.1 Sensor Layer..96
4.1.3.2 Meta Data Layer ...96
4.1.3.3 Information Management Layer ..96
4.1.3.4 Application Layer ...97

4.2 THE ROLE OF SCGMMS IN UDOP .. 97
4.2.1 How SCGMMS supports UDOP Development .. 98

4.2.1.1 Data Access ...98
4.2.1.2 Data Selection and Filtering...100
4.2.1.3 Visualization and Presentation...101
4.2.1.4 UDOP Management..101

4.3 UDOP SERVICE ... 102
4.3.1 Overview .. 103

4.3.1.1 UDOP Template..103
4.3.2 Architecture.. 103
4.3.3 Detailed Description.. 104

4.3.3.1 Saving a UDOP Template ..105
4.3.3.2 Retrieving a list of UDOP Templates..106
4.3.3.3 Opening a UDOP Template ...106

5 AN ADVANCED TECHNOLOGY DEMONSTRATIONS OF SCGMMS 107

5.1 DEMONSTRATIONS OF SCGMMS .. 107
5.1.1 Demonstration of SCGMMS in Supercomputing 2007 .. 107
5.1.2 Demonstration of SCGMMS in CTS 2008.. 111

5.2 A SAMPLE ILLUSTRATION OF USING SCGMMS API FOR UDOP APPLICATIONS..................... 119

6 CONCLUSIONS ... 128

7 RECOMMENDATIONS.. 130

8 REFERENCES.. 133

9 APPENDICE ... 149

APPENDIX A - USER GUIDE FOR SENSOR DEVELOPERS.. 149
APPENDIX B - USER GUIDE FOR SENSOR-CENTRIC APPLICATION DEVELOPERS..................................... 164
APPENDIX C - USER GUIDE FOR SYSTEM ADMINISTRATOR .. 176
APPENDIX D - USER GUIDE FOR SENSOR ADMINISTRATOR .. 184
APPENDIX E - USER GUIDE FOR SCGMMS APPLICATION USER.. 240
APPENDIX F - RFID POSITIONING (LOCALIZATION) ... 270

LISTS OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 273

 1

1 Summary
Problem Statement

Information and communication have played increasingly critical roles in our nation’s
security. It is a mammoth task with many technical challenges to transform a globally
system-centric environment to a net-centric one that offers a single secure information
fabric providing end-to-end capabilities to all warfighting, national security and support
users; joint, high-capacity netted operations fused with weapon systems; strategic,
operational, tactical and base/post/camp/station levels with a common operating picture;
and making tactical and functional fusion a reality.

The emergence of the GiG and Net-Centric systems will bring about new opportunities
for seamless connectivity for the 21st century warfighter. However, as the worldwide
network of the Department of Defense (DoD), the GiG is not one global seamless
construct. It has many pieces, interconnecting with one another. Each of these often has
different stakeholders with different missions. The services each have their own piece of
the GiG, with its own name and unique vision of network-centric operations. Many
operations have been done independently, in some cases by different chains of command.
The GiG is inevitably a Grid of Grids.

Sensor and collaboration technology play critical roles in supporting war fighters and
military personnel as they engage in operations that could be high stress and life
threatening. While the Global Information Grid (GiG) will provide the global
connectivity in the net-centric environment for the information to get to where it’s needed,
however the information will still need to be gathered, filtered, processed and converted
to knowledge to empower our warfighter to make the right decisions and succeed.
Moreover, it will take collaborative teamwork on the part of a collection of
geographically distributed domain experts to process these vast amounts of information
to support effective decision making in this futuristic NCOW-GiG environment.

Results
A general-purpose grid building and management system with a particular focus on
sensor-centric grid of grids, called the Sensor-Centric Grid Middleware Management
System, has been designed and implemented. The Grid Builder provides an intuitive
interface to set resource or sensor policies as well as easy deployment and management
of resources across global networks. SCGMMS is deployable as a distributed prototype
for effective and efficient support of User-Defined Operating Picture (UDOP) and
Common Operating Picture (COP) applications. Two key design objectives of
SCGMMS are its support for easy and simple system integration interface for any third
party application and sensor developers. During the course of SBIR, there was
substantial technology evolution in especially mainstream commercial Grid applications
These evolved from (Globus) Grids to clouds allowing enterprise data centers of 100x
current scale. This change impact Grid components supporting background data
processing and simulation as these need not be distributed. However Sensors and their
real time interpretation are naturally distributed and need traditional Grid systems. Thus
SCGMMS is not directly impacted by these shifts and can take direct advantage of cloud

 2

systems. Further experience has simplified protocols and deprecated use of some
complex Web Service technologies but we had anticipated this in using light weight
service architectures. In this modern terminology, SCGMMS develops Sensor as a
Service that integrated with software as a service and computing/storage as a service
builds a complete grid when implemented on the GiG – Infrastructure as a service.

Conclusions
The message-based SCGMMS prototype in association with the sophisticated
UDOP/COP capable Impromptu collaborative sensor sharedlet application demonstrates
the power of the system and its robust, extensible architecture and implementation for
providing critical situational awareness for warfighters and human decision-makers in the
loop. It offers a very easy to implement application development interface for integrating
legacy or new third-party applications with a sensor grid to add crucial grid situational
awareness capability. It also provides a concise layered sensor service abstraction for
easy integration and deployment of new sensors as a grid resource to enhance grid
situational awareness.

 3

2 Grid of Grids Middleware for Net-Centric Operatio ns
In Phase I Anabas pioneered the development of the Grid of Grids architecture, and has
proven and demonstrated the feasibility of the concept by integrating and making
interoperable of separately developed sensor, data-mining, GIS and archiving grids using
publish-subscribe based mediation service. Anabas developed and demonstrated in Phase
I effort not only an architecture but also developed several unique capabilities and
innovations in software for Grid of Grids that are needed in order to satisfy critical Net-
Centric Operational Warfare objectives. These critical capabilities include, among others,
a network-based global clock for service-oriented architecture (SOA) without which it
will very difficult if not impossible to support the important time-criticality requirement
in NCOW applications; novel methods to support uniform treatment of grid and Web
Service thus enabling a powerful composition model to support plug-and-play integration
of legacy systems and next-generation transformational DoD grids built with different
profiles; and novel methods and apparatus to support desired levels of QoS within
different Communities of Interest (COIs), and the scaling of Web Services especially in
areas of QoS including reliable messaging. These unique and significant innovations and
capabilities proven in Phase I are crucial and necessary technology elements in order to
fulfill both global interoperability and COI-level specialization/customization for DoD’s
NCOW vision.

Based on the successful feasibility study and the developed Grid of Grids software
system demonstration Anabas proposed for Phase II effort to develop a suite of Net-
Centric Collaboration Grid Middleware and Collaboration Community Grid Builder and
User-Defined Operational Picture tools that uses Grid of Grids architecture as a base to
prototype a complete and enhanced Net-Centric Enterprise Services (NCES) Core
Enterprise Services. As anticipated, the Phase II research and development effort led to
the development of an advanced technology demonstration of two standards-compliant
and functionally complete prototypes: A particutlar Sensor-Centric Collaboration Grid
Middleware Management System (SCGMMS) with User-Defined Operational Picture
capability (UDOP) and a Community Collaboration Grid Building Tool generically
called the Grid Builder (GB).

2.1 Introduction
Information and communication have played increasingly critical roles in our nation’s
security. It is a mammoth task with many technical challenges to transform a globally
system-centric environment to a net-centric one that offers a single secure information
fabric providing end-to-end capabilities to all warfighting, national security and support
users; joint, high-capacity netted operations fused with weapon systems; strategic,
operational, tactical and base/post/camp/station levels with a common operating picture;
and making tactical and functional fusion a reality.

The emergence of the Global Information Grid (GiG) within the next few years will bring
about new opportunities for seamless connectivity for the 21st century warfighter. The
GiG will encompass a sophisticated interconnection of hardware pipes, satellite links and
tactical communication links providing a vast amount of information directly to the

 4

warfighter. Furthermore, Network Centric Enterprise Services will be a key core
capability for implementing the GiG.

However, as the worldwide network of the Department of Defense (DoD), the GiG is not
one global seamless construct. It has many pieces, interconnecting with one another.
Each of these often has different stakeholders with different missions. The services each
have their own piece of the GiG, with its own name and unique vision of network-centric
operations. Many operations have been done independently, in some cases by different
chains of command.

In reality, the GiG is an umbrella. For instances, the Air Force has C2 Constellation,
Navy has FORCENet and Army has LandWarNet. Each service has to do plan,
management and operate in a way that makes sense to their missions and satisfies their
unique requirements. Each of them has a shared challenge of providing vertically
seamless, secure and interconnected environment for users from the home stations all the
way to the warfighters within their respective services, and horizontally to other joint
community and coalition forces.

To achieve the GiG and NCOW vision requires among other things several operational
tasks including network management, enterprise services management, information
staging and dissemination management be done across the network using common tactics,
techniques, and procedures. These activities must be synchronized and integrated in
order to be able to provide the joint forces the ability for better situational awareness, ad-
hoc synchronization and speed of command and action.

The biggest challenge is the necessary balance of the competing demands for
standardization, customization and modernization. Standardization is an enabler for
interoperability. However, over-standardization could jeopardize needed flexibilities
particularly for warfighters in theaters of operations. Customization acknowledges the
different nature of the services and needs of personnel at different levels within the
services and across joint forces and alliances. Customization generally makes systems
and capabilities difficult to interoperate with other systems at the joint level.
Modernization is a measure of staying “current” which suggests an architecture that could
accommodate and seamlessly integrate the latest relevant commercial IT product and
service offerings that are moving fast towards solving many of the hard information
management problems of interest to DoD in a generic fashion.

The initial Grid of Grids technology that Anabas successfully demonstrated its feasibility
of in Phase I is a key enabler to address the challenge of balancing interoperability,
customization, and modernization. The Grid of Grids could support flexible
interoperability and customization at all levels, and facilitates seamless integration of
relevant COTS offerings. The modular architecture supports related Grids with multiple
critical infrastructures and multiple natural and man-made triggers.

Anabas’ novel idea and method of treating services and grids uniformly using the Grids
of Grids concept is critical to the success of the project. It allows a powerful composition
model that can link legacy systems and grids built with different profiles. As
demonstrated in Phase I the Grid of Grids concepts for NCOW-type of applications are
feasible but need significant development, refinement and optimization to bring them to a
commercially usable state.

 5

The Phase 2 work built upon the initial result of Phase I work, and defined a technical
program that laid a necessary solid foundation for successful commercialization in follow
on efforts. The information formulated during Phase II will allow transfer of technology
to other Air Force and military components and to the commercial market.

Our Phase 2 research and development was divided in two parts. In Part 1, general Grid
of Grids issues and the development of a Collaboration Grid Middleware and Net-Centric
Collaboration Grid Builder Tool were studied and system components prototyped and
experimented. Leveraging on the results of Part 1, a Sensor-Centric Grid of Grids
Middleware Management System (SCGMMS) and Grid Builder tool with a particular
focus on integrating distributed sensors, robots, GIS, modeling and simulation tools for
earthquake crisis management, and computational software as a service was designed,
developed and demonstrated. The adoption and extension of Part 1 results for Sensor-
Centric Grid of Grids Middleware Management System (SCGMMS) and the SCGMMS
Grid Builder tool are discussed in Section 3.

A preview of integrating QuakeSim, a sample Earthquake Grid of Grids application for
earth science modeling and simulation, with SCGMMS is illustrated in Figure 2-1:

Figure 2-1 Integrating modeling and simulation systems with real-time and archived GPS sensor
streams into Sensor-Centric Grid of Grids

 6

The rest of Section 2 is organized to reflect the R&D activities that were undertaken to
generalize and prototype Grid of Grids technology for future commercialization. In
Section 2.2, we discuss a high-performance, core collaboration service for the
collaboration grid middleware called hybrid shared display. In Section 2.3, the initial
design and prototyping of our Net-Centric Collaboration Grid Builder Tool (GB) is
discussed. Grid Builder support for EarthquakeGrid, ServoGrid, workflow editor and
grid resource viewer design are covered in Section 2.4. In Secction 2.5, we discuss the
design of user-assisted interface for Grid Builder and the initial design of a grid service
management architecture. We summarize the generalization and prototyping Grid of
Grids technology in Section 2.6 as a foundation for Part 2 – the Sensor-Centric Grid of
Grids Middleware Management System and SGCMMS Grid Builder.

2.2 Hybrid Shared Display (HSD) Collaborative Servi ce
Anabas had an invention called HSD – Hybrid Shared Display - that could significantly
improvement a key collaborative service based on XML messaging for interactive, multi-
point, multimedia sharing. HSD was designed to address performance and bandwidth
utilization issues in most synchronous, interactive sharing of large volume of streaming
data in a net-centric environment.

For HSD to work, the algorithm needs to determine or intelligently classify regions on
the framework into fast or slow changing groups. Region finding, even when limited to
parallel rectangular areas, is a typical ill-posed computer vision problem. Experience with
such problems suggests that we try various complementary approaches in parallel and we
make the final decision by fusing all available information.

We include here a brief non-exhaustive overview of various image compression
algorithms relevant for the discussion in this report.

2.2.1 Lossless Compression
There are various compression algorithms that are lossless. We reviewed several popular
ones here for background information.

2.2.1.1 Entropy Coding
Entropy Coding is based on statistical / information theory considerations and it tries to
find the optimal codes that saturate Shannon theory bounds. The first such algorithm was
developed in ‘50s by Shannon and Fano (called Shannon-Fano) and soon after slightly
improved by Huffman in ’52 – now this class of algorithms is known under the name of
Huffman codes.

2.2.1.2 Huffman Coding
Huffman algorithm assigns codes to symbols is such as way that more frequent symbols
have shorter codes and each code can be uniquely decoded. The algorithm is based on
Huffman tree which is a binary tree with symbols as leaves, constructed based on the
symbol frequency values. The tree construction for n symbol alphabet starts with a set of
n one-node trees and terminates with a single tree including all symbols. At each step,
two trees with lowest frequency values are removed from the tree set, merged as a single

 7

tree with the root frequency given as a sum of tree frequencies, and appended back to the
tree set. This process continues until n trees are reduced to one single tree with all
symbols as leaves. Codes are built as binary tree addresses of the corresponding symbols
(0 to move left, 1 to move right). Decoding amounts to traversing the tree until the leave
indicated by the address is reached.

2.2.1.3 Shannon-Fano
Shannon-Fano is similar to Huffman but it constructs the tree in the top-down fashion
using frequency weighted recursive bisection.

2.2.1.4 Dictionary-based Coding
Dictionary-based codecs replace (longer) patterns (phrases, words, groups of bytes) by
(shorter) references to previous occurrences of these patterns in the source. Hence, the
source acts itself as a dictionary / lookup table. Several popular compression algorithms
such as zip or gif belong to this category.

2.2.1.5 LZ77

The first dictionary-based codec was constructed in 1977 by Lempel and Ziv, and is now
known as LZ77 algorithm. LZ77 encoder uses two sliding windows: a) search buffer that
contains a portion of the recently encoded sequence; and b) look-ahead buffer that
contains the next portion of the sequence to be encoded. Encoder moves the pointer
through the search buffer, selects the longest match, encodes it as <offset, length, next>
tuple where next is the first symbol in the look-ahead buffer after the sequence. If no
match was found, the symbol s is encoded as <0,0,s>. Decoding is based on lookup that
uses the already decoded sequence as a dictionary. LZ77 has known problems with
window size uncertainty and codec efficiency and it seems to be now only of historical
relevance as the first step towards a family of more powerful algorithms such as LZ78
and LZW.

2.2.1.6 LZ78

Follow-on algorithm by the same authors that does not use sliding window for the search
buffer but instead it builds on-the-fly a dictionary of phrases encountered in the scanning
process. There are no size limits for the search buffer and the codec is more efficient (no
need to specify sequence length).

2.2.1.7 LWZ

Most recent instance in the LZ series by Terry Welch ’84. The dictionary starts with 256
single character entries. The encoder keeps adding new string entries while reading
symbols. Decoder reconstructs the dictionary while reading the codes and uses it as
lookup for decoding. A version of LZW is patented and used in GIF.

2.2.1.8 Lossless Predictive Coding

Predictive coding includes predictor that estimates the code for the next symbol based on
the code for the current symbol and corrector that calculates an error of such estimate.
The goal is to represent the error as a shorter code than the symbol itself. A simple

 8

example is to predict the value of the next pixel to be the same as the current pixel in the
scan line, or as an average over neighbor pixel values

2.2.2 Lossy Compression
We reviewed three popular lossy compression algorithms here.

2.2.2.1 Lossy Predictive Coding
Lossy Predictive Coding uses a similar predictor/corrector approach as the lossless
version but it also includes error quantization that forces errors to be represented as
shorter codes but it might introduce information loss.

2.2.2.2 Transform Coding
Transform Coding performs a transform of the original code to another coordinate frame
/ space where some lossy compression such as predictive coding can be more efficient
than in the original frame/space. Typical example is given by Discrete Cosine Transform
(DCT) used by JPEG and MPEG. Other examples are H.261 and H.263.

2.2.2.3 Wavelet Coding
Wavelet Coding is similar to Transform Coding but more complex due to additional
transformational degrees of freedom such as scaling functions. Wavelet compression
follows similar steps as DCT algorithms – it is more computationally intense but also
more scalable (can be stopped at any resolution). It is often more efficient for low bit
rates as it produces less objectionable (more smooth) artifacts then DCT.

2.2.3 Implementation Choices
We identified four region-finding techniques for developing the XML message-based
HSD sharedlet. They are

Region Growing – scan blocks after fast or slow classification and grow regions based on
some proximity rules. At the end of the scanning, these boundingrectangles are to be
passed to the lossy encoder of choice.

Edge Detection and Grouping – perform Hough Transform in X and Y direction when
scanning in X and Y direction.

Method of Moments - Consider a distribution that is 1 for F blocks and 0 for S blocks.
Compute first and second moments i.e. average/median and dispersion/variance in both X
and Y directions.

Monitoring Windows Event – if the fast changing region is due to streaming video, it
may be possible to track the windows event causing the changes and determine a
bounding rectangle that way.

2.2.4 Initial HSD Prototype

We constructed a region finding algorithm based on method of moments. The current
prototype implementation is free of any parameters. Initial test results are discussed.

 9

The following screendumps illustrate the visualization tool (vis tool) for the moments
based region finding algorithm. As always, Host/Presenter Shared Display (SD) is in the
bottom right cornet, client SD is in the top left corner, and the vis tool is in the bottom
left corner.

The vis tool displays in real-time i.e. in parallel with the based SD operation, the effective
variance image. The vis screen is updated twice a second and the bounding rect angle is
computed for each update. The coordinates of the last 10 rectangles (computed within the
last 5 seconds) are displayed in the console window below the variance image.

In Figs 1-3, the last (current) rectangle constructed by the algorithm is also displayed in
red on top of the variance image in the vis tool. The following four screendumps (Figs 4-
7) display all 10 rectangles, constructed by the algorithm within the last 5 seconds. This
way, one can observe the time variance of the video rectangle, constructed using the
method of moments. Some initial observations for various video domains are included in
the figure captions below.

Figure 2-2 A typical variance pattern, observed for a ‘talking head’ video segments.

 10

The background used in Figure 2-2 is typically static and the leading time variance is
generated by small facial changes and body movements. In consequence, the bounding
rectangle is off its real video value and often depends on the speaker position (the error is
higher if the speaker is not in the center). As seen, we are getting some non-zero
background variance pattern scattered over the whole screen.

The effectiveness of the algorithm to detect a fast changing region is illustrated in Figure
2-3 for a video sequencec with rapid panning and zooming operations. Because of the
drawing pattern, the background noise is reduced – as manifested by large patches of
black (motion that is undetected as the pixel intensity is constant). However, rapid zoom
generates enough variance and the detected rectangle is again reasonable.

Figure 2-3 Region dectection on a typical video zooming and panning sequence.

For comparison purposes, the same algorithm is applied to another video panning
sequence illustrated in Figure 2-4. This sequence has enough variance across the whole
image and the method of moments generations a better result than in the previous two
cases.

 11

Figure 2-4 Region detection on another typical video panning sequence.

2.2.5 Integrated Hybrid Shared Display in Imprompt u Collaboration

We built an HSD sharedlet that integrates lossy and lossless compression for synchronous
collaboration of some typical Web pages or applications with video or animation. This
type of pages put a lot of stress on the network and performance when lossless codec is
applied on them. The HSD sharedlet uses H.261 for its lossy codec. H.261 is a high-
performance codec normally used in video conferencing. An example of the fully
integrated prototype of HSD sharedlet as one of the real-time collaboration capabilities in
an Impromptu client is illustrated in Figure 2-5.

 12

Figure 2-5 Fast changing region detection in an Impromptu client.

The video portion of the shared Web page was coded in H.261. Using normal lossless
codec on fast changing region will stress both the computation and network utilization.
Using HSD in this case, not only can the fast changing region be shared at video frame
rate, the static region which is much smaller than the whole shared Web page can be
shared by the higher quality, lossless codec. Network stress is now also under controlled
due to the use of more sophisticated and a higher compression ratio algorithm in H.261.

2.3 Net-Centric Collaboration Grid Builder Tool (NC CGBT)
The goal here is to design and implement a tool to facilitate users to build grids f
rom existing libraries of services and grids, including the features below:

• Dynamic resource assignment and management
• Real time requirement
• Extending an existing BPEL workflow engine
• Template Grids
• Customizable portal/dashboard
• Specifying contexts

2.3.1 Design Requirements
• A Grid Builder is used by the administrator to provision resources for the services

and link to the workflow. Appropriate portlets are needed for end users to view

 13

available services and resources. The portal should be dynamically customized to
current requirements.

• Grid Builder deals with existing capabilities and assembles into an operational
grid by assigning grids/services to resources while developing new algorithms or
significant new data is not considered.

• Grid Builder has libraries of grids/services and template grids corresponding to
certain scenarios. It can instantiate copies of template grids corresponding to
existing differently deployed grids.

• Grid Builder can link Grids (in Grid of Grids model) generating mediation
infrastructure. It includes a dynamically assembled layout of interoperating
portlets and effectively determines the portlets and layouts. Appropriate views
will be provided for end users. The mediation infrastructure can include Quality
of Service and fault tolerance support.

2.3.2 Template Grids
• The Grid Builder can instantiate template grids taking into account scale of events

and currently available resources. Each template grid corresponds to an
anticipated scenario. It can copy (with perhaps no changes except to host
machines) a Grid from one deployment to another; from an IU earthquake
deployment to an Anabas deployment. It can generate the needed management
(fault tolerance, monitoring, and firewall strategies).

• There are different levels of abstraction for template grids. Some well-defined
template grids can be quickly instantiated by layman users to handle emergencies.
Expert users may choose a more generic template to achieve more flexibility.

• The library of template grids can be organized into different categories, which are
indexed by their themes. For example, a category with the theme of disaster
rescue may include template grids for earthquakes, hurricanes, etc. Thus, the user
can select the correct template grid for the current situation more conveniently.

• There should be alternative template grids so that there are backups in case that
the previously selected template grid cannot operate successfully.

• A template grid may be a grid of grids. It can be composed by multiple template
grids in a hierarchical structure.

• Possible attributes of a template grid and their values are listed in the following
table:

 14

Attributes Possible Values
Application Services GIS, Sensor, Filter, etc

Service Type
System Services Security, Management, Registry, etc

Operating System Windows, Linux, Solaris, etc

Server container IIS,
Apache, etc

Context Firewalls, Running environment, SOAP
types, NATs, etc

Database JDBC,
Oracle,
MS SQL, etc

Client Portal, Matrix, Anabas, Dashboard, etc

Figure 2-6 A sample template grid design

2.3.3 Challenging Issues in Design of NCCGBT

NCCGBT required several challenging issues listed below to be addressed

1. Representation of a template grid
2. How to determine attributes that a template grid needs to include?
3. How to represent the workflow in a template grid?
4. How to manipulate a template grid?
5. Customization of UI
6. How to deploy the established grid?
7. How to validate the prototype of Grid Builder?
8. How to nest Grid Builder in Matrix?
9. How to support collaboration in Grid Builder?

Future work should include emerging technologies especially those from the rapidly
evolving cloud arena. We recommend building in support for the new open source cloud
environment Eucalyptus mimicking Amazon and Google interfaces. One should support
MapReduce workflow and the powerful database and file system abstractions supported
in clouds.

 15

2.3.4 Inteface Design for Net-Centric Collaboratio n Grid Builder Tool
Eclipse was used as the development environment. Its plug-in architecture allows easier
extension for rapid prototyping. We chose to experiment with Web Services Business
Process Execution Language for use in NCCGBT. A screenshot of a BPEL designer, a
plug-in that will be extended to construct a template grid is shown below.

Figure 2-7 An Eclipse-based Grid Builder Tool Layout Design

 16

The architecture for monitoring currently available resources (e.g., machines, service
instances, sensors, etc.) and their status is illustrated here:

Workflow
View

Resource View

Constraints

Objectives

Input Story

Template
Grids

Operational Grid

Service View
Requirements

Requirements

Figure 2-8 Resource management architecture in Grid Builder

To sum up,

1. Grid Builder handles real time situation corresponding to scheduling systems.
2. Grid Builder focuses on resources/services management and provision to facilitate

workflow while the execution of workflow is not covered.
3. Use Eclipse BPEL to develop the initial Grid Builder tool that connects to

workflow.
4. Predefined Grid templates that specify certain requirements need to be included to

customize resource assignments of services and the portal/dashboard.
5. Integrate Grid Builder with Matrix (as sub-grids).
6. Support of adaptive workflow to handle dynamic situations (e.g., failures, changes,

etc).

2.4 NCCGBT with Earthquake Grid and ServoGrid Suppo rt

2.4.1 Refined Grid Builder Design and Initial Eart hquake Grid Template
The Grid Builder tool is being spirally implemented and is being initially experimented
with Earthquake Grid. We have

 17

• Extended the EMF model that represents the WS-BPEL 2.0 specification by
including additional information to model a template grid. The model
specification is described in XML.

• Sample Earthquake Grid template - Below provides an initial example of a

template for the Earthquake Grid (the specifications for sub grids such as GIS
Grid, Sensor Grid are described in the same way in separate templates):

<Grid name="Earthquake"
targetNamespace="http://cgl.com/ws/earthquakegrid"
xmlns="http://schemas.xmlsoap.org/ws/earthquake-process/"
xmlns:lns="http://manufacturing.org/wsdl/earthquake">

<services>
<applications_services> name="GISGrid"
targetNamespace="http://acme.com/ws-bp/gisgrid"
myRole="GISInfo"/>
<application_services> name="SensorGrid"
targetNamespace="http://cgl.com/ws /sensorgrid"
myRole="SensorInfo"/>
<system_services> name="Security"
targetNamespace="http://acme.com/ws-bp/security"
myRole="SSH"/>
<system_services> name="Registry"
targetNamespace="http://acme.com/ws-bp/registry"
myRole="UDDI"/>
<system_services> name="Management"
targetNamespace="http://acme.com/ws-bp/management"
myRole="QoS"/>
</services>

<variables>
<variable name="OS" Type="Linux"/>
<variable name="Container" Type="tomcat"/>
<variable name="Message" Type="SOAP"/>
<variable name="Database" Type="ODBC"/>
<variable name="Client" Type="Matrix"/>
</variables>

<contexts>
<firewalls Type="" Status = "on"/>
<nats type ="" Status = "enabled"
<message type="SOAP"/>
</contexts>

 18

<bpel_workflow>
<faultHandlers>
<catch faultName="lns:cannotComplete"
faultVariable="Fault">
<reply partnerLink="administrator"
portType="lns:fault"
operation="sendError"
variable="POFault"
faultName="cannotComplet"/>
</catch>
</faultHandlers>

<sequence>
<receive partnerLink="GIS"
portType="lns:Filter1"
operation="CheckGISInfo"
variable="PO">
</receive>
<links>
<link name="switch_to_Sensor"/>
</links>
<assign name="Sensor_Info">
</assign>
<invoke partnerLink="switching"
operation = "submitJob"
….
</invoke>
<receive partnerLink="switching"
portType="lns:earthquakeinfo"
operation="send_location_of_earthquakes"
variable="filter">
</receive>
</sequence>

<bpel_workflow>
</Grid>

 19

An NCCGBT prototype based on the open source Eclipse BPELDesigner:

• Extends the current BPEL model by adding an element named “Header”, which
includes attributes of a template grid such as type, OS, category, resources, etc.

• Registers a BPELHeaderSerializer and BPELHeaderDeserializer for the
ExtensibilityElement Head in BPELExtensionRegistry.

• Modifies the EMF ecore model bpel.ecore to include the new element and
generate necessary model code for it. The new model is viewed as below:

Figure 2-9 An NCCGBT supported EMF model view of BPEL-extended elements

 20

A design for the development of a GEF-based editor, that provides a graphical means to
create or edit a template grid base the Ecclipse BPEL editor (SEDNA), is shown below in
Figure 2-10:

Figure 2-10 A GEF-based editor for Grid Builder

Looking into managing Grid and Web services with messaging middleware and
examining the possibility of integrating the management system into NCCGBT, the
management architecture should include:

• Bootstrap system

• Registry for metadata

• Messaging Nodes

• Manager

• Managees (resources)

 21

The grid templates may be sgtored in the registry from the library so that a manager can
extract a copy and instantiate it automatically. Resources will be allocated to grid services
by the manager. A workflow engine (ActiveBPEL) will be responsible for deploying and
managing the workflow defined in the grid. In this way, the reliance on humon
assistance in establishing grids is greatly reduced.

2.4.2 Support for ServoGrid/QuakeSim and Earthquak e Grid Workflow
The Solid Earth Research Virtual Observatory Grid (ServoGrid) is a system with grid
services and portals to support earthquake sciencec. The development of
ServoGrid/QuakeSim is a collaborative effort among researchers in JPL, UC-Davis, USC,
Brown and Indiana University.

“QuakeSim is a project to develop a solid Earrth science framework for modeling and
understanding of earthquake tectonic processes. The mult-scale nature of earthquakes
requires integrating many data types and models to fully simulate and understand the
earthquake process” (http://quakesim.jpl.nasa.org).

Basically, The QuakeSim (Earthquake Grid) portal includes a number of portlets and
services:

• Portlets
o RDAHMM-portlet (Regularized Deterministic Hiddel Markov Model)
o STFILTER-portlet (time series filter portlet)
o StationMonitor-portlet
o Gridsphere
o RealTimeRDAHMM-portlet

• Execution Services
o Analyze TseriService
o AntVisco (GeoFest, etc.)
o GnuplotService
o RDAHMMService
o STFilterService

 22

The updated design of NCCGBT to support ServoGrid/QuakeSim workflow process and
its mapping to execution services are illustrated below:

Interactive graphical
tools/scripts

Refinement programs
(optional)

GeoFEST

Taking the surface
data and plots uplift

Parallel rendering
tools

Rendering on PC

P
re

-P
ro

ce
ss

in
g

P
os

t-
P

ro
ce

ss
in

g

AnalyzeTseriService

AntVisco

GnuplotService

RDAHMMService

STFilterService

Servo Grid

Figure 2-11 An updated design for Grid Builder to support ServoGrid/Quakesim

 23

Also, a screenshot of an enhanced BPEL editor for Grid building in NCCGBT by
implementing an extension of the graphical BPEL editor with a new interface is show as
below in Figure 2-12 (there is a new category named “attributes” on the left column to
describe features of the template grid):

Figure 2-12 An enhanced BPEL editor for Grid Builder

A major modification was instrumented in the class org.eclipse.bpel.ui.BPELEditor

private void createBPELPaletteEntries(PaletteContainer
palette) {
……..

 PaletteCategory headerCategory = new
PaletteCategory("Attributes");
 headerCategory.add(new
MyPaletteItem("OS" , "Operation System" ,

 provider.getFactoryFor(bpelPackage.getEmpty()),BPE LUIP
lugin. getPlugin().getImageDescriptor("obj16/os.gif"),BPELUI
Plugin. getPlugin().getImageDescriptor("obj20/os.png")));

 24

 headerCategory.add(new
MyPaletteItem("Container" , "Service Container" ,

 provider.getFactoryFor(bpelPackage.getInvoke()),BP ELUI
Plugin. getPlugin().getImageDescriptor("obj16/container.gif"
),BPELUIPlugin. getPlugin().getImageDescriptor("obj20/contai
ner.png")));

 headerCategory.add(new
MyPaletteItem("Message" , "Message Format" ,

 provider.getFactoryFor(bpelPackage.getInvoke()),BP ELUI
Plugin. getPlugin().getImageDescriptor("obj16/communication.
gif"),BPELUIPlugin. getPlugin().getImageDescriptor("obj20/co
mmunication.png")));

 headerCategory.add(new
MyPaletteItem("Database" , "Database" ,

 provider.getFactoryFor(bpelPackage.getInvoke()),BP ELUI
Plugin. getPlugin().getImageDescriptor("obj16/database.gif")
,BPELUIPlugin. getPlugin().getImageDescriptor("obj20/databas
e.png")));
 headerCategory.add(new
MyPaletteItem("Client" , "Client Name" ,

 provider.getFactoryFor(bpelPackage.getInvoke()),BP ELUI
Plugin. getPlugin().getImageDescriptor("obj16/client.gif"),B
PELUIPlugin. getPlugin().getImageDescriptor("obj20/client.pn
g")));

 palette.add(headerCategory);

}

 25

Another enhancement to NCCGBT is the implementation of an intuitive user-interfacce
for viewing available grid resources (Figure 2-13). The purpose of the resource view is to
enable users to view current status of available resources so that they can select the right
resources to satify the requirement of the workflow in an easy to comprehend and
efficient manner.

Figure 2-13 An enhanced, distributed resources viewing interface for Grid Builder

2.5 Grid Services Management Architecture and Syste m
Characteristics of today’s Grid includes but not limited to increasing complexity,
components widely dispersed and disparate in nature and access, and with dynamic
component failure scenarios such as nodes, network, processes. Grid services must meet
general QoS and life-cycle features, and need to be managed to provide dynamic
monitoring and recovery, and static configuration and composition of systems from
subsystems.

• We investigated Grid Services Management architecture and system. Core
features of management architecture should support remote management, firewall
and NAT traversal, extensibility, scalable, and fault-tolerance.

• We installed and experimented with HPSearch 1.0.4 for Grid Services
Management.

• We implemented a new Eclipse plug-in with the management system code base to
keep future development in a consistency along with Grid Builder software.

• We implemented a grid service wrapper so that the resource manager can deploy
and manage a resource seamlessly.

 26

A high-level grid service management architecture for the management system is
illustrated here:

Figure 2-14 A distributed grid service management architecture

The management system was tested on both standalone and distributed nodes setting.

• For standalone (a single node) setting, all services such as fork, bookstrap,
brokeradapter were running on the same machine.

• For distributed nodes, the broker nodes were running on separate machines and
can be managed remotely.

• For distributed nodes setting, we tested successfully for NAT traversal capability
to manage remote broker nodes.

• Currently, the management system was implemented for managing message
nodes (i.e., message brokers) only.

• The service wrapper code was tested successfully with a simulated web service.

The management system was designed specifically for managing message nodes, and the
interface is closely related to features of the message brokers. Application-specific
functions such as Topology Generator may not be applied to other types of resources.

 27

Key functions of the management system include:

• Configuration and lifecycle operations
• Global view of all accessible resources including their links
• Resource status monitor (e.g., tracking logs)
• System status maintenance (recovery, fault tolerance, etc.)
• Resource-specific features

o Input and output interfaces
o Unique functionalities

The integration of the management system and NCCGBT was implemented in an
Eclipse-based environment by

• Extending the bootstrapping process to set up a metadata catalog for handling
different types of resources

• Predictable input and output interfaces were defined by metadata
• Two schemas for each resource type

o Essential information
o Non-essential information (e.g., additional information)

• Metadata specifices both generic and non-generic features of a resource instance

A high-level architecture view for the management system as follows:

 28

Figure 2-15 A high-level Grid Builder architecture

In the high-level design for the Grid Builder (NCCGBT), we include a metadata catalog
that the management component could query and retrieve metadata from. The
management component could output to interfaces for specific resources, and could be
discovered by a Grid Middleware, which links to globally distributed resources and
services. The management component could also receive input from the Grid
Middleware.

 29

Illustrated below is the Bootstrap Interface of the management system:

Figure 2-16 A bootstrap service interface for the Grid services management system

The main objective of the bootstrap service interface for this version of the management
system is to enable easy administrative operation to discover accessible message broker
nodes and view the properties of each node.

 30

A management interface for management Narada Brokering messaging fabric is
illustrated in Figure 2-17:

Figure 2-17 A management interface for managing a Narada Brokering fabric

Further, we completed the installation and testing of QuakeSim2 in an isolated LAN,
which consisted of two nodes successfully. We

• Installed services including RDAHMM, GEOFEST, STFILTER on one node.
• Installed the offline Google Map server on the other node and configured

WMSConnecction servlet to download and store map images.

2.6 Summary – Generalizing and Prototyping Extended Grid of
Grids Technology

2.6.1 Problem Statement

• Information and communication have played increasingly critical roles in our
nation’s security

• The Global Information Grid (GiG) is not one global seamless construct

o Different pieces have different stakeholders with different missions

 31

o Each has own name and unique vision of net-centric operations

o Many operations have been done independently

• Unable to satisfy interoperability, scalability, and security information
nmanagement requirements for Net-Centric Operations without an advanced grid-
based scalable service-oriented framework

2.6.2 Challenges

• Operational tasks (network management, enterprise services management,
information staging, and dissemination management) need to be done across the
network using common tactics, techniques and procedures

• The necessary balance of the competing demands for standardization,
customization and modernization is the biggest challenge

• To integrate global grid technology with collaboration technology to provide a
framework for net-centric operations to examine and derive warfighter
requirements on the GiG

2.6.3 General Goals

• Build Net-Centric Core Enterprise Services in fashion compatible with GGF/OGF
and industry

• Add key additional services including those for sensors and GIS

• Support System of Systems by federating Grid of Grids supporting a
heterogenous software production model allowing DoD greater sustainability and
chcoice of vendors

• Build tools to allow easy construction of Grid of Grids

2.6.4 Research Objectives

• Develop Net-centic Collaboration Grid Middleware (NCGGCM)

• Develop components for Grid of Grids capability

• Develop a Net-centric Collaboration Gird Builder Tool (NCCGBT)

• Prototype commercialization potential for DoD

• Demonstrate non-DoD related commercialization potential

2.6.5 Research Methodology

• Our solution builds upon existing technology and infrastructure currently being
developed across the grid and web services communities

• The major innovation is a systematic mapping between NCOW Core Enterprise
Services and Grid and Web Services Architectures

 32

2.6.6 Research Approach

• Analyze Net-Centric Operations and Warfare (NCOW) service specifications and
relate core enterprise services in Net-Centric Enterprise Services (NCES) to core
OGF and Web Services (WS-*) standards

• Develop the Grid of Grids architecture and information management middleware
to address federation of legacy and new DoD enterprise systems with service-
oriented mediation between component collaboration, sensor, information and
cocmputing grids

• Develop prototype for NCES capabilities (Collaboration, Messaging,
Management, Security/Information Assurance, Discovery, Mediation, User
Assistance, Storage, Applications) with advanccecd Grid and Web Service
standards support

• Develop static and dynamic Net-Centric Collaboration Grid Builder Tool
compatible with Web service workflow standards

• Demonstrate for Earthquake science and DoD applications

2.6.7 Research Tasks

The R&D effort is divided into five major tasks:

1. Implementation of Collaboration Grid Middleware

2. Enhanced NCOW Core Enterprise Services (NCES) with Enterprise Control
services and Metadata services

3. Design and implement of Grid of Grids mediation algorithms and NCOW
services

4. Design and implement of Net-Centric Collaboration Grid Builder Tool

5. Technology Demo

2.6.8 Part 1 Implementation Status

• Grid Builder tool, which is compatible with Web service workflow standards

o Grid template

o BPEL workflow designer

o Resource Viewer

• Management System

o Discover messaging nodes

o Status monitor

o System status maintenance (recovery, fault-tolerance, etc.)

• Template Grids designed for ServoGrid/QuakeSim modeling and simulations

 33

• Integration of the Management System and Grid Builder

2.6.9 CTS 2007 Demonstration

We have developed an extensible framework for managing resources (services included).
We used BPEL to represent workflows and demonstrate a BPEL workflow designer. A
workflow engine could be integrated for executing workflows. The management system
can provide useful information such as load balancing during deployment.

We demonstrated using ServoGrid/QuakeSim. The Earthquake Grid is an example of a
“Grid of Grids”.

It is a represntative Web Service Grid application which includes

• Web services: provide access to data and codes

• Portlet: acts as an aggregation of client interfaces

• We can build web services from sketch or use those built by others (e.g. legacy
services)

• Data can be retrieved from archives or from real-time filters

QuakeSim2 provides services such as:

o AnalyzeTseri Service

o AntVisco Service

o Gnuplot Service

o RDAHMM Service

o STFilter Service

o

The prototype system givevs an overview of the earthquake grid and allows the user to
select services/grids based on situation assessment

A view of the QuakeSim2 portal with multiple portlets and services is show below:

 34

Figure 2-18 An illustration of the QuakeSim2 portal interface

2.6.10 The Implication of The Demostration

• The end user, who serves as the adminstrator, can select a grid template based on
the cucrrent situation assessed

• The extended workflow designer enables the user to edit the template and
resource requirement

• The selcted grid will be deployed on available resources

• The management system keeps monitoring resource status

• The user can access services through portals which are customizable

• Distributed, different services/grids are federated and interoperable in a seamless
way

The R&D results of Part 1 – Generalizing and prototyping extended Grid of Grid
technology offers a solid foundation for the follow-on work to design and develop a
Sensor-Centric Grid of Grids Middleware Management System and SCGMMS Grid
Builder.

 35

3 Sensor-Centric Grid of Grids

Increased use of sensors in commercial and military environments is being driven by the
need for better intelligence data and by advancement in technology, which provides
smaller, less costly and more capable sensors. It is, however, not sufficient and in many
situations not productive to just provide lots of sensor data to decision-makers at all
levels for their missions on hand. It is valuable to have a framework that supports
seamless integration of loosely-coupled COTS and custom-developed sensor data
analytic, management, visualization and presentation tools, and real-time collaboration
capability for sharing situational awareness.

3.1 Project Goal

Figure 3-1 A conceptual any time, anywhere, anything Grid of Grids system

Sensor Grid Architecture
Above in Figure 3-1we picture the Grid system that we aim at. The system consists of a
Grid of Grids of Services. The Grids are either opaque such as the storage, compute and
filter clouds marked or a collection of explicitly advertised services as in traditional grids.
Services and Grids send and receive messages while sensors respond to control messages
and send raw data in messages.

The main objective of the Sensor-Centric Grid Middleware project is to design and
develop an enabling framework to support easy development, deployment, management
and real-time visualization and presentation of collaborative, geo-coded sensor-centric
grid applications with flexibility, extensibility and scalability for situational awareness.

 36

The framework, called Sensor-Centric Grid Middleware Management System
(SCGMMS) is based on an event-driven model that utilizes a publish and subscribe
communication paradigm over a distributed message-based transport network. A key
capability component in SCGMMS is a Grid Builder (GB) module which supports the
assemblage of grids and resources - a compositional model of assembling a multitude of
subgrids and relevant resources into a mission-specific grid application.

For the current prototype, one illustrative application – called Impromptu collaborative
sensor sharedlet - based on the assemblage of two important subgrids, namely a real-time
multimedia collaboration grid and hierarchical, executable sensor grid was developed.

A specific design objective for the Impromptu collaborative sensor sharedlet is to provide
an intuitive user interface to facilitate client-side UDOP (User Defined Operation Picture)
and COP (Common Operation Picture) features, which are essential for agile formulation
and sharing of visual, situational awareness and effective decision-support.

Much of the system requirement for SCGMMS is driven by the needs of sensor-centric,
UDOP-capable client applications for situational awareness.

The Sensor-Centric Grid Middleware Management System (SCGMMS) is discussed in
the remaining of Section 3. The system and darchitecture to support User-defined
Operational Pictures (UDOP) in SCGMMS is discussed in Section 4. A live, advanced
technology demonstration of the SCGMMS prototype for a sample sensor-centric
situational awareness application, which utilized a variety of globally deployed physical
and computational sensors, including some carried by remotely operated robots will be
discussed in Section 5.

The latest SCGMMS prototype was deployed globally during the International
Symposium on Collaborative Technologies and Systems 2008 (CTS 2008) in Irvine,
California for a real-world, advanced and live technology demonstration. The live
demonstration comprised of 3 locations – Irvine (California), Bloomington (Indiana) and
Hong Kong. Details of the advanced technology demonstration is discussed in Section 5.

The system has been packaged and documented in Appendix A - User Guide for Sensor
Developers, Appendix B - User Guide for Sensor-Centric Application Developers,
Appendix C - User Guide for System Administrator, Appendix D - User Guide for Sensor
Administrator, and Appendix E - User Guide for SCGMMS Application User.

During the course of the Phase 2 projecct, we used some inexpensive commercially
available sensors including RFID for our R&D activities. We invented a new, algorithm
for RFID positioning with initial result than some popularly used algorithms in our test
cases. This new RFID positioning algorithm, documented in Appendix F - could be
further explored and developed into a computational sensor service for a sensor grid in
some follow-on projects.

 37

3.2 Sensor-Centric Grid Middleware Management Syste m
Architecture

Figure 3-2 SCGMMS overall architecture

Sensor-Centric Grid Middleware Management System (SCGMMS) is carefully designed
to provide a seamless, user-friendly, scalable and fault-tolerant environment for the
development of different applications which utilize information provided by the sensors.
Application developers can obtain properties, characteristics and data from the sensor
pool through the SCGMMS API (see section 3.5 for details), while the technical
difficulties of deploying sensors are abstracted away. At the same time, sensor developers
can add new types of sensors and expose their services to application developers through
SCGMMS’s Sensor Service Abstraction Layer (SSAL) (see section 0 for details).

NaradaBrokering (NB) is the transport-level messaging layer for SCGMMS. It is a
distributed message-based transport network with a publish-subscribe messaging model.

 38

By using NB as the transport different components of SCGMMS can be deployed and
works collaboratively in a distributed manner.

The overall architecture of SCGMMS is shown in Figure 3-2. Internally SCGMMS is
composed of 2 main modules – Sensor Grid (SG) and Grid Builder (GB) which serves
different functions.

3.2.1 Grid Builder (GB)
Given the large amount of sensors, GB is a sensor management module which provides
mechanism and services to do the following:

1. Define the properties of sensors
2. Deploy sensors according to defined properties
3. Monitor deployment status of sensors
4. Remote Management - Allow management irrespective of the location of the

sensors
5. Distributed Management – Allow management irrespective of the location of the

manager / user

GB itself posses the following characteristics:

1. Extensible – the use of Service Oriented Architecture (SOA) to provide
extensibility and interoperability

2. Scalable - management architecture should be scale as number of managed
sensors increases

3. Fault tolerant - failure of transports OR management components should not
cause management architecture to fail

Details of GB is discussed in Section 3.3.

3.2.2 Sensor Grid (SG)
SG communicates with a) sensors b) applications c) Grid Builder to mediate the
collaboration of the three parties. Primary functions of SG are to manage and broker
sensor message flows.

3.2.2.1 Sensor/Sensor Grid flow
SG keeps track of the status of all sensors when they are deployed or disconnected so that
all applications using the sensors will be notified for changes. Sensor data normally does
not pass through SG except that it has to be recoded intentionally. In this case data of that
particular sensor is subscribed by SG.

3.2.2.2 Application/Sensor Grid flow
Applications communicate with SCGMMS through the Application API, which in turn
communicates with SG internally. Applications can define their own filtering criteria,
such as location, sensor id, and type to select which sensors they are interested in. These

 39

filters are sent to SG for discovering and linking appropriate sensors logically for that
application and forwards messages among the relevant sensors and that application. SG
must always check which sensors meet the selected filter criteria and update the list of
relevant sensors accordingly. It then sends an update message to application if there are
any changes of the relevant sensors.

3.2.2.3 Grid Builder/Sensor Grid flow
Sensors’ properties are defined in GB. Applications have to obtain this information
through SG. Moreover, filtering requests are periodically sent to GB for updating the lists
of sensors needed for each application according to their defined filter parameters. Much
of the information will be stored in a SG to minimize queries to Grid Builder.

3.2.2.4 Application/Sensor flow
SG provides each application with information of sensors they need according to the
filtering criteria. The application then communicates with sensors through the
Application API for receiving data and sending control messages.

Details of SG is discussed in Section 3.4.

3.2.3 Sensor-Centric Grid Middleware Management Sy stem (SCGMMS) API
SCGMMS aims at supporting a large amount of applications for users and service
providers of different industries (e.g. financial, military, logistics, aerospace etc.).
SCGMMS provides a common interface which allows any kind of application to retrieve
information from the sensor pool managed by SCGMMS. The API also provides filtering
mechanism which provides application with sensors matching their querying criteria only.

Details of SCGMMS API is discussed in Section 3.5.

3.2.4 Sensor
The definition of sensor is a time-dependent stream of information with a geo-spatial
location. A sensor can be a hardware device (e.g. GPS, RFID reader), a composite device
(e.g. Robot carrying light, sound and ultrasonic sensor), Web services (e.g. RSS, Web
page) or task-oriented Computational Service (e.g. video processing service).

3.2.4.1 Sensor Client Program
A sensor needs a Sensor Client Program (SCP) to connect to SCGMMS. The SCP is
the bridge for communication between actual sensors and SCGMMS. On the sensor side
SCP communicates with the sensor through device-specific components such as device
drivers. On the SCGMMS side SCP communicates with SCGMMS through Sensor
Service Abstraction Layer (refer to section 0 for details).

 40

Figure 3-3 shows a physical sensor and the corresponding Sensor Client Program.

Figure 3-3 Structure of A Sensor Client Program

3.2.4.2 Computational Service
Computational Service is a special kind of sensor which does not take input from the
environment. Instead, they take output of other sensors as their input, perform various
computations on the data, and output the processed data finally. It is called a sensor
because it totally matches with our definition of sensor.

Figure 3-4 shows the data flow of how environmental data is transformed by processing
data through a sensor and a Computational Service. The architecture of SCGMMS allows
the data source to be assigned and reassigned dynamically.

Figure 3-4 Computational Service

3.2.4.3 Supported sensors
To illustrate the usage of SCGMMS, several predefined sensors are supported in our
initial implementation.

 41

Hardware sensors
1. GPS device
2. RFID reader and tags’ signal strength
3. NXT Robots with ports attached to 4 of the following sensors:

a. Light
b. Sound
c. Touch
d. Ultrasonic
e. Compass
f. Gyro
g. Accelerometer
h. Temperature

4. Wii Remote Controller
5. Nokia N800 Internet Tablet PC video camera
6. PC Webcam

Computational services
1. Video Edge Detection Sensor (software sensor)

3.2.5 Sensor Service Abstraction Layer (SSAL)
SCGMMS can potentially support large amount of sensors of different kind. Ease of
adding new sensors by different sensor developers without internal knowledge of
SCGMMS is one of the most important requirements. SSAL provides a common
interface for adding new sensors to the system easily. Sensor developers have to write
simple programs utilizing SSAL libraries for connecting sensors to SCGMMS.
Afterwards the sensor will be available for all applications right away.

Details of SSAL is discussed in Section 3.5.

 42

3.3 Grid Builder

3.3.1 An Overview of the Grid Builder Architecture

Architecture Overview

Figure 3-5 An overview of the Grid Builder architecture

 43

Figure 3-5 depicts the overall Grid Builder (GB) architecture. GB is originally designed
for managing Grid-of-Grids. For this project, GB is extended to include the management
of a generalized sensor-centric grid of grids. Description of GB will focus on this
specialized version. CGL-developed hpsearch is adopted and extended for this work [2].

The Grid which GB manages is arranged hierarchically into Domains. Each domain is
typically, but not necessarily, a single PC which manages sensors which are closely
related. Sensors can be deployed from any PC which is accessible from one of the
domains. There can be only one root node in the grid known as the Root Domain. Each
domain is started by its Bootstrapping.

Within each domain, there exist some basic components:

Managers and Resources
GB manages grids and resources through a manager-resource model. Each type of
resource which does not have a Web Service interface should be wrapped by a Service
Adapter (SA). Each kind of SA is managed by a corresponding Manager.

Since our grid contains sensors, a Sensor Manager is responsible for managing sensors
through Sensor Service Adapters (SSA). Each SSA has its own set of defined Sensor
Policy. This policy tells Sensor Manager how the SSA is to be managed, and defines the
properties of the sensor bound to the SSA.

The Health-check Manager is responsible for checking the health of the whole system
(ensures that the registry and messaging nodes are up and running and that there are
enough managers for resources).

Bootstrapping Service
This service ensures that bootstrap processes of the current domain are always up and
running. For example, it periodically spawns a health-check manager that checks the
health of the system.

3. Registry
All data about registered services and service adapters are stored in memory called
Registry. Registry is used to process messages so it can manage new SA, renew SA and
update SA status.

 44

3.3.2 Significant Classes

3.3.2.1 Class Diagram

Figure 3-6 Class Diagram of Grid Builder

 45

The diagram shows the class diagram of significant classes in GB. They are categorized
into 5 main categories:

Messaging Layer
GB is built on top of a message-based architecture. All modules in GB such as
BootstrapService, ForkDaemon, Managers, Registry and ServiceAdapters are standalone
and communicate with one another by message passing. With this model, separate
modules can be deployed as distributed services.

GB has a set of classes dedicated for message passing. Each module has a unique UUID
and one or more UniversalLocator(s) (UL). UL provides all the information necessary to
identify a module in the network, including transport type, host address, port and path. 4
transport types are supported: UDP, TCP, HTTP and NB. Each UL is responsible for
message of one transport type.

TransportSubstrate is responsible for sending and receiving messages to and from a
module. It automatically serializes the message content according to the transport type of
destination. Once created, it spawns a thread which keeps waiting for incoming messages
and notifies the associated MessageProcessor upon message arrival.

Modules which want to receive message should implement the MessageProcessor
interface and associates itself with a TransportSubstrate. Important modules which
implement this interface include BootstrapService, Registry, SystemHealthChecker,
Manager, ServiceAdapter and UserTools.

Communications between SensorManager and SensorServiceAdapters use the Web
Service (WS) interface. WS in GB is built on top of this messaging layer.

Domain Management
Domain management in GB is done by BootstrapService. Each domain has one
BootstrapService which constantly communicates with the BootstrapServices of other
domains. Each domain hierarchy contains one Root node. Each domain connects with at
most one parent node and any number of child nodes. For now the hierarchy is defined
using a configuration file (mgmySystem.conf).

To keep the whole hierarchy up and running, each domain periodically sends a heart beat
message to its parent domain. It also has to spawn the BootstrapService of all child
domains if any of them is not sending heart beat for some time.

 46

Domain 2

Bootstrap

Service

Domain 1

Bootstrap

Service

Root Domain

Bootstrap

Service

Heart beat Heart beat

Domain 3

Bootstrap

Service

Heart beat

…...

spawnspawn

spawn

Figure 3-7 Domain Management

Managers
In GB there are two levels of managers. The lowest level is ResourceManager, which
manages resource specific modules. For example, SensorManager is responsible for
managing a SensorServiceAdapter through the Web Service interface and performs
operation such as sending policies to the adapters.

The upper level is Manager, which manages ResourceManagers and ServiceAdapters.
The Registry keeps checking whether there are ServiceAdapters which have been
registered but do not have a Manager during the health check sequence. If there is one,
the Manager is notified and create a SAMModule in turn creates a ResourceManager for
the particular resource in the ServiceAdapter. SensorClientAdapter is an adapter inside
SensorManager for communication with the associated SensorServiceAdapter inside the
Service Adapter.

 47

Figure 3-8 Manager and Service Adapters

Resource Management
These classes are at the resource level, where resource specific tasks are performed. Each
sensor is treated as a resource in GB, and each sensor has a corresponding client program
(represented by SensorClient) responsible for interfacing the sensor with SCGMMS.

Sensor Service Abstraction Layer (SSAL) is the interface for connecting all types of
sensor client programs with GB. The class diagram only shows part of SSAL which
resides in GB. The whole SSAL involves classes of SXO as well.

Communication between resource managers (i.e. SensorManager) and Resources (i.e.
SensorServiceAdapter (SSA)) uses the Web Service (WS) interface for message passing.
SSA therefore conforms to the WS “Put”, “Get”, “Delete” and “Create”. “Get” is used for
getting SensorPolicy of the sensor and initiates connection with SG. “Delete” is used for
disconnecting connection with SG.

Registry
Each domain has a Registry which maintains the state of the entire domain, such as the
Universal Locator of every module, how many Service Adapters have been registered,
the status and policy of each sensor, which SA is assigned to which Manager etc.

RegisteredServiceAdapter is a class which contains information of ServiceAdapter such
as UniversalLocator, SensorPolicy and current status. RegisteredService contains
information of non-SA modules such as Managers and MessagingNodes.

 48

Registry can work with or without persistent storage. By default all information is stored
in memory using hash tables. The user has an option whether to write all information to
persistent storage so that it can be retrieved later on even if the domain is restarted. The
persistent storage used is compliant to WS-Context specification [3].

Figure 3-9 shows the overall architecture of the Domains, Registry and WS-Context
modules in Grid Builder. To use WS-Context, an AXIS server and a MySQL server
should be running in each domain for WS communication and storage. All domain
related information in the Registry is stored in WS-Context and shared with other
domains through NaradaBrokering’s topic-based publish-subscribe messaging service.

Although the current implementation does not use WS-Context as a centralized database
for service discovery, it can be easily enhanced to provide such service since the system
is already WS compliant.

Figure 3-9 Registry and WS-Context

 49

3.3.2.2 Class Description
This section provides brief description of each important class in GB.

Class name: MessageProcessor
Package name: cgl.hpsearch.core.transport
Description: Interface for classes which use GB's messaging layer to receive

messages
Important
interface:

processMessage()

Class name: MessagingNode
Package name: cgl.hpsearch.core.services.messagingNode
Description: Manages the GB's transport layer components (such as NB)

Important
interface:

setBootstrapLocator(), startBrokerNode()

Class name: TransportSubstrate
Package name: cgl.hpsearch.core.transport
Description: Responsible for receiving and sending messages to and from

MessageProcessor using different transport protocols
Important
interface:

register(), send(), getUniversalLocatorForTransport(), close()

Class name: Message
Package name: cgl.hpsearch.core.messages
Description: Superclass of all types of messages in GB. Different types of

message has different characteristics and serves different functions
Important
interface:

getType(), getMessageId(), getTo(), getFrom(), getTimeStamp()

Class name: UniversalLocator
Package name: cgl.hpsearch.core.transport
Description: A locator which lets different modules to identify one another for

messaging passing. Records the host, port, and transport type of a
module

Important
interface:

getHost(), getPort(), getPath(), getTransportType()

Class name: UserTools
Package name: cgl.hpsearch.core.services.user
Description: Responsible for forwarding different user operations (e.g. deploy

sensors) to different modules in GB
Important
interface:

getServiceData(), putServiceData(), retrieveStatus(),
sendPolicyMessage(), sendRunMessage(), sendFilterMessage(),
sendForkMessage()

Class name: UserUI
Package name: cgl.hpsearch.NaradaBrokering.usergui
Description: Graphical user interface of GB's management console

 50

Class name: Manager
Package name: cgl.hpsearch.core.services.manager
Description: Manages all Resource Managers

Important
interface:

processMessage(), startSAMManagementThread(),
removeSAMManagementObject(), send()

Class name: SystemHealthChecker
Package name: cgl.hpsearch.core.services.manager
Description: Responsible for checking whether all modules are up and running in

a domain
Important
interface:

processMessage()

Class name: BootstrapService
Package name: cgl.hpsearch.core.services.bootstrap
Description: Responible for starting up all modules during domain initialization.

Periodically spawns SystemHealthChecker and sending heart beat to
parent domain

Class name: ForkDaemon
Package name: cgl.hpsearch.core.services.fork
Description: Responsible for creating different modules locally as processes

Important
interface:

process()

Class name: SAMModule
Package name: cgl.hpsearch.core.services.manager
Description: Manages resources (sensors). Has one to one mapping to each

Service Adapter and the corresponding Resource Manager.
Important
interface:

send(), checkIfOwner(), getServiceData(), putServiceData(),
spawnProcess(), sendMessage()

Class name: SensorManager
Package name: cgl.hpsearch.sensor
Description: Resource manager for managing SensorServiceAdapter

Important
interface:

processMessage(), getServicePolicy(), putServicePolicy(),
runService()

Class name: SensorClientAdapter
Package name: cgl.hpsearch.sensor
Description: The adapter of SensorManager for communication with

SensorServiceAdapters using Web Service
Important
interface:

getServicePolicy, putServicePolicy(), runService()

Class name: ServiceAdapter
Package name: cgl.hpsearch.core.services.sa

 51

Description: Associated with a Resource Manager to manage the corresponding
resource

Important
interface:

start(), close(), publishData()

Class name: SensorServiceAdapter
Package name: cgl.hpsearch.sensor
Description: Responsible for brokering the communication between a Resource

Manager and sensor client program using Web Service
Important
interface:

start(), close(), publishData(), handleSensorGridConnectionLoss(),
setSensorProp(), processWxMGMT_Rename(), processWxfDelete(),
processWxfPut(), processWxfCreate(), processWxfGet()

Class name: SensorClientServiceAdapter
Package name: cgl.hpsearch.sensor
Description: Responsible for brokering the communication between a Resource

Manager and service sensor client program using Web Service

Important
interface:

start(), close(), publishData(), handleSensorGridConnectionLoss(),
setSensorProp(), sendControl(), setFilter(), subscribeSensorData(),
unsubscribeSensorData(), processWxMGMT_Rename(),
processWxfDelete(), processWxfPut(), processWxfCreate(),
processWxfGet()

Class name: SensorPolicy
Package name: cgl.hpsearch.core.policies
Description: Holds resouce specific policy, that is the property of a sensor

Important
interface:

getType(), getSensorProperty()

Class name: WSManClient
Package name: cgl.hpsearch.wsmgmt
Description: Client interface for communicating with WSManProcessors (end

points) using Web Service messaging
Important
interface:

getMyEndPoint(), getServiceEndPoint(), setServiceEndPoint(),
setWsEventingClient(), processMessage(), executeOneWay(),
executeRequestReply(), sendOut(), CreateAndMarshallMessage()

Class name: WSManProcessor
Package name: cgl.hpsearch.wsmgmt
Description: End point for receiving Web Service Message

Important
interface:

setMessageSender(), setMyEndPoint(), processSOAPMessage(),
processWxMGMT_Rename(), processWxfDelete(), processWxfPut(),
processWxfCreate(), processWxfGet()

 52

3.3.3 Important Features

3.3.3.1 System Health Check
Every module in GB are deployed in a distributed manager and linked together by
different network protocols. A health check system is therefore fundamental to ensure
every modules are indeed deployed and working properly. GB performs periodic System
Health Check (SHC) to ensure that every thing is up and running.

SHC can be divided into three stages:

Initialization

Figure 3-10 System Health Check (SHC) Initialization

To start a new Domain X, a user has to execute a script to perform a Primary Health
Check Sequence. This action creates a Permanent Messaging Node, which is responsible
for communication between all modules within a domain, and communication with other
domains. After that, a Fork Daemon is created. Every module of Grid Builder (e.g.
Registry, Service Adapters, Sensor Service Adapters etc.) is executed as a separate
process in the operating platform. Fork Daemon is responsible for creating modules as
separate processes.

After primary health check, the domain is now capable of receiving messages from other
domains. The Bootstrap Service is launched when a message is received from the root
domain. The Bootstrap Service is responsible for making sure that every module is up
and running in a domain. It periodically spawns a System Health Checker to check the
health of the system.

After Bootstrap Service has been initialized, it creates the Registry. The system then
checks if all modules are up and running for every minute. If not, create the module that
is missing (for details please refer to section 3.3.4.3).

 53

Detect Changes

Figure 3-11 Adding Service Adapter

When we introduce changes to the system, such as deploying a sensor, SHC
automatically detects and reacts to the change. For example, a user deploys a sensor by
starting the corresponding sensor client program. The program automatically creates a
new Service Adapter for the sensor which in turn creates a Sensor Service Adapter. If no
Manager is present in the domain, a Manager process is created by ForkDaemon to
manage the sensor through Service Adapter.

 54

Maintain System State

Figure 3-12 System Health Check (SHC) Maintaining System State

To make sure that every resource is up and running, each module periodically notifies its
manager and the registry of its presence.

 55

3.3.3.2 Classification Scheme
Classification defines all properties which are shared by all sensors supported by
SCGMMS. Classification serves the following functions:

1. Allows GB to differentiate among different sensors for visualizing sensor’s
policies

2. Defines what can be filtered
3. Allows meaningful visualization of sensor data at application side
4. Allows application to differentiate different sensors

Figure 3-6 shows the class diagram of classification. It can be divided into 3 categories:

Sensor Property
In order to introduce a new sensor to SCGMMS, the following properties have to be
defined in class SensorProperty:

Table 3-1 Fields of Sensor Property

Property Description
sensorId A Human readable ID for identification which does not have to be

unique
groupId Sensors can be assigned to different logical groups for easier

management. GroupId identifies the group
sensorType Textual description of the type of a sensor
sensorTypeId An integer which helps identifying the sensor type. Application

has to compare this together with field sensorType to uniquely
identify the type of a sensor

location Textual description of the location of a sensor, including street,
city, state/province and country

historical Defines whether to archive collected sensor data in SG. Currently
this feature is not implemented

sensorControl An array of integers which uniquely identifies each control
message

controlDescription A string array of textual description of control messages. Should
align with sensorControl array

userDefinedProperty A class which defines any user-defined properties specific for
each type of sensor

SCGMMS comes with a set of predefined types. Class PredefineType contains
information for generating predefined SensorProperty. UserDefinedProperty contains
properties which are essential for the sensor but may not be common for all sensors (e.g.
for deploying a RFID reader it needs the COM port for hardware interfacing). A set of
user-defined properties for predefined sensors are implemented as subclasses of
UserDefinedProperty.

 56

For location, class PredefinedLocation contains a list of predefined mapping of city
names and GPS latitude-longitude for easy visualization on a map.

Sensor Data
For each type of sensor, its data format is usually quite different from other sensors. In
SCGMMS a class which extends SensorData should be created which defines how to
decode and use data from a sensor.

Message Serialization
Each time before the property of a sensor is sent among modules (e.g. passing from
GPSManager to SensorServiceAdapter and Registry), it is serialized into xml format.
Class SensorClassificationUtil provides operation for message serialization and
deserialization.

SensorPropertyPredefinedType

-CITIES

-LAT_LON

PredefinedLocation

SensorData

UserDefinedProperty

+sensorPropertyToXml()

+xmlToSensorProperty()

+userDefinedPropertyToXml()

+xmlToUserDefinedProperty()

SensorClassificationUtil

-instantiates

RfidUserDefinedProperty RobotUserDefinedProperty

WiiUserDefinedPropertyGpsUserDefinedProperty

GpsData WiiRemoteDataNXTRobotData

NXTSensorData

RfidTagData

1

-ports*

Figure 3-13 Class diagram of classification scheme in SCGMMS

 57

3.3.3.3 Filtering Mechanism

Figure 3-14 SCGMMS sensor filtering mechanism in a distributed architecture

 58

At the application standpoint filtering is essential for retrieving only the required sensors
from a possibly huge sensor pool. Filtering is done based on the SensorProperty of each
sensor, which is defined according to based on rules in classification.

Defining a Filter
Applications have to define filtering criteria according to their UDOP requirements. The
criteria are encapsulated in a SensorFilter object. A SensorFilter is composed of a set of
properties defined in SensorProperty connected with Boolean “and” or “or” operators.
Please refer to section 3.3.3.2 for the definition of SensorProperty. Given that a list of
sensor properties in a sensor filter are connected together with the “and” operator, only
sensors which have properties with exact match in string comparison with ALL the
properties defined in the filter should get through. Similarly sensors which have
properties with exact match in string comparison with ANY of the properties defined in a
sensor filter with sensor properties connected together with the “or” operator should get
through.

The list of “and” and “or” sensor properties are represented as a 2D string array in
SensorFilter. For example, if someone wants to get a list of SAID which have policy
((sensorType=GPS and location="Hong Kong") or (sensorType=RFID and
location="New York" and historical=true)), set the filter like this:

SensorFilter filter=new SensorFilter();
String[][] comp=new String[2][];
comp[0]=new String[2];
comp[1]=new String[3];
comp[0][0]="sensorType=GPS";
comp[0][1]="location=Hong Kong";
comp[1][0]="sensorType=RFID";
comp[1][1]="location=New York";
comp[1][2]="historical=true";
filter.setOrComparison(comp);

Data Flow
Filtering is done in three stages:

Application to SG
A filter query request is initiated from the application. For each filter query, fields which
exist in SensorProperty can be combined using the “and” or “or” operator to form a query
string. This string is then sent to SG.

SG to GB
SG forwards the request to GB. At this stage, GB searches through the registry of all
domains and aggregates the unique id of sensors which match the query in a response
message. The response message is then sent back to SG. SG periodically checks if the
filter request from application changes. If it does, the application is notified in the same
manner.

 59

SG to application
SG releases the resources (e.g. unsubscribe sensor’s NB topic) used by sensors which are
no longer in the list, and initiates resources for new sensors. Then SG notifies the client
for all changes made.

 60

3.3.4 Detailed Description
In this section, message flow of various operation of SG will be discussed at Class level
using UML collaboration diagrams.

3.3.4.1 Starting a Domain
The following diagram shows the events happening when a domain is started.

PrimaryHealthChecker

ManagementSystem

1

2

PermanentMessagingNode

udp: 3

ProcessRunner

3
.1

4
.1

3.
2

ForkDaemon

ud
p:
 4

4.2

5

udp: 3.3

Figure 3-15 Event flow when starting a sensor grid domain

1. A user starts the domain by executing “runPrimaryHealthCheck.bat”
2. ManagementSystem.BootStrap() is called to initialize all system properties, environment

variables and various user-defined properties from configuration files
3. Send a PingRequestMessage to the expected locator(s) of messaging node(s) registered in

configuration files. If any messaging node does not respond with PingResponseMessage
within 5 seconds, go to 3.1. Otherwise go to 4
3.1. For each messaging node not responding, send a request to ProcessRunner to start a

PermanentMessagingNode process
3.2. ProcessRunner starts the messaging node process
3.3. Spawns a thread which continuously monitors the presence of itself by using udp

messages (ping request and response). Starts a BrokerNode (NB) according the
configuration provided by configuration file (defaultMessagingNode.conf)

4. Send a PingRequestMessage to the expected locator(s) of ForkDaemon(s) registered in
configuration files. If any ForkDaemon does not respond with PingResponseMessage within
5 seconds, go to 4.1. Otherwise go to 5
4.1. For each ForkDaemon not responding, send a request to ProcessRunner to start a

ForkDaemon process
4.2. ProcessRunner starts the ForkDaemon process

5. PrimaryHealthChecker sleeps for 10 seconds to allow any pending processes to instantiate.
Then it checks whether all messaging nodes and ForkDaemons are up and running. If yes, it
sleeps for 30 seconds. Afterwards, it goes to step 3 and checks everything again

 61

3.3.4.2 Starting BootstrapService of a Domain
When a domain is start, it undergoes the following Bootstrap sequence.

3

n
b
:
3
.23.
1

4

nb: 3.5

n
b
:
5

Figure 3-16 Starting BootstrapService of a Domain

1. Initialize the Bootstrap node from config file, including domain hierarchy and locators of

ForkDaemons, RegistryForkDaemon, MessagingNodeDaemons. NB transport is initialized for
NB communications with other domains

2. If the current domain is not a leaf node, register all sub-domains locally
3. If the current domain is not the root node, runs a thread that periodically sends a

RegisterRenewMessage to the BootstrapService of its parent telling this domain’s
BootstrapService is running. If the domain is a leaf node, go to 3.1. Else go to 4
3.1. Starts a thread that periodically spawns a SystemHealthCheck process for each

registered ForkDaemon.
3.2. Spawns a SystemHealthChecker process by sending a ForkProcessMessage to

ForkDaemon with the “healthcheck” parameter
3.3. ForkDaemon spawns the Manager process with the “healthcheck” parameter.
3.4. Manager starts the SystemHealthChecker thread. System undergoes Normal Health

Check Sequence (Please refer to section 3.3.4.3 for details). BootstrapService waits 10
seconds for the reply from SystemHealthChecker

3.5. The replied status from SystemHealthChecker is either COMPLETE, UNKNOWN or
RUNNING. Repeat 3.1 after some sleep

4. If the node is not a leaf node, spawns a thread that periodically checks the status of ALL
RegisteredSubDomains (RSD). Under the Health Check mechanism, all
RegisteredSubDomains are supposed to send a RegisterRenewMessage to its parent.

5. If no RegisteredRenewMessage is received from a SubDomain within a specified amount of
time, the thread spawns a BootstrapService of the SubDomain remotely by sending a
ForkProcessMessage to its ForkDaemon

6. ForkDaemon creates the BootstrapService of the SubDomain

 62

3.3.4.3 Normal Health Check Sequence (Stage 1)
System Health Check has a number of stages. During the first state, Bootstrap Service
checks if the Registry is present. If not, creates a Registry process using the Fork Daemon.

1

n
b
:
2

3
.2

nb
: 3

nb
: 4

5

3
. 2
. 1

3.2.3

Figure 3-17 Normal Health Check Sequence (Stage 1)

1. After NB transport is initialized, a thread is started that automatically kills the the health
checker if it is still running after 60 seconds

2. A thread is started that automatically notifies the BootstrapService at an interval of 2 seconds
that the health checker is running

3. Checks if there is a Registry running in the domain by sending a RegistryQueryMessage to
the defined Registry locator. If a RegistryQueryResponse message is received, go to 4. If no,
go to 3.1
3.1. Try spawning a Registry process by sending a ForkProcessMessage to ForkDaemon.

Max retries = 5. After each retry, repeat 3. If number of retries reached, health checker
terminates with abnormal exit status

3.2. ForkDaemon creates the Registry process. Registry checks if persistent storage is used
in configuration file (mgmtSystem.conf). If yes, go to 3.2.1. Otherwise persistent storage
won’t be used and everything will be saved in memory. Please proceed to 3.3

 63

3.2.1. Registry asks PersistantStoreFactory for an instance of WSContextStore, which
is responsible for storing and retrieving settings from persistent storage (e.g.
relational database)

3.2.2. WSContextStore is initialized by making connections to various components
defined in WSContext and removing all previous entries (e.g. registered service
adapters, service policy, service status etc.). If any errors occur during initialization,
go to 3.3 and everything will be saved in memory

3.2.3. Registry loads all settings from WSContextStore to in memory hash tables
3.3. Registry initializes NB transport by subscribing to two topic – one common to all

registries and one uniquely identify itself. Registry spawning process has been finished.
Go back to 3

4. Registry responds to SystemHealthChecker with the number of managers and service
adapters expected in the domain.

5. System now enters health check stage 2. Proceed to section 3.3.4.4 .

3.3.4.4 Normal Health Check Sequence (Stage 2)
System Health Check has a number of stages. During the second stage, Bootstrap Service
checks if enough Managers are spawned as defined in the configuration file.

SystemHealthChecker

Registry

n
b
: 1
.1

ForkDaemon Manager

1.2

BootstrapService

n
b
:
1
.3

n
b
:
1
.4

Thread::SAFinderThread

1
. 5

nb: 1

Refer to Service

Adapter Discovery

nb: 2

n
b
: 1
.6

Figure 3-18 Normal Health Check Sequence (Stage 2)

1. The Registry responds to SystemHealthChecker with the number of managers and service
adapters expected in the domain. If there are enough managers for all
RegisteredServiceAdapters, go to 2. Otherwise go to 1.1

 64

1.1. For each Manager lacking, create a Manager process without the "healthcheck"
parameter sending a ForkProcessMessage to ForkDaemon

1.2. ForkDaemon creates the Manager process
1.3. Request system configuration from BootstrapService, including locator of Registry,

ForkDaemon
1.4. BootstrapService replies with system configuration
1.5. Initialize NB transport support. Starts a SAFinderThread which keep sending

FindSAToManageMessage to Registry requesting corresponding ServiceAdapters to
manage. If no reply from Registry, the request is repeated periodically at 2 second
interval. For details of this part, please refer to section 3.3.4.6 .

1.6. The Manager periodically sends a RegisterRenewMessage to the Registry to notify its
presence

2. SystemHealthChecker sleeps for 10 seconds to allow any pending processes to instantiate.
Then it checks whether all expected processes are up and running. If yes, it sends a
SystemHealthCheck message to BootstrapService, notifying that System Health Check is
completed and then terminates itself. Otherwise, it checks the system’s health from stage one
again (section 3.3.4.3) and tries spawning the process(s) missing

3.3.4.5 Registered Service Adapter Health Check Se quence
SAMModule notifies the Service Adapter which Manager it should send heart beat
messages to

Registry

Manager

SAMModule

ResourceManager

RegisteredServiceAdapter

Thread::HeartBeatChecker

n
b
:
6
.1

n
b
: 2

n
b
: 3

n
b
: 3
.1

n
b
: 7

4
5

1

6

6.2

Figure 3-19 Registered Service Adapter (RSA) Health Check Sequence

1. Checks if the associated RSA has sent a HEARTBEAT within the specified interval. If yes,
sleep for a while and do 1 again. Else go to 2

2. Sends a GetCurrentManager message to the associated RSA to check if it is the RSA’s
current owner. If RSA replies, go to 3. Else go to 4

3. If UUID of RSA’s current owner matches with this SAMModule, go to 3.1. Else go to 4

 65

3.1. Sends a HEARTBEAT message to the RSA and wait. If RSA replies within a time limit,
sleep for a while and do 1 again. Else go to 4

4. Ask ResourceManager(RM) whether to release the RSA.
5. If RM knows that the RSA is up and running, go to 7. Else go to 6
6. Notifies the Manager that the associated RSA is unreachable.

6.1. Sends a UPDATE_SA_STATUS message to the Registry, saying that the RSA is
UNREACHABLE

6.2. Registry performs status update
7. Re-register with the RSA by sending a HEARTBEAT to it. Sleep for a while and do 1 again

3.3.4.6 Service Adapter Discovery
System Health Check checks if every Service Adapter is associated with its Manager.

Registry

Manager Thread::SAFinderThread

SAMModule

4

9

RegisteredServiceAdapter

Thread::HeartBeatChecker

6

nb
: 7

20

Enters RSA Health

Check Sequence

8
18

SensorManager

SensorClientAdapter

11

17

ServiceAdapter

SensorServiceAdapter

nb: 12

13

nb: 16

SensorPolicy

PolicyManager
14

19

SensorGridBroker

WSContextStore

1.1

20.1

Figure 3-20 Message flow of service adapter discovery in a sensor grid

1. SAFinderThread sends a FindSAToManageMessage to Registry. If persistent storage is used

in the Registry, go to 1.1. Otherwise go to 1.2.

 66

1.1. Registry retrieves the information of a list of Registered Service Adapters from
WSContextStore

1.2. Registry replies with ServiceAdapterToManageMessage to the Manager if there is at
least one ServiceAdapter (SA) which does not have an associated SAMModule. Status
of the SA is set to MANAGED. At most one SA will be replied for each request. If there
are no SA to manage, the Manager shutdowns itself.

2. For each SA, the Manager creates a SAMModule which manages the SA.
3. SAMModule creates a specific type of ResourceManager specified in the SA (in

ServiceAdapterInfo), and starts the ResourceManager in a new Thread. For sensors, a
SensorManager (ResourceManager for sensors) is instantiated

4. A SensorClientAdapter is instantiated. The SAMModule of SensorManager is passed as
message sender and the locator of the associated SA is set as message destination

5. SAMModule starts a HeartBeatCheckerThread that periodically checks 1) if SA is up and
running 2) if SA is still associated with this SAMModule (possibly taken control by other
Managers)

6. Sends a setHeartBeatLocator message to SA to associate the SA with this SAMModule and
tells SA the locator of Manager which heart beat messages should be sent to. Afterwards,
HeartBeatCheckerThread enters the loop of SA health check (please refer to section 3.4.5 -
Registered Service Adapter Health Check Sequence)

7. Sends a GetServicePolicyMessage to SAMModule, request for the policy of the associated
resource (i.e. sensor)

8. Forwards the request to SensorManager by calling getServicePolicy()
9. Invokes the associated SensorClientAdapter’s getServicePolicy()
10. Sends a Wxf_Get message to the associated SensorServiceAdapter through SAMModule
11. Wraps the message with ServiceSpecificMessage and forwards it to the associated

ServiceAdapter
12. Invokes processSOAPMessage of the associated SensorServiceAdapter (SSA)
13. If SensorPolicy has been defined, serialize it with PolicyManager. Otherwise, just create an

empty message
14. If this is the first time SSA is assigned to a Manager, starts a SensorGridBroker which notifies

SG of its presence
15. Sends back a response message with the serialized policy (if any)
16. Forwards the response to SAMModule
17. Forwards the response to Manager
18. Forwards the response to Registry
19. Updates the policy of the SA to the corresponding RSA in Registry. If persistent storage is

used, go to 19.1; otherwise, go to 19.2
19.1. The RSA is stored in WSContextStore
19.2. The RSA is stored in memory

 67

3.3.5 Deploying and Disconnecting sensors

3.3.5.1 Deploying a GPS Sensor
The message flow of deploying any sensors in a sensor grid is similar. For illustrative
purposes, the message flow of deploying a GPS sensor is shown in Figure 3-21.

nb
: 3

7

9

1
3

1
4

n
b
:
5

Figure 3-21 Deploying a GPS Sensor

1. User chooses a domain and clicks “deploy”
2. UserUI creates a DeployDialog
3. User defines the policies of the sensor and clicks “ok”. A ForkProcessMessage is sent to the

Registry to spawn a sensor client program
4. The message is forwarded to BootstrapService
5. The message is forwarded to ForkDaemon
6. ForkDaemon starts the type of sensor client program according to policy defined. Suppose

user needs a GPS sensor. ForkDaemon creates a GPSManager process
7. Creates an instance of SensorPolicy according to the type of sensor and classification.
8. Creates an instance of SensorAdapter, passing in a SensorAdapterListener,

SensorGridControlListener and SensorPolicy
9. Creates an instance of ServiceAdapter (SA) with parameters

“saType=cgl.hpsearch.sensor.SensorServiceAdapter” and
“manType=cgl.hpsearch.sensor.SensorManager”

10. Subscribes to the SA's own NB topic. Instantiates a SensorServiceAdapter according to
“saType”

11. Sends a RegisterRenewMessage to the Registry
12. If the SA is new to the Registry, it registers the SA, set SA's status to REGISTERED and

replies SA with the new instanceId. If the SA is already registered, renew the status of SA
according to its instanceId

 68

13. Subscribes to a new NB topic according to the returned instanceId. Starts a new thread
responsible for sending RegisterRenewMessage (heart beat) to the Registry. SA enters a
state that keep tracking if NB connection is down. If yes, try to reconnect

14. GPSManager makes physical connection to the sensor, and starts a WatchDog which
monitors the physical connection

After the new SA is registered in the registry, the Normal Health Check Sequence for Managers
(Stage 2) will discover the new SA is not yet managed. A Manager will be assigned to it. For
details please refer to session 3.3.4.4 .

3.3.5.2 Disconnecting a Sensor
There are two ways to disconnect a sensor. The first way is to terminate the Sensor Client
Program explicitly. The second way is to do it through GB’s management console. The
diagram below shows the message flow of disconnecting a sensor through GB’s
management console.

UserUI

UserTools

Registry

Manager

SAMModule SensorManager

SensorClientAdapterSensorServiceAdapter

ServiceAdapter

ud
p:
 2

5

6

nb: 8

Stops the Sensor

Client Program

nb: 12

Figure 3-22 Disconnecting a sensor by using the Grid Builder management console

1 User selects a sensor in GB’s management console and clicks “Stop”. UserUI invokes

sendRunMessage() of UserTools
2 UserTools creates a RunServiceMessage with parameters indicating the message is for

disconnecting a sensor. The message is sent to Registry

 69

3 Registry locates the Manager of the corresponding RegisteredServiceAdapter and forwards
the message to it

4 Manager locates the corresponding SAMModule responsible for managing the
ServiceAdapter and forwards the message to it

5 SAMModule forwards the message to the associated SensorManager
6 SensorManager forwards the message to the associated SensorClientAdapter
7 SensorClientAdapter sends a Wxf_Delete message to the associated SensorServiceAdapter

through SAMModule
8 Wraps the message with ServiceSpecificMessage and forwards it to the associated

ServiceAdapter
9 Invokes processSOAPMessage of the associated SensorServiceAdapter (SSA)
10 SensorServiceAdapter stops the sensor through SSAL. For details please refer to section

3.4.4.9
11 An error report message is replied indicating if any error exists
12 Forwards the reply to SensorClientAdapter
13 Wraps the reply with a RunServiceResponse message, and sends it back to Registry

through SAMModule
14 Forwards the response to Manager
15 Forwards the response to Registry
16 Registry does not do anything to the response

 70

3.4 Sensor Grid

3.4.1 Overall Architecture of Sensor Grid and Rela ted Modules

Figure 3-23 Overall Architecture of Sensor Grid and related Modules

Sensor Grid (SG) is the brokering module of SCGMMS connecting the sensors,
application clients and Grid Builder. It serves two functions:

 71

3.4.1.1 Message Brokering
It enables the flow of messages among all parties including:

1. sensor data
2. sensor control messages
3. filtering requests and results
4. changes of sensor status
5. sensor policies

The following modules are essential for communication among the parties.

 GXO
GXO is a messaging layer which uses NaradaBrokering (NB) for message passing. It has
the following characteristics:

1. supports a lot of transport layer protocols, including tcp, niotcp, udp, http, https
and so on

2. abstracts messages into byte, text and object messages which performs automatic
message serialization and de-serialization

3. uses a topic-based, publish and subscribe model which eliminates the need for
identifying end points explicitly

4. allows flexible construction of brokering network

With the use of GXO, messages can propagate to the destination with minimum
programming effort.

 SXO
SXO is a layer built on top of GXO. It is the internal API which facilitates
communications between sensors, application clients and SG. It handles the connection
and disconnection of both sensors and application in a seamless and fault-tolerant manner.
It contains logic and libraries for both Application API and SSAL to communicate with
applications and sensors respectively.

Application API
All kinds of applications communicate with SCGMMS through the same API. The
Application API provides libraries for applications to:

1. access data and metadata of sensors
2. send control messages to sensors
3. notified for change of sensor status
4. send filter requests to SCGMMS

These actions are done with the help of the following modules in the API:

Application Client Broker
Interface used by application clients to send requests to SG, such as sending filter
requests to SG and control messages to sensors (through SSAL).

 72

Sensor Change Listener
Interface used by application clients to receive messages from SG such as sensor status
change.

Sensor Data Listener
Interface used by application clients to receive data from sensors.

To support different applications, Application API in turn communicates with SCGMMS
through SXO. For more detailed description of Application API, pleased refer to section
3.5.

 SSAL
All sensors communicate with SCGMMS through SSAL. Remember each sensor has a
corresponding Sensor Client Program (SCP) to communicate with SCGMMS. SSAL
provides libraries for sensors to do the following through SCP:

1. publish data
2. receive control messages
3. receive stop request from SCGMMS
4. subscribe to data of another sensor
5. listen to status change of subscribed sensor

Not all kind of sensors have to use all functionalities listed above. Remember sensors can
be further classified into normal sensors and Computational Service. In fact these two
categories utilize different subset of classes in SSAL. Some of the important modules of
SSAL are listed below:

Sensor Client Adapter
An interface for publishing data

Sensor Data Listener
An interface for listening to data from subscribed sensors. Used by Computational
Service

Sensor Adapter Listener
An interface for listening to stop requests from SCGMMS. The SCP should terminate
upon receiving the request

Sensor Change Listener
An interface for being notified when the subscribed sensor has any status change. Used
by Computational Service

Sensor Grid Control Listener
An interface which sensors listen to control messages

For more detailed description of SSAL please refer to section 3.5.2 .

 73

3.4.1.2 Application Management
In SCGMMS, SG is responsible for maintaining the state of the whole system. For each
deployed sensor and running application, SG caches down their presence and their
relationships with one another. The figure below shows a scenario which 2 applications
and 5 sensors are connected to SG. The four tables shows how SG maintains the state of
the system, they include:

A list of online sensors (Table S)
SG maintains a list of online sensors which dynamically changes with the deployment
status of the sensor

Application to sensor mapping (Table A_S)
Each application needs a different set of online sensors according to its filtering criteria.
This is to make sure that sensors which are not concerned by the application do not hold
unnecessary resources. A table is maintained to remember this mapping

Application to filter mapping (Table S_F)
Each application has its own filter, which are the criteria that define which sensors are
needed by the application. The filter can be modified by the application at any time.

Sensor to sensor policy mapping (Table S_P)
Sensor Policies defines the characteristics of sensors. It is defined by Grid Builder before
deployment. The sensor policy is obtained from GB and cached whenever a sensor is
being deployed.

Figure 3-24 SG System Management

 74

3.4.2 Significant Classes

3.4.2.1 Class Diagram

Figure 3-25 Class Diagram of SG, Sensor and Application Client

The figure above shows the class diagram of significant classes in SXO and SG. Within
SXO, classes used by application clients and classes for sensors are also indicated
respectively.

 75

3.4.2.2 Class Description
This section provides brief description of important classes of SG and SSAL.

Class name: ClientGridBroker
Package name: com.anabas.sensorgrid.client
Description: Part of the Application API. Provides the interface for external

applications to communicate with SG and sensors. Notifies GXO for
application joining

Important
interface:

setFilter(), sendControl(), subscribeSensorData(),
unsubscribeSensorData()

Class name: ClientGridChangeListener
Package name: com.anabas.sensorgrid.client
Description: Part of the Application API. Provides the interface for receiving

sensor status change due to sensor deployment, disconnection and
filtering

Important
interface:

handleSensorInit(), handleSensorChange()

Class name: SGClientView
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SXO. Contains most of the application-client-side logic for the

communication with SG and sensors, such as receiving sensor
change, sending filter to SG and sending control messages to
sensors. All NB topic and streams are handled here

Important
interface:

setChangeListener(), startConnection(), subscribeSensorData,
unsubscribeSensorDawta(), setFilter(), sendControl()

Class name: ClientGridDataListener
Package name: com.anabas.sensorgrid.client
Description: Part of the Application API, responsible for notifying the application

on sensor data arrival. If the application clients wants to receive data
from a particular sensor, it has to create a ClientGridDataListener for
that sensor. Afterwards, the listener will be notified for data arrival

Important
interface:

handleSensorData()

Class name: SGSensorView
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SXO. Contains most of the sensor-side logic for the

communication with applications, such as publishing data and
receiving control messages. All NB topics and streams are handled
here

Important
interface:

setControlListener(), publishData()

Class name: SensorGridBroker
Package name: com.anabas.sensorgrid.sensor
Description: Part SXO. Brokers communication between SSAL, SG and sensors.

Notifies GXO for sensor deployment and disconnection

Important publishData(), close()

 76

interface:

Class name: SensorClientGridBroker
Package name: com.anabas.sensorgrid.sensorclient
Description: Part of SXO. Brokers communication between SSAL, SG and service

sensors. Notifies GXO for sensor deployment and disconnection

Important
interface:

publishData(), sendControl(), setFilter(), subscribeSensorData(),
unsubscribeSensorData()

Class name: SensorGridControlListener
Package name: com.anabas.sensorgrid.sensor
Description: Part of the SSAL. Provides the interface for receiving control

messages
Important
interface:

handleSensorControl()

Class name: SensorAdapter
Package name: com.anabas.sensor.sensoradapter
Description: Part of SSAL. Provides the interface for sensors to publish data to

applications
Important
interface:

publishData(), start(), close()

Class name: SensorAdapterListener
Package name: com.anabas.sensor.sensoradapter
Description: Part of SSAL. Responsible for receiving termination commands from

GB
Important
interface:

handleSensorConnectionLoss(), handleSensorStopRequest()

Class name: FilterMonitor
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Actually this is an inner class of SensorManager responsible for

periodic checkup to update the set of sensors for each application
according to their corresponding filter

Important
interface:

0

Class name: SensorManager
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SG. Contains the logic for managing all connected

applications and sensors. Maintained HashSets and HashMaps to
cache sensor policies, applications' filters and sets of sensors
mapped to each application.

Important
interface:

addSensor(), removeSensor(), addClient(), startClient(),
removeClient(), setFilter()

Class name: SGSessionLogic
Package name: com.anabas.sensorgrid.session.sharedlet
Description: Part of SG. Responsible for handling communications with all

applications and sensors through GXO. Performs state update

 77

through SensorManager for every connections and disconnections of
sensors and applications (notified by GXO)

Important
interface:

userJoined(), userLeft()

Class name: AppletVCMain
Package name: com.anabas.sharedlet.appletframework
Description: Part of GXO. Resides at client side (applications and sensors) for

allocating and releasing resources
Important
interface:

allWindowsClosed()

3.4.3 Important Features

3.4.3.1 NB Data Flow and Topic Management
Communication between applications, sensors and SG relies on NaradaBrokering (NB)
for communication. This section provides a brief description of data flow between the
three parties.

Each sensor creates a topic for publishing data and a topic for subscribing control
messages. When an application is notified by SG for a new sensor, it subscribes to the
two topics of the corresponding sensor directly for receiving data and publishing control
messages.

For the communication between applications and SG, each application creates its own
topic using its unique id for receiving sensor change notification. SG also creates a topic
to receive filter requests from all applications.

 78

Stream NB Topic
T_SG application/x-sharedlet-sensorgrid/private
T_CY application/x-sharedlet-sensorgrid/client/CY
T_CX application/x-sharedlet-sensorgrid/client/CX
T_S1_Data application/x-sharedlet-sensorgrid/sensordata/S1
T_S1_Control application/x-sharedlet-sensorgrid/sensorcontrol/S1
T_S2_Data application/x-sharedlet-sensorgrid/sensordata/S2
T_S2_Control application/x-sharedlet-sensorgrid/sensorcontrol/S2

Figure 3-26 Message flow between a Sensor Grid (SG), applications and sensors

 79

3.4.4 Detailed Description
In this section, message flow of various operation of SG will be discussed at Class level
using UML collaboration diagrams.

3.4.4.1 Sensor Grid Startup
Sensor Grid starts a perpetual session.

Figure 3-27 A Sensor Grid startup sequence

1 An instance of SGSessionLogic is created by the framework
2 An instance of SensorManager is created, which is responsible for handling sensor-

application interaction
3 An instance of GridBuilderBroker is created, which is responsible for obtaining SensorPolicy

from Grid Builder
4 A thread is created which do filtering for different application-clients for every 5 seconds

 80

3.4.4.2 Deploying a Sensor
When deploying a sensor through the Grid Builder, sequencecs of messages are invoked
to enable the management of deployed sensors as well as mechanisms to filter sensors
based on sensor policies. Message flow when a sensor is deployed through Grid Builder
is illustrated in Figure 3-28

1

6

53

Figure 3-28 Message flow when depolying a sensor through the Grid Builder

1 The sensor client program instantiates SensorAdapter when it is started by Grid Builder
2 SensorAdapter instantiates ServiceAdapter, which is later on managed by Grid Builder
3 Service Adapter instantiates SensorServiceAdapter, which resides in SSAL for

communication with SensorManager of Grid Builder
4 SensorServiceAdapter instantiates SensorGridBroker, which communicates with Sensor

Grid
5 SensorGridBroker initializes all parameters needed for the sensor to join the Sensor Grid,

including sensorId and system configuration, then instantiates AppletVCMain with all the
parameters which tells the framework to prepare for a sensor client. Sleep for 5 seconds.

6 A SGSensorView is instantiated by the framework, which is responsible for message
passing between application clients, sensors and Sensor Grid. A unique NB stream is
created for publishing sensor data and another one created for subscribing control
messages. SensorGridBroker obtains a reference to SGSensorView from the framework and
registers the SensorGridControlListener

7 The framework notifies that a new sensor has joined through the SessionListener interface
of SGSessionLogic (userJoined()).

 81

8 Invokes addSensor() of SensorManager. SensorManager caches down the sensor in
HashSet and its Policy in HashMap

9 Asks Grid Builder for SensorPolicy of the sensor through the GridBuilderBroker interface
(getPolicy())

10 FilterMonitor Thread will notify all application-clients the presence of new sensor if it matches
with the Filter. Please refer to section 3.4.4.3 for details

3.4.4.3 Periodic Filtering
SG periodically checks the status of sensors and whether there are changes for each filter
defined by applications. Below shows the message flow.

SensorManager GridBuilderBroker

2

3

Thread::FilterMonitor

1

SensorFilter

Application

SGClientViewClientGridChangeListener

6

5

HashMap::clientId2Filter

nb: 4

HashSet::onlineSensors

HashMap::clientId2sensorIds

String::sensorId

Figure 3-29 Sensor Grid message flow during periodic sensor filtering

1 Every 5 seconds, the FilterMonitor Thread performs a filtering sequence. For each registered

application-clients, the corresponding Filter object is obtained from a HashMap. Invokes
doFiltering() of SensorManager

2 Send a request to Grid Builder acquiring a list of sensors which matches the filtering criteria
defined by the Filter

3 GridBuilderBroker returns a list of sensors fulfilling the criteria
4 Compare the list of returned sensors with the currently cached list of sensors for the

application-client. Notifies the application-client all changes by sending a
SENSOR_CHANGE message through a application-client specific NB stream

5 Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the
registered ClientGridChangeListener (Sensor Change Listener)

6 ClientGridChangeListener notifies application client of sensor change. Application client
performs corresponding actions

 82

3.4.4.4 Application Client Joining A Sensor Grid (SG)
When a sensor grid application client joins a sensor grid (SG), the message flow is
illusgtrated as follows:

ClientGridBroker

Application

1

SGClientView

3
6

SGSessionLogicSensorManager

4

5

8

ClientGridChangeListener

12

1
1

n
b
:
7

HashMap::id2Resource

9

HashMap::id2Policy

SensorPolicy SGResource

nb:
 10

HashSet::onlineSensorsAppletVCMain

2

Figure 3-30 Message flow when an application joins a sensor grid

1 The application-client which implements the ClientGridChangeListener (Sensor Change

Listener) interface, instantiates an instance of ClientGridBroker (Application Client Broker)
2 ClientGridBroker initializes all parameters needed for the application to join the Sensor Grid,

including a generated client id which is unique to the system and client’s system
configuration, then instantiates AppletVCMain with all the parameters which tells the
framework to prepare for an application client. Sleep for 5 seconds.

3 A SGClientView is instantiated by the framework, which is responsible for message passing
between application clients, sensors and Sensor Grid. A unique NB stream is created for
subscribing messages from Sensor Grid (e.g. sensor change information). ClientGridBroker
obtains a reference to SGClientView from the framework and registers the
ClientGridChangeListener

4 The framework notifies that a new application client has joined through the SessionListener
interface of SGSessionLogic (userJoined()).

5 invokes addClient() of SensorManager. SensorManager initializes NB streams for
communication with application client

6 Registers application client’s ClientGridChangeListener. Invokes SGClientView’s
startConnection()

7 Sends a START_CLIENT message with its client id
8 Forwards the request to SensorManager

 83

9 Creates a HashMap which maps the id of all online sensors to SGResource instances
wrapping the policy and status of the sensors

10 Sends a INIT_SENSOR message to the client, containing the created HashMap
11 Updates the cached list of online sensors in HashSet. Invokes handleSensorInit() of the

registered ClientGridChangeListener
12 ClientGridChangeListener notifies application client of sensor change. Application client

performs corresponding actions

3.4.4.5 Sensor Publishing Data
After a sensor is deployed in a sensor grid, real-time stream of sensor data and metadata
will be published to the sensor grid. The message flow of a sensor publishing data to the
sensor grid in which application clients could subscribe to such live streams is illustrated
in Figure 3-31.

81

n
b
:
52

Figure 3-31 Message flow from deployed sensors to applications in a sensor grid

1 SensorClient publishes data by calling publishData() of SensorAdapter
2 SensorAdapter forwards the data to SensorServiceAdapter by calling publishData()
3 SensorServiceAdapter forwards the data to SensorGridBroker by calling publishData()
4 The data is forwarded to SGSensorView
5 Broadcast the data through the unique NB stream for the sensor
6 For ALL the SGClientViews which has subscribed to this NB stream, locates all registered

ClientGridDataListeners (Sensor Data Listener) which has subscribed to data from this
sensor

7 For each ClientGridDataListener found, notifies it for data arrival by invoking
handleSensorData()

8 Notifies the application for data arrival

3.4.4.6 Subscribing Sensor Data
Applications that implement the SCGMMS API could receive relevant live sensor
streams in the sensor grid by subscribing to them. The message flow of an application
subscribes to live stream of a deployed sensor is shown below in Figure 3-32.

 84

1

Figure 3-32 Message flow from a sensor grid to a subscribing application

1 After application client knows the presence of a sensor, it creates an instance of

ClientGridDataListener (Sensor Data Listener) for the sensor
2 call subscribeSensorData() and provides the sensor id and ClientGridDataListener as

parameter
3 Forwards the call to SGClientView
4 Register the ClientGridDataListener so that when sensor data arrives the listener will be

notified. If this is the first request of subscribing data from this sensor, subscribes to the NB
stream unique to the sensor

3.4.4.7 Setting a Filter
The design of SCGMMS suppots filtering of sensor streams in a sensor grid to facilitate
construction of UDOP for situational awareness. The message flow of an application
setting up a filter query is shown in

ClientGridBrokerApplication

2

SGClientView

3

SGSessionLogicSensorManager

5

n
b
:
4

HashMap::clientId2Filter

SensorFilter

SensorFilter

1

GridBuilderBroker

67

nb:
 8

ClientGridChangeListener

9

10

HashSet::onlineSensors

Figure 3-33 Message flow of filter setup in a sensor grid

1 Application client instantiates a SensorFilter object according to application-specific filter

criteria

 85

2 initiates a setFilter() request to ClientGridBroker, using the SensorFilter as parameter
3 Forwards the request to SGClientView
4 Sends a FILTER_MSG message to Sensor Grid through NB, together with the SensorFilter

object
5 Pass the SensorFilter object to SensorManager
6 Send a request to Grid Builder acquiring a list of sensors which matches the filtering criteria

defined by the Filter
7 GridBuilderBroker returns a list of sensors fulfilling the criteria
8 Compare the list of returned sensors with the currently cached list of sensors for the

application-client. Notifies the application-client all changes by sending a
SENSOR_CHANGE message through a application-client specific NB stream

9 Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the
registered ClientGridChangeListener (Sensor Change Listener)

10 ClientGridChangeListener notifies application client of sensor change. Application client
performs corresponding actions

3.4.4.8 Sending Control to a Sensor
Some sensors do not only send live streams to a sensor grid. They could receive control
information from users or applications and respond with sensor information that
corresponds to received control information. The message flow of an application sending
a control message to a sensor is illustrated in Figure 3-34.

n
b
: 3

Figure 3-34 Message flow of control messages from applications to sensors in a sensor grid

1 Application client invokes sendControl() of ClientGridBroker with the specified sensor id and

control message recognizable by the sensor
2 Forwards the request to SGClientView
3 Sends the SENSOR_CONTROL to the sensor through a unique NB stream for the sensor
4 Forwards the control message to the registered SensorGridControlListener by

handleSensorControl()
5 Notifies SensorClient that a control message is received. The sensor client performs the

corresponding actions

 86

3.4.4.9 Disconnecting a Sensor
To disconnect a sensor, one of the ways is to stop the sensor client program through GB’s
management console. The diagram below shows the message flow of disconnecting a
sensor this way.

SensorClient SensorGridBroker

3

SGSessionLogic SensorManager

7 8

HashSet::onlineSensorsHashMap::id2Policy

SensorPolicy

AppletVCMain

4

HashMap::clientId2sensorIds

String::sensorId

Application SGClientViewClientGridChangeListener

11 10

HashSet::onlineSensors

SensorServiceAdapter
Disconnection request

received from Grid Builder

1

2

SensorAdapterListener

5

6

Figure 3-35 Message flow when disconnecting a deployed sensor from a sensor grid

1 A disconnection request is received from Grid Builder (please refer to session 3.3.5.2 for

details). processWxfDelete() of SensorServiceAdapter is invoked
2 Reports the running status of the associated sensor client program by sending a

Wxf_DeleteResponse message to SensorServiceAdapter. If the sensor client program is
running, go to 3. Otherwise, does nothing and exits

3 Invokes close() of SensorGridBroker
4 Notifies the framework to dispose resource allocated to the sensor by calling

allWindowsClosed() of AppletVCMain
5 Notifies the associated SensorAdapterListener to terminate the sensor client program by

calling handleSensorStopRequest()
6 SensorClient disconnect all connections and exits
7 The framework notifies SGSessionLogic that the sensor has disconnected by invoking

userLeft()

 87

8 invokes removeSensor() of SensorManager
9 Removes the cached SensorPolicy and status for this sensor. For each application client,

removes the sensor from the cached list of sensors associated with it, then notifies the
application client by sending a SENSOR_CHANGE message through the unique NB stream
for the client

10 Updates the cached list of online sensors in HashSet. Invokes handleSensorChange() of the
registered ClientGridChangeListener (Sensor Change Listener)

11 ClientGridChangeListener notifies application client of sensor change. Application client
performs corresponding actions

3.5 SCGMMS Application Program Interface (API)
The SCCGMMS Application Program Interface (API) allows any third party application
to connect and utilize functions provided by SCGMMS. An application can do the
following through the SCGMMS API:

1. Obtains the policies and data of all sensors which are currently up and running
2. Selectively subscribes to sensors with their policies fulfilling filtering criteria

defined by the application
3. Sends control messages to sensors
4. Dynamically notified for new sensors which fulfill the filtering criteria, and for

sensors which have been disconnected

To use the SCGMMS API, an application has to instantiates an Application Client Broker
(ClientGridBroker) and implements the Sensor Change Listener
(ClientGridChangeListener) interface. Moreover, a Sensor Data Listener
(ClientGridDataListener) has to be created for subscribing to data stream of each sensor.

 88

Application API

Sensor Change

Listener

Application

Client Broker

Sensor Data

Listener

Sensor

A

Application

Sensor Data

Listener

Data A

Send control,

set filter

Sensor change
Data A

Data B

Sensor

B

Data B
SXOSensor Grid

Data AData B

Control, filter

filter

Sensor change

control

control

Figure 3-36 SCGMMS Application Programming Interface

 89

Sensor Service Abstraction Layer (SSAL)

3.5.1 Overall Sensor Service Abstraction Layer Arc hitecture

Figure 3-37 A high-level architecture of the Sensor Service Abstractioon Layer (SSAL)

Sensor Service Abstraction Layer (SSAL) provides a common interface for all kinds of
sensors. Sensor developers add new sensors to SCGMMS by writing Sensor Client
Programs (SCP) which connects to SCGMMS through libraries in SSAL.

Internally, SSAL communicates with GB for sensor management (e.g. creation,
registration, definition) and SG for run-time management (e.g. data publishing, receiving
control messages).

In SSAL, sensors are categorized into two categories:

Normal Sensors – Sensors which take input from external environment. The input data is
external to SCGMMS.

 90

Computational Service – Sensors which do not take input from the environment. Instead,
they take output of other sensors as input, perform various computations on the data, and
output the processed data finally

Functionalities of the two different categories of sensors are supported by two different
sets of classes in SSAL. Some classes are shared between the two categories for common
functionalities.

 91

3.5.2 SSAL Architecture for General Sensor Service s

Figure 3-38 A detailed SSAL architecture for general sensor sercvices

Figure 3-38 shows the architecture of SSAL for general sensors to be wrapped and
deployed as sensor services. The following subsections explain the message flow for
some basic operations.

 92

3.5.2.1 Sensor Deployment
To deploy a sensor, the corresponding SCP has to instantiate a Sensor Adapter which
notifies SCGMMS for its presence and data publishing. It also has to implement a Sensor
Control Listener (for receiving control messages) and a Sensor Adapter Listener (for
actions such as terminating SCP). The SCP can either be started by a way decided by the
sensor developer (e.g. run a .bat script), or it can be embedded in SCGMMS so that it can
be started by GB’s Management Console. For a more detailed message flow, please refer
to section 3.3.5 .

3.5.2.2 Data Publishing
SCP is responsible for collecting data from the sensor, and then publishes it through
Sensor Adapter. Sensor Adapter in turn forwards the data to the corresponding Sensor
Service Adapter, and finally to all applications that have subscribed to its data through
SXO. For a more detailed message flow, please refer to section 3.4.4.5 .

3.5.2.3 Performing Actions on Sensor Client Progra m
Sometimes the user may want to perform some actions remotely on the SCP, such as
pausing or terminating the SCP. SCP listens for these actions through Sensor Adapter
Listener. Currently, there is only one action supported by SCGMMS – terminating the
SCP.

 93

3.5.3 SSAL Architecture for Computation as a Senso r Service

Figure 3-39 A detailed SSAL architecture for computation as a sensor service

Architecturally SSAL for Computational Service combines SSAL for normal sensors and
SCGMMS API since it needs functionalities from both sides. Figure 3-39 shows SSAL
for Computational Service. You can observe that components of the SCGMMS API are
integrated with components of the original SSAL and some new modules to form the

 94

SSAL for Computation as a Sensor Service. The extension of SSAL to cover
computation as a sensor service significantly broadens the applicability of the Sensor-
Centric Grid of Grids and eases the integration of new or legacy system of systems with
sensor-centric applications.

The following subsections explain the message flow for some operations of
Computational Services.

3.5.3.1 Sensor Deployment
To deploy a Computational Service, the corresponding SCP has to instantiate a Sensor
Client Adapter which notifies SCGMMS for its presence and for various sensor related
operations such as data publishing, subscribing data from source sensors and sending
control messages to source sensors. It also has to implement a Sensor Control Listener
(for receiving control messages) and a Sensor Adapter Listener (for actions such as
terminating SCP) as what normal sensors do.

3.5.3.2 Subscribe Sensor Data
Since Computational Services take input from other sensors (source sensor), they have to
subscribe data from other sensors in a similar way to applications. To subscribe data, the
SCP of a Computational Service has to invoke functions of Sensor Client Adapter which
in turn setup the connections through SXO. SCP has to implement the Sensor Change
Listener and Sensor Data Listener interfaces. Whenever the state of source sensor
changes (e.g. online to offline) the SCP will be notified through Sensor Change Listener.
Similarly SCP will be notified for data arrival through Sensor Data Listener.

 95

4 Advanced User-Defined Operational Pictures

Besides providing a uniform integration framework for sensors, services, grids, and grid
of grids by treating or wrapping everything as a sensor service, the SCGMMS design also
supports developing and deploying sensor-centric User-Defined Operational Pictures
(UDOP) applications for situational awareness.

4.1 UDOP Overview
This section provides a general description of basic components in UDOP and its
importance in real life application.

4.1.1 Definitions
The purpose of UDOP is to enable a user to easily choose, create, visualize and share
decision-focused views of the operational environment for decision-makers to support
accurate situation awareness and timely decision making in a distributed net-centric
Command and Control (C2) environment. Operational environment refers to the
environment where stakeholders of an operation reside. For example, the operational
environment of a stock holder is the entire stock market, where the operational
environment of a taxi driver is the roads, highways, tunnels etc. of the region he/she is
working.

In order to make accurate decisions in an operational environment, we have to create
different operational pictures which give us situation awareness in the operational
environment. Developing situation awareness is a timely and expensive task which
involves massive amount of information collection and data analysis. The information
collected has to be decomposed, analyzed and exploited to produce useful operational
pictures.

UDOP allows the user to select what information to be included or excluded from the
operational picture using different filtering criteria. The filtering criteria are defined
based on user’s need and particular interest in the world. The selected information can
then be presented, visualized and shared among all stakeholders or the operational picture
using added value information products.

4.1.2 Why UDOP is Needed
UDOP is a kind of Information Management. Imagine the large amount of information in
the world. In different situations we only have to utilize a probably small subset of this
information. UDOP provides a systematic way for us to extract the information and let us
be more aware of the current situation and able to make accurate decisions based on the
extracted information.

 96

4.1.3 UDOP Architecture
In our definition, the operational environment is composed of sensors. A sensor is a time-
dependent stream of information which has a geo-spatial location. This definition is
broad enough to cover most of the information sources in the world. Our proposed UDOP
architecture is shown in Figure 4-1. It consists of 4 layers:

Sensor Layer

Meta Data Layer

Information Management Layer

Application Layer

Images RSS RFID Tags GPS

Location
Logical

Groups

Sensor

Type

User

Defined

Properties

Messaging

Services

Sensor

Management

Military

Applications

Logistics

Applications

Financial

Applications

Figure 4-1 UDOP Architecture

4.1.3.1 Sensor Layer
The operational environment is composed of sensors. Sensors provide raw data which is
captured dynamically from different environments.

4.1.3.2 Meta Data Layer
The Meta Data layer contains meta-data which describes the properties of sensors, which
gives meaning to raw data collected from different sensors. Meta-data makes information
filtering and decision-making possible.

4.1.3.3 Information Management Layer
This layer is responsible for transporting messages from sensors to applications. It
contains messaging facilities which support multi-protocol and net-centric
communications among sensors and applications. It also provides facilities for sensor
management, such as deploying and disconnecting the sensors.

 97

4.1.3.4 Application Layer
Application layer contains UDOP applications specialized for different operational
pictures. They select, present and share information obtained from lower layers.

4.2 The Role of SCGMMS in UDOP
SCGMMS resides in the second and third layer of our proposed UDOP architecture. It is
a middleware which is responsible for collecting data from all sensors in an operational
environment, and provides applications with sufficient information on connected sensors
for creating different operational pictures using UDOP approach. There are two types of
potential users of SCGMMS:

Application Developers
Application developers are domain experts who develop UDOP applications specific to
their domains. SCGMMS provides an Application API which allows developers to
retrieve sensor data and meta-data from the sensors.

Sensor Developers
Sensor developers are information providers who want to make available some raw
information for different applications to use. They have to connect their sensors to
SCGMMS through Sensor Service Abstraction Layer (SSAL). SSAL requires sensor
developers to define the meta-data of their sensors so that applications can do filtering
according to this meta-data.

Figure 4-2 Role of SCGMMS

 98

4.2.1 How SCGMMS supports UDOP Development
Several generic core pieces of functionality are needed to enable the UDOP capability.
They include:

1. Data access mechanisms for building a UDOP from the outputs of systems of
record using net-centric means

2. Visualization and presentation mechanisms to provide the requisite historical,
current, and anticipatory situation awareness

3. Data selection and filtering to create derived, added-value information products
from the raw data inputs and displayed data and to extract insight based on the
content therein

4. Sharing and collaboration tools to enable shared situation awareness and
collaborative decision-making based on the decision-focused view created
through the UDOP

SCGMMS supports the development of UDOP applications by providing data access and
selection functionalities which meet UDOP requirements. Applications which utilize
SCGMMS shall be able to achieve visualization and collaboration with minimum effort.
The following sections describe how these functionalities are supported.

4.2.1.1 Data Access
One of the requirements of UDOP is to employ a net-centric, loosely coupled and
standards-based data access mechanism. Data access of SCGMMS fulfills all the
requirements. Logically SCGMMS provides a centralized, perpetual session for
monitoring and collecting information from all sensors, at the same time allows
applications to collect information according to their UDOP requirements. Physically all
applications and sensors are connected by a distributed brokering network which supports
messaging with various protocols through the internet. Therefore, both sensors and
applications can reside in anywhere in the world where internet connection is available.
Detailed description of message flow between SCGMMS, sensors and applications can
be found in section 3.4.1

In terms of standard compliance, the communication between SCGMMS and sensors is
SOAP compatible. Although the current implementation does not take into account of
external communication with SCBGM through Web Service Interface, it will be
supported in near future.

 99

Figure 4-3 Distributed Architecture for Data Access

Data Model
Most of the data are acquired through an event-driven model. Sensors in different geo-
spatial locations continuously publish data into the distributed brokering network.
SCGMMS helps routing the data to all connected applications according to their UDOP
requirements. Applications are notified for each data arrival through data listeners.

Some sensors are capable of receiving requests from applications and perform some
actions in return. These actions are sensor-specific. Some of them even take data from
other sensors and output processed data as response.

Quality of Data
Quality of a data is essential for decision-makers to know the limitations in their
knowledge of some operational situation. It can be measured with the following aspects:

Correctness
Currently there is limited verification on the correctness of data received from sensors.
The collected data is just forwarded to applications directly on its arrival. However,
SSAL requires each sensor’s property and its data format to be well defined. This
guarantees the correctness of data. However, malicious activities such as impersonation
can not be detected in the current implementation.

Consistency
In terms of consistency, SSAL requires each piece of data to be annotated with a
timestamp. The timestamp can be used by applications to check for consistency and
timeliness of data. (e.g. discarding out-of-date data, checking order and frequency of data
arrival).

 100

4.2.1.2 Data Selection and Filtering
Each UDOP application is only interested in its own domain-related information
extracted from the large raw data pool supported by SCGMMS. SCGMMS should
provide a flexible and efficient data selection scheme which can possibly support users
from very different domains. There are two main features in SCGMMS which makes data
selection flexible and efficient.

Classification
Classification is a set of meta-data associated with each sensor describing the property of
the sensor and its data. Classification serves the following functions:

5. Allows sensor developers to describe the characteristics of sensors and what
service the sensor provides

6. Allow each sensor to be identifiable uniquely
7. Allow sensors with similar properties to be logically grouped together
8. Allow application to differentiate different sensors
9. Allow meaningful visualization of sensor data at application side

Only with this meta-data decision makers are able to decide which sensor is under his/her
interest. SCGMMS requires every sensor to have a common set of properties. They
include:
Property Description
Sensor ID Each sensor has a unique ID for identification
Group ID Sensors can be assigned to different logical groups for easier

management. Group ID identifies the group
Sensor Type Each sensor has a unique type
location Geo-spatial location of the sensor, including street, city,

state/province and country
historical Defines whether different pieces of data from the sensor are

temporally related to one another for give meaning
Sensor Control Sensors are able to receive and reacts to control messages
User Defined
Property

Some properties which are specific to the sensor are defined here

As the number of supported sensors grows, the classification scheme should be extended
to support more generic and extensive description on the properties of sensors.

Filtering
Filtering refers to the action of selecting sensors based on their properties defined in the
classification. Currently SCGMMS supports the application of Union and Intersection set
operations on each of the sensor property defined in the previous section. Filtering
follows the request/response model where an application defines a “filter” which contains
set operations on different fields defined in the classification. The filter is then sent to
SCGMMS as request. In response SCGMMS replies the application with a set of sensors
which match the filter. The application can then subscribe to data of these sensors
through the SCGMMS API.

 101

For example, if a decision-maker wants to locate all GPS and RFID sensors in US or UK,
the corresponding query looks like:

The filtering format is defined by the Application API. It is the application’s
responsibility to visualize the input of these set operations using GUI for user friendliness.
Here is a sample GUI for the query above:

Figure 4-4 A sample GUI-based sensor selection filter

4.2.1.3 Visualization and Presentation
Visualization and presentation are application specific. The filtering mechanism of
SCGMMS is flexible enough to allow applications to visualize and present data
according to their own UDOP. The classification scheme also provides meta-data so that
data can be visualized in meaningful ways.

4.2.1.4 UDOP Management
Given that data access is in a net-centric and distributed manner, applications in different
parts of the world should be able to retrieve data from sensors in a consistent manner.

 102

The applications itself can further utilize this advantage to deploy operational picture
specific collaboration capabilities. In the next section, we will introduce an application
which is built on top of SCGMMS supporting sophisticated sharing and collaboration.

To allow a flexible way to manage UDOPs, SCGMMS should provide a UDOP
Management Service for creating, modifying, reusing, storing and sharing UDOPs.
SCGMMS allows such service to be created at the Sensor Layer of our UDOP
architecture by allowing a sensor to receive and publish data from and to a specific
application.

Figure 4-5 UDOP Management

Figure 4-5 shows the overall architecture of application storing and retrieving UDOPs
from a UDOP Service through SCGMMS. The exact architecture and implementation of
UDOP Service will be discussed in section 4.3.

4.3 UDOP Service
UDOP Service is a UDOP management solution provided by SCGMMS and Sensor
Sharedlet together to illustrate how SCGMMS can support the development of UDOP
applications.

 103

4.3.1 Overview
In Sensor Sharedlet, different operating pictures can be created by:
1. Drag-and-drop sensors to the presentation area
2. Applying different filters

The goal of UDOP Service is to provide management service for these operating pictures,
including creation, modification, removal and storage. We call these operating pictures
“UDOP Templates”.

4.3.1.1 UDOP Template
Within each UDOP Template, the following information will be stored as attributes of the
Template:

UDOP ID
This is a label for identifying the UDOP Template.

UDOP Description
The description of the UDOP Template includes information such as general description
of the Template and what situation awareness this Template gives. The description will
be used for Template searching.

Presentation Info
This includes any presentation specific information such as which sensors are being
displayed in the presentation area of Sensor Sharedlet (i.e. the 4 panels), and in what
order they are being displayed.

Filtering Criteria
This includes the filtering criteria applied to the sensor metadata.

Sensor Description
The user is allowed to write his/her own description to each of the sensors based on
his/her UDOP requirements.

A UDOP Template can be saved, loaded, modified and deleted. Each time the Template
is modified, the old Template will be saved as history for later retrieval.

4.3.2 Architecture
To cope with the architecture of SCGMMS, a UDOP Service is implemented as a sensor.
It has to be deployed in one of the GB domains just like other sensors and communicates
with SCGMMS through SSAL.

 104

A single UDOP Service will be responsible for managing a number of UDOP Templates.
Each UDOP Template will be stored in internal data structure such as classes and hash
tables within the UDOP service.

UDOP Templates will be created in the Sensor Sharedlet, which will be saved/retrieved
to/from the UDOP service through sending control messages and receiving sensor data.
The overall architecture is illustrated in Figure 4-6.

Figure 4-6 UDOP Service Architecture

4.3.3 Detailed Description
In this section, the internal data-flow of performing various UDOP management actions
on UDOP Service will be described in detail.

In the system standpoint, the UDOP Service is just a sensor communicating with
SCGMMS through SSAL. Performing various management actions is equivalent to
sending control messages to the UDOP service. UDOP services replies by sending data
back to the application clients. Figure 4-7 shows the general idea of UDOP management.

 105

Figure 4-7 System view of UDOP Template management

4.3.3.1 Saving a UDOP Template
Figure 4-8 below illustrates the dataflow of saving a UDOP Template to UDOP Service.

Figure 4-8 Dataflow of saving a UDOP template to UDOP service

1. The user created an operating picture in Sensor Sharedlet and decides to save it as a UDOP

Template. A “save” request is generated from the GUI.
2. The Sensor Sharedlet, which is already connected to a UDOP Service through Application

API, sends a control message with type “save” and corresponding detailis of the UDOP
Template as parameters of the message to the UDOP Service.

3. UDOP Service receives the message a registers the new UDOP Template within the Sensor
Client Program

 106

4.3.3.2 Retrieving a list of UDOP Templates
In Figure 4-9 we illustrate the dataflow of retrieving a list of UDOP Templates from the
UDOP Service. This process is automatic – meaning that the Sharedlet automatically
update the list by sending a query to UDOP Service for every 5 seconds interval. Note
that the UDOP Service only replies Client A (the application which initiates the request)
with the UDOP Template list instead of broadcasting the response to all clients.

Figure 4-9 Dataflow of retrieving a UDOP template from UDOP service

1. Sensor Sharedlet generates a query request to the UDOP Service for every 5 seconds
2. A control message with type “get_list” is sent to the UDOP Service
3. UDOP Service replies with data of data type “UDOPData” to sharedlet client A. The Sharedlet

then update its GUI

4.3.3.3 Opening a UDOP Template
After the Sensor Sharedlet has retrieved a list of UDOP Templates, the reply message
actually contains details of each Template. To open a Template, the Sharedlet simply
read the retrieved data and load GUI according to Template data.

 107

5 An Advanced Technology Demonstrations of
SCGMMS

5.1 Demonstrations of SCGMMS
Two technology demonstrations during the course of SCGMMS development took place
in international symposium and conferences. The first globally deployed live
demonstration of an early SCGMMS prototype was in Supercomputing 2007 in Reno,
Nevada in November 2007. Another advanced technology demonstration of a further
developed SCGMMS prototype was deployed globally in the International Symposium
on Collaborative Technologies and Systems in Irvine, California in May 2008.

The demonstration scenarios are discussed here.

5.1.1 Demonstration of SCGMMS in Supercomputing 20 07
The first demonstration was an early version of SCGMMS. . A key illustration in this
demonstration was the integration and real-time sharing of video and GPS sensors
streams globally in a message-based collaboration application called Anaba Impromptu.
The objective was to support easy organization, presentation and visualizataion of live
video and GPS streams to enable rapid situational awareness.

The demonstration operation environment comprised of four locations, which included
Reno (Nevada), where the Supercomputing Conference took place, San Francisco
(California), Bloomington (Indiana University) and Hong Kong International Airport. In
this demonstration, a 4-location collaborative session in which simultaneous, live streams
of video and GPS sensor data were streamed, multicasted and synchronously shared
among participants of the session, allowing each participant to present her/his own video
and GPS streams while visualizing data from all live video and GPS in real-time and a
collaborative manner. The sensors employed in the demonstration were:

1. Nokia N800: An Internet Tablet PC which has considerable computing power with

supports for both Wi-Fi and Bluetooth connections. It is also equipped with a camera
capable of capturing and publishing live H.263 video stream. Four Nokia N800 were
used.

2. GPS sensor: It is a portable GPS receiver, which receives geospatial location
information (e.g., latitude, longitude, etc) from satellites. Four GPS sensors were
used.

Table 5-1 A sample sensor types and attributes table used in Supercomputing 2007 demonstration

Sensor Type Attributes

GPS - Time
- Latitude
- Longitude
- ID

Video/Audio - Video stream
- Audio stream

 108

The base application used for the demonstration is the Anabas Impromptu collaboration
client which supports synchronous sharing of Webcam streams for video conferencing,
Voice over IP for audio conferencing, whiteboard, Web browsing and any Windows
applications, among other features. The video conferencing collaborative application
module called the Video sharedlet in the Impromptu client was customized to support the
Nokia N800’s H.263 video format. A “Map Demo” sharedlet was implemented for
presentation and visualization of live, streaming GPS data. Figure 5-1 illustrates when
the “Map Demo” was enabled, a drop-down menu was available for selecting which GPS
stream was to be presented. In this cacse, “Show All” was chosen and the four GPS
streams corresponding to the locations of the four video sensors (the Nokia N800 built-in
Webcams) from Reno (Nevada), San Francisco (California), Bloomington (Indiana) and
Hong Kong International Airport were displayed in an integrated Google map. The
Google map was shared synchronously among all participants in the collaborative session.

Figure 5-1 A map sharedlet shows live GPS streams of sensor locations from all over the world

Figure 5-2, 5-3, 5-4 and 5-5 illustrate the visualization of individually selected GPS
stream for display in Impromptu Map sharedlet.

 109

Figure 5-2 A map sharedlet shows the live GPS stream from Supercomputing 2007 (SC07) in Reno,
Nevada

Figure 5-3 A map sharedlet shows the live GPS stream from San Francisco, California

 110

Figure 5-4 A map sharedlet shows the live stream from Bloomington, Indiana

Figure 5-5 A map sharedlet shows the live GPS stream from the Hong Kong International Airport

 111

5.1.2 Demonstration of SCGMMS in CTS 2008
A significantly improved SCGMMS prototype was demonstrated in the International
Symposium on Collaborative Technologies and Systems in May 2008 in Irvine,
California. The entire architecture for the Sensor-Centric Grid of Grids Middleware
Management System was designed and prototyped. The two interfaces, the Sensor
Service Abstract Layer (SSAL) API for sensor developers to “plug” their sensors into the
sensor-centric grid of grids, and the SCGMMS API for application developers to leverage
sensor streams that are traveling or queued up in the grid.

Key demonstration objectives were to illustrate the ease of use of SCGMMS to develop,
deploy, management, organize, present and visualize collaborative geo-coded, sensor-
centric grid applications with UDOP/COP capabilities. The demonstration scenario as
depicted in seamless virtualized and integrated globally distributed sensors and other
distributed resources such as modeling and simulations, or computations uniformly into a
single system – a sensor-centric grid of grids.

The demonstration comprised of 3 locations – Irvine (California), Bloomington (Indiana)
and Hong Kong. The sensors employed were:

• GPS sensor: It is a portable GPS receiver, which receives geospatial location
information (e.g., latitude, longitude, etc) from satellites.

• PC Web-camera sensor: PC compatible web-cameras are available for capturing
high quality video stream capturing.

• RFID sensor: The Mantis RFCode M220 reader and RFCode M100 active tags
are used. The reader senses information about RFID tags such as the signal
strength, motion, temper and panic and encapsulates the information in tag event
messages.

• Lego Robot: We used the Lego Mindstorm NXT robots as sensor carriers for our
application. Two types of robots were assembled. One is a humanoid called
Alpha Rex and the other a vehicle called Tribot. We implemented eight
environmental sensor types on the three Lego robots. The environmental sensors
were Ultrasonic, Sound, Light, Touch, Gyroscope, Compass, Accelerometer and
Thermistor. The Lego robots can also respond as instructed by taking
programmable commands from any collaborative session participants.

• Wii Remote sensor: A Wii Remote is normally used as the primary controller for
Nintendo’s Wii console game. A Wii Remote can detect infrared sources and
determines their positions. In this case, a Wii Remote was enabled via the SSAL
to become a sensor service and deployed to a sensor-centric grid. In the
demonstration a Wii Remote sensor was primarily used to control any Lego
robots deployed to the sensor grid, independent of the geographic locations of the
respective robots. A Wii Remote sensor could also detect infrared sources and
publish their relative locations to a sensor grid.

• Video Edge Detection (VED) sensor: VED is a video processing algorithm that
performs real-time detection of object motion in video streams and highlights the
motion area by drawing a minimum rectangular bounding box around it.

 112

The demonstration scenario is depicted in Figure 5-6.

Figure 5-6 SCGMMS Multi-location, multi-robot, mult i-sensor demonstration scenario

 113

In Irvine, a GPS sensor, a Wii Remote sensor, an RFID reader sensor and multiple RFID
tags, a VED sensor and 2 Lego robots – a Tribot and a Humanoid each carrying multiple
Lego sensor types were deployed. In Bloomington, a GPS sensor, a VED sensor and a
Webcam video sensor were deployed, while in Hong Kong a GPS sensor, an RFID reader
and multiple RFID tags, a Webcam video sensor and a Lego robot – a Tribot carrying
multiple Lego sensors were deployed.

Even though several sensor-bearing robots, and various physical and software sensors
were deployed and geographically dispersed, all the geographically dispered participants
in an Impromptu sensor-centric collaboration session were able to collaborate, access,
exchange, organize, present and visualize all sensor streaming data freely and easily as if
all the sensors and participants were in the same place and on a single computer system.

Figure 5-7 GPS and video sensor streams from Irvine and Bloomington

Figure 5-7 depicts that while many different sensor types and sensor were deployed as
could be seen on the scrollable sensor list on the right hand side of the Impromptu client,
a user of the system decided to dynamically create a User-Defined Operational Picture by
selecting and organizing the presentation and visualization of four sensor streams – video
stream from Bloomington, Indiana on the upper left, mapping of GPS sensor stream from
Bloomington, Indiana on the upper right, video stream from Irvine, California (CTS 2008

 114

site) on the lower left and mapping of GPS stream from Irvine, California on the lower
right. The video stream from Bloomington showed a running clock while the video
stream from Irvine showed a Lego Humanoid robot in the demonstration site.

As shown in Figure 5-8, a user of the system created another User-Defined Operational
Picture on-the-fly and shared it with all other collaborative session participants, this time
by selecting to organize and present the visualization of the video and GPS streams from
Irvine on the upper left and right, and the video and GPS streams from Hong Kong on the
lower left and right.

Figure 5-8 GPS and video sensor streams from Irvine and Hong Kong

A new UDOP that depicted an operational picture entirely from sensor sources from
Hong Kong is shown in Figure 5-9. On the upper left, the data from the Webcam video
sensor that was pointed at the operational environment of a Lego Tribot robot in Hong
Kong in an area with an RFID reader and ten RFID tags placed on top of a red jar was
streamed live to the sensor-centric grid and subscribed by the Impromptu client. On the
upper right was the visualization of the live data from the four sensors carried by the
Lego Tribot on its left. The Lego Tribot carried an Ultrasonic sensor to measure distance,
Sound and Light sensors for sound and light intensity, Gyroscope sensor to measure the
rate of rotation of the Tribot over time. On the lower left was the visualization of RFID

 115

signal strength data streams from ten RFID tags in the neighborhood of the RFID reader,
and on the lower right was the live GPS location stream indicated on a Google map.

Figure 5-9 A UDOP dynamically created from remote sensor streams

In the UDOP that is shown in Figure 5-10 the visualization of the live video stream from
Hong Kong was placed on the upper right. The movement of the Lego Tribot in Hong
Kong was remotely controlled by the Wii Remote sensor deployed in Irvine. As the Lego
Tribot was remotely controlled via the sensor-centric grid to roam around, the live video
stream from the Webcam pointing at the Tribot was multicasted in real-time via the
sensor-centric grid transport layer, Narada Brokering, to the Video Edge Detection (VED)
sensors deployed in Irvine and Bloomington. The motion-detected, live video streams
from the Irvine and Bloomington VED sensors were simultaneously shown in the lower
left and right of the UDOP, respectively. The real-time updated rectangular bounding
boxes represented the areas where motion was detected in live video streams.

In this UDOP, the Wii Remote sensor that was used to remotely control the Hong Kong
robot also detected infrared sources in the Irvine demonstration site. The two relative
locations of the two detected infrared sources, shown as two red dots, were selected for
display on the upper right of the UDOP.

 116

Figure 5-10 A video, Wii Remote and motion edge detection operational picture

In Figure 5-11 a UDOP about the environmental situation in the Irvine demonstration site
was dynamically created. On the upper left the 7 RFID tag signal strength streams were
displayed live while on the lower left the streams of data from the three active sensors –
Sound, Light and Gyroscope sensors - carried by the Irvine deployed Lego Tribot robot
was shown. On the upper right, and the VED sensor that was deployed in Irvine detected
motion in the video stream from Irvine. The motion area was shown as a rectangular
bounding box on the lower right. Even though the two robots were not in motion at the
time, the minimum rectangular bounding box showed in the VED output stream on the
lower right of the UDOP indicated that the two people at the far end of the demonstration
site were moving.

 117

Figure 5-11 A UDOP for situational awareness around the Irvine demonstration site

The next two figures illustrate the situational awareness capability of the SCGMMS
prototype includes the awareness of disconnected resources. Figure 5-12 shows the same
environment situational awareness UDOP similar to that of Figure 5-10 but on the sensor
list on the right hand side, it also alerts in red a disconnected GPS sensor in Irvine. In the
current implementation, SCGMMS updates sensor status every few seconds. In Figure 5-
13 the sensor list illustrates that the Lego Humanoid and Tribot and GPS sensor in Irvine
were disconnected from the grid.

 118

Figure 5-12 Live alert of disconnected GPS sensor

Figure 5-13 Disconnected sensors in Irvine

 119

Operational Picture

The operational picture is composed by some operators, who are located in different geo-
spatial locations (e.g. US and Hong Kong). They have to collaboratively control two
NXT robots in two remote locations in order to take various environmental data of that
location.

5.2 A Sample Illustration of Using SCGMMS API for U DOP
Applications

After CTS 2008 SCGMMS was further improved to support the concept of hierarchical
sensor groups and advanced UDOP capabilities including UDOP service management –
create, delete, update with annotation and tracking of UDOPs.

A sample UDOP application with sensors deployed geographically similar to that of the
demonstration in Supercomputing 2007 (Reno, San Francisco, Bloomington, Hong Kong)
was created to illustrate the new capabilities. Unlike the demonstration in
Supercomputing 2007 Lego robots and RFID sensors were added this time.

Figure 5-14 A collaborative UDOP user-interface

 120

Figure 5-14 above shows the application which is developed based on the UDOP
requirements defined. It is composed by 4 main components:

Sensor Hierarchy
On the right hand side all sensors in the operational environment is shown in hierarchies.
The current implementation pre-defines the group-by attributes. Future enhancement
could support user-defined hierarchies.

Each of the sensors provides a stream of raw data. Different types of sensor are displayed
by different icons. Sensors which are closely related together with each other can be
grouped together for easy manipulation and navigation. Notice that the application
obtains the type and relationship among sensors by the reading the metadata which
defines the properties of sensor.

Presentation Area
The presentation area contains four panels; each of them can display data from a sensor.
In order to display data of a sensor, the user has to drag and drop the icon of the sensor
from the sensor list to one of the panels.

Figure 5-15 A UDOP composed by selecting from an extensible list of sensor streams

 121

Figure 5-15 above shows data of two NXT robots and signal strength collected by an
RFID reader visualized through 2D plots, progress bars and virtual compass.

Participants
The application itself is supports collaboration among multiple participants. Every
participant shares a common view on the operational picture using a strictly synchronous
model. All participants are displayed in the lower left hand side of the screen.

Switching Operational Pictures
Given that the operational picture is already defined, it can be further broken down into
smaller operational pictures which serve different purposes in the main operational
picture. On the top left hand side there is a list of control buttons. Each of them supports
one of the types of live operational pictures. For example, the “Video” control button is
used to display the web-cameras of all the operators (Figure 5-16).

Figure 5-16 A Video Sharedlet shares four live feeds from four different cities

The “GeoSpatial” control button is used to show the geo-spatial locations of all operators
and sensors. In this case, as is shown in Figure 5-17, real-time locations of GPS sensor
streams are displayed and shared on a 2D world map based on Google map.

 122

Figure 5-17 A Geo-spatial sharedlet integrating real-time GPS sensor streams

The applications can be evaluated with the following basic UDOP capabilities –
distillation, transformation and aggregation.

Distillation
The “drag and drop” and filtering mechanism of the application allows the user to focus
on a specific item of interest within an operational picture, while keeping items not of
principal interest hidden. A user can even emphasize data from a single sensor by double-
clicking one of the 4 panels and get full-screen display. Figure 5-18 is a full-screen
display of RFID signal strengths after clicking on the upper right panel in Figure 5-15.

The presentation of focused sensor is optimized based on nature of the data. Without
meta-data support of SCGMMS, distillation of data is much harder.

 123

Figure 5-18 A UDOP shows and shares RFID signal strength of ten active RFID tags

Figure 5-19 A UDOP shows the geo-spatial locations of deployed robots and an observer

 124

Transformation
The application supports transformation of data retrieved from a particular sensor. The
transformed data is more suitable for consumption by some special target audience.
SCGMMS supports this kind of transformation by providing “service-oriented sensors”.
This type of sensor does not read environmental data by itself. Instead, it takes data
stream from another sensor based on user request, and transforms the data based on the
nature of service it provides. The transformed data is returned to the target audience in a
real-time stream.

The figure below shows two video streams captured by two Nokia N800 Internet Tablet
PC and their corresponding processed video streams which emphasize the moving region
in the captured video.

Figure 5-20 Transformation of live video into live edge-detected video

Aggregation
The application supports aggregation of data from multiple sensors into a single view. A
sample application of aggregation is to display data from sensors which are attached to a
specific NXT Robot.

 125

Figure 5-21 below shows the aggregated view of a NXT Robot with all sensors attached
to it. In this case, the sensors are the four NXT Robot sensors, an attached GPS sensor, a
Webcam video sensor and a VED (Video Edge Detection) sensor.

Figure 5-21 Aggregated view of an NXT Robot

Figure 5-22 to 5-25 illustrate other on-the-fly constructed UDOPs simply by drag-and-
drop of sensors deployed to the presentation panels.

 126

Figure 5-22 A UDOP shows and shares the eight real-time sensor streams carried by 2 robots with
their respective geo-spatial information

Figure 5-23 A UDOP shows and shares 4 sensor streams delivered by a Tribot robot

 127

Figure 5-24 A UDOP shows and shares 4 sensors streams delivered by a Humanoid robot

Figure 5-25 A UDOP shows and shares RFID signal strength of ten active RFID tags

 128

6 Conclusions

We have designed and built n Enabling and Extensible Collaborative Sensor-Centric Grid
Framework that supports UDOP/COP using SensaaS (Sensor as a Service). The key
Software Systems and Modules are ready for use in demonstrating layered Sensor Grids
and in adding new sensors and filter modules. In a grid of grids context, we integrated the
following component grids:

• Sensor display and control. Here a sensor is a time-dependent stream of
information with a geo-spatial location. Note that a static electronic entity is a
broken sensor with a broken GPS! i.e. a sensor architecture applies to any
electronic entity.

• Filters for GPS and video analysis (Compute or Simulation Grids)
• Earthquake forecasting
• Collaboration Services
• NetOps Situational Awareness Service

Features of SCGMMS include:

• An API for third-party legacy or new applications to easily acquire grid
situational awareness.

• An API for sensor developers to easily integrate sensors with collaboration sensor
grid to enhancement situational awareness.

• A Grid Builder Management System to build, deployment, management, monitor
sensor and general grids.

• Examples of integrating filter (compute) and collaboration grids with Sensor
Grids in Grid of Grids scenario

• A NetOps Situational Awareness Sensor-Grid Demo Client.
• An Impromptu Sensor-Grid Demo Client with support for UDOP and Earthquake

Science.

Our project reached several important conclusions:

1. Grid technology supports layered sensor networks with high performance using

approximately MN/1000 brokers for M small (i.e. producing messages of size less
than 10 kbytes each) sensors producing an average of N messages per second

2. The Sensor Grid can be integrated with a collaborative decision support
environment

3. General filters can be defined as Grid services
4. The Grid framework supports a broad definition of sensor that includes any

device that receives and returns information; demonstrated devices include
environmental sensors, GPS, RFID, Robot and Game controllers and audio/video
devices

5. The Sensor Grid can be integrated with the NetOps Network Operations tool; this
integration is possible through well defined service interfaces

6. The SensaaS (Sensor as a Service) approach is successful allowing architectural
integration of sensors in Grids with SaaS (Software as a Service) used for other
capabilities

 129

7. We successfully followed the significant changes in commercial distributed
middleware and correctly focused on key concepts (use of services and message
oriented middleware) that are still central

8. We identified importance of hierarchical topics in the publish-subscribe
infrastructure and implemented in core technology but not in Sensor Grid

9. We were able to integrate portable VPN software to mitigate impact of firewalls
and provide additional security; limitations in current open source VPN software
prevented useful deployment in sensor Grid

10. Sensor grids of similar architecture can support DoD layered sensors as well as
non military applications such as Earthquake and Environmental sensor networks

11. Security model developed and tested in point to messaging with modest
overheads. However we did not tackle collective security for optimal support of
layered sensors

12. It is straightforward to integrate Geographical Information Systems including
Google and Microsoft clients as well as OGC (Open Geospatial Consortium)
services such as WFS Web Feature Service which we extended from batch to
streaming mode

13. Our current deployments do not have sufficient data traffic to stress our Grids, We
have developed several performance enhancements for OGC services that could
be important in future

14. Two key enhancements developed for Impromptu collaboration grid
o Collaborative groups supporting sub grids and communities of interest
o Hybrid shared display allowing dynamic choice of codec to be used when

sharing applications

 130

7 Recommendations

The Anabas Grid of Grids Net-centric framework prototype for building, deploying and
managing general sub-grids has been developed with the successful delivery of an
enabling collaborative sensor-centric grid middleware as a testbed to support the
exploration and operational demonstration of the vision of Layered Sensing with robust
collaboration and trust capabilities. The collaborative sensor-grid middleware enables
easy integration with any systems or systems of systems on one end and extensibility of
sensor and computational services on the other for flexible aggregation and collaboration
of multi-dimensional global operational pictures and trustworthiness. This progress
allows us to suggest several follow-on activities divided into broad areas – Layered
Sensor Grids, Trusted Sensing, Grid of Grids and Commercialization. We give details in
these areas below.

Layered Sensor Grid (i.e. collections of sensors)

• Extend current point to point security model to support collections and
layers of sensors

• Investigate collective trust algorithms and services that use cross
validation to enhance trust and concatenate trust, reliability and other data
from sensors. One important set of services involves a database of trust
metrics (as a set of time series) linked to services to analyze them (say
using Hidden Markov methods) to give an estimate of current trust and
projected reliability i.e. future trust.

• Design and develop sensor management services that can be used to
task coordinated groups of sensors. These would use Grid workflow for
coordination.

• Exploit new hierarchical topics in secure messaging subsystem
• Integrate other related systems such as NetOps and XCAT with layered

sensors as a particular Grid within the Grid of Grids.
• Investigate a Web 2.0 style interface for users to define layering and

additional resources of interest for their UDOP

Trusted Sensing (at level of individual sensors)

• Work with AFRL on extending capabilities of existing sensors such as
RFID, GPS, Lego Robot-based, Wii, Nokia N8xx, Web-cams. Explore
addition of other generic (non military) types such as cell phones,
RSS/Atom feeds, Blogs and Twitter.

• Work with AFRL on supporting new sensors and new trust mechanisms
with associated services and metadata. Extend the Anabas sensor
framework SensaaS as needed and support implementation of sensors in
testbed. This work includes extension of capabilities of current sensors.
We expect most work on individual sensors and their trust will be
performed by others and our responsibility will be common collective
services (second item in Layered Sensor Grid topics above) and
supporting the integration of this other work into Grid of Grids

 131

• Identify new sensor related services of interest to AFRL; for example
particular data fusion or analysis algorithms for sensor types of interest.

Grid of Grids

• Investigate security architecture needed to support trusted sensor grid
including cloud deployment. Deploy enhanced framework.

• Investigate fault tolerance architecture needed to support trusted sensor
grid including cloud deployment. Deploy enhanced framework.

• Investigate systematic use of virtual machine technology (Xen, VMware)
for Grid service deployment. This complements Grids that virtualize
system by virtualizing hosting nodes and allow a more powerful Grid
builder model. The performance implications would be initial research

• Research Cloud Implementations of Grid Components I: Extend Grid
Builder to deploy Grid Components on Clouds – including Amazon EC2
and small NSF TeraGrid cloud available to us.

• Research Cloud Implementations of Grid Components II: Measure and
evaluate performance impact of cloud – especially on messaging
substrate. Look at impact of federated clouds with different components of
a given Grid deployed on different clouds.

• Add high performance metadata service based on WS-Context to those
supported by Grid Builder.

• Quantify with AFRL guidance the “timeliness” of systems i.e. the
performance of system measured in a simulated environment with
characteristics similar to that expected in DoD use. The initial task here is
defining and implementing the simulated environment with realistic
bandwidth and latency characteristics. Measuring impact of trust
mechanisms on performance would be a focus.

• Develop an Intranet Web 2.0 annotation service allowing tagging of
services and electronic resources developing a rich user customizable
environment. This environment can be searched to retrieve services and
documents of interest to user. Tags are stored as part of system metadata.
The Grid Builder will deploy Grids based on discovered services and
electronic resources. Provide a secure Facebook style user profile
compatible with Open Social Interface.

• Deploy a small cloud attached to AFRL Testbed. This involves
investigating various IaaS (Infrastructure as a Service) and PaaS
(Platform as a Service) software environments and installing on a small 4-
8 node cluster.

• Develop a report surveying sensor nets, webs and grids in other
communities including commercial (e.g. Microsoft Ocean network, Nokia
cell phone), government (e.g. Ubiquitous City project in Korea) and
academic projects (as many NASA sensor web projects, personal health
monitoring).

Commercialization
We intend a three-prong strategy:

 132

• Work with Ball and AFRL to get input for DoD application requirements for an
integrable Grid situational awareness product.

• Harden SBIR result prototype to seek In-Q-Tel type of funding to commericalize
and customize the prototype for Home Land Security applications.

• Commercial mobile solution applications for social networks with large number
of sensors like the iPhone or Google phone.

 133

8 References
A complete set of references was prepared for the phase I SBIR. It is available at
http://grids.ucs.indiana.edu/ptliupages/publications/gig/DODGridReferences.pdf and is
included here as reference 1 to 249, and additional references for cloud computing in
reference 250 – 255.

1. [AccessGrid] DoE Access Grid Collaboration Environment

http://www.accessgrid.org/
2. [ActiveBPEL] ActiveBPEL Open Source workflow engine

http://www.activebpel.org/
3. [AFEI] AFEI (Association for Enterprise Integration) NetCentric Enterprise

Services Workshops http://www.afei.org/news/NCES_Workshops.cfm
4. [Aktas04A] Mehmet Aktas, Galip Aydin, Andrea Donnellan, Geoffrey Fox, Robert

Granat , Lisa Grant, Greg Lyzenga, Dennis McLeod, Shrideep Pallickara, Jay
Parker, Marlon Pierce, John Rundle, Ahmet Sayar, and Terry Tullis iSERVO:
Implementing the International Solid Earth Research Virtual Observatory by
Integrating Computational Grid and Geographical Information Web Services
Technical Report December 2004, To be published in Special Issue of Pure and
Applied Geophysics (PAGEOPH) for Beijing ACES Meeting July 2004,
http://grids.ucs.indiana.edu/ptliupages/publications/ISERVO_ACES_PAGEOPH.pd
f.

5. [Anabas] Anabas Collaboration Environment. http://www.anabas.com
6. [Apache] Web site http://www.apache.org.
7. [Axis] Apache Axis Web Services Infrastructure http://ws.apache.org/axis/
8. [Aydin03A] Galip Aydin, Harun Altay, Mehmet S. Aktas, M. Necati Aysan,

Geoffrey Fox, Cevat Ikibas, Jungkee Kim, Ali Kaplan, Ahmet E. Topcu, Marlon
Pierce, Beytullah Yildiz, Ozgur Balsoy Online Knowledge Center Tools for
Metadata Management, DoD HPCMP Users Group Meeting Seattle June 9-13 2003,
http://grids.ucs.indiana.edu/ptliupages/publications/OKCUGC.pdf

9. [Balsoy02A] Ozgur Balsoy, Mehmet S. Aktas, Galip Aydin, Mehmet N. Aysan,
Cevat Ikibas, Ali Kaplan, Jungkee Kim, Marlon Pierce, Ahmet Topcu, Beytullah
Yildiz, and Geoffrey Fox The Online Knowledge Center: Building a Component
Based Portal, Proceedings of the International Conference on Information and
Knowledge Engineering, Las Vegas June 2002,
http://grids.ucs.indiana.edu/ptliupages/publications/OKCPaper1x1.pdf

10. [Barrett2001] C. Barrett, R. Beckman, K. Berkbigler, K. Bisset, B. Bush, K.
Campbell, S. Eubank, K. Henson, J. Hurford, D. Kubicek, M. Marathe, P. Romero,
J. Smith, L. Smith, P. Speckman, P. Stretz, G. Thayer, E. Eeckhout, and M.D.
Williams. TRANSIMS: Transportation Analysis Simulation System. Technical
Report LA-UR-00-1725, Los Alamos National Laboratory Unclassified Report,
2001. An earlier version appears as a 7 part technical report series LA-UR-99-1658
and LA-UR-99-2574 to LA-UR-99-2580. See http://transims.tsasa.lanl.gov/ and
http://www.transims.net/.

 134

11. [Barrett2002] C. Barrett, S. Eubank, M. Marathe, H. Mortveit and C. Reidys.
Science and Engineering of Large Scale Socio-Technical Simulations, Proc. 1st
International Conference on Grand Challenges in Simulations held as a part of
Western Simulation Conference, San Antonio Texas, 2002, (2002).

12. [Barrett2004A] C. Barrett, S. Eubank, V. Anil Kumar, M. Marathe. Understanding
Large Scale Social and Infrastructure Networks: A Simulation Based Approach, in
SIAM news, March 2004. Appears as part of Math Awareness Month on The
Mathematics of Networks.

13. [Barrett2004B] C. L. Barrett, M. Drozda, M. V. Marathe, S. S. Ravi and J. P. Smith,
A Mobility and Traffic Generation Framework for Modeling and Simulating Ad hoc
Communication Networks, Journal of Scientific Programming, Vol. 12, No. 1, 2004,
pp. 1–23. (A preliminary version appeared in Proc. ACM Symposium on Applied
Computing (SAC) – Special Track on Spatial Modeling, Madrid, Spain, March
2002, pp. 122–126.)

14. [BEEP] BEEP framework for building application protocols
http://www.beepcore.org/

15. [Berman03A] Grid Computing: Making the Global Infrastructure a Reality edited
by Fran Berman, Geoffrey Fox and Tony Hey, John Wiley & Sons, Chichester,
England, ISBN 0-470-85319-0, March 2003. http://www.grid2002.org.

16. [Bernholdt98A] Bernholdt, D., Fox, G., Furmanski, W. Natarajan, B., Ozdemir, H.,
Ozdemir, Z., and Pulikal, T., ``WebHLA - An Interactive Programming and
Training Environment for High Performance Modeling and Simulation'', in
Proceedings of the DoD HPC 98 Users Group Conference, April 30, 1998.
http://www.new-npac.org/users/fox/documents/furmpapers/paper20.html

17. [Bernholdt98B] Bernholdt, D., Chappell, P., Fox, G., Furmanski, W., Kasthuril, D.
Krishnamurthy, G., Nair, S., Ozdemir, H., Ozdemir, Z., Rangarajan, K., and Snively,
K., ``Parallel and Metacomputing Support for CMS-Comprehensive Minefield
Simulation''. Demonstration Handout, Supercomputing 98, Orlando, FL, November
7-13, 1998. http://www.new-npac.org/users/fox/documents/furmpapers/cms-
handoutpaper5.html

18. [Birman05] Ken Birman, Robert Hillman, Stefan Pleisch, Building network-centric
military applications over service oriented architectures SPIE Conference on
DEFENSE TRANSFORMATION AND NETWORK-CENTRIC SYSTEMS at
Orlando Florida 31 March 2005
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/GIGonWS_final.pdf

19. [BIRN] The Biomedical Informatics Research Network (BIRN)
http://www.nbirn.net/.

20. [Bishop2003] Matt Bishop, Computer Security: Art and Science.” Addison-Wesley,
2003.

21. [Blais04A] Curt Blais , Semantic Web Technologies for Military M&S,
http://www.movesinstitute.org/Openhouse2004slides/blaisSemanticWeb.ppt

22. [Booth2004] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,
Ferris, C., and Orchard, D. “Web Service Architecture.” W3C Working Group
Note, 11 February 2004. Available from http://www.w3c.org/TR/ws-arch.

23. [BPEL4WS] BPEL4WS: F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Thatte, and S. Weerawarana, BPEL4WS, Business Process Execution Language for

 135

Web Services, Version 1.0. Available from http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

24. [caBIG] The cancer Biomedical Informatics Grid https://cabig.nci.nih.gov/
25. [C4ISRarch] Command, Control, Communications, Computer Intelligence

Surveillance Reconnaissance (C4ISR) Core Architecture Data Model Version 2.0
http://www.fas.org/irp/program/core/fnlrprt.pdf

26. [CEE00] Collaborative Technology Development in the Air Force Research
Laboratory Requirements for an Air Force Collaborative Enterprise Environment,
AFRL January 2000 specification of CEE Architecture.

27. [Chimera] Chimera Virtual Data System from GryPhyn
http://www.griphyn.org/chimera/

28. [CIM] Common Information Model (CIM) from the Distributed Management Task
Force DMTF http://www.dmtf.org/standards/cim/

29. [Clarke02A] Jerry A. Clarke and Raju R. Namburu, “A Distributed Computing
Environment for Interdisciplinary Applications”, Concurrency and Computation:
Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-
15, pages 1161-1174, 2002.

30. [Centra] Centra Collaboration Environment. http://www.centra.com
31. [CMCS] Collaboratory for the Multi-scale Chemical Science (CMCS)

http://cmcs.ca.sandia.gov/index.php
32. [CMCSpaper] A Collaborative Informatics Infrastructure for Multi-scale Science,

James D. Myers, Thomas C. Allison, Sandra Bittner, Brett Didier, Michael
Frenklach, William H. Green, Jr., Yen-Ling Ho, John Hewson, Wendy Koegler,
Carina Lansing, David Leahy, Michael Lee, Renata McCoy, Michael Minkoff,
Sandeep Nijsure, Gregor von Laszewski, David Montoya, Carmen Pancerella,
Reinhardt Pinzon, William Pitz, Larry A. Rahn, Branko Ruscic, Karen Schuchardt,
Eric Stephan, Al Wagner, Theresa Windus, Christine Yang, Proceedings of the
Challenges of Large Applications in Distributed Environments (CLADE)
Workshop, June 7, 2004, Honolulu, HI, pp. 24-33.

33. [CoABS-A] CoABS Grid http://coabs.globalinfotek.com from [CoABS-B]
34. [CoABS-B] Darpa Control of Agent-based Systems CoABS program

http://www.darpa.mil/ipto/research/coabs/
35. [CoaxGrid] Coalition Agents Experiment http://www.aiai.ed.ac.uk/project/coax
36. [Condor] Condor Home Page http://www.cs.wisc.edu/condor/condorg/
37. [Cormac2005] Andrew Cormack, “Deploying Grids.” UKERNA Technical Guides.

Available from http://www.ja.net/services/publications/technical-guides/tg-grid-
deployment.pdf.

38. [CrisisGrid] http://www.crisisgrid.org
39. [Curation-A] Seminar sponsored by the Digital Preservation Coalition and the

British National Space Centre, Digital Curation: digital archives, libraries, and e-
science, London, 19 October 2001,
http://www.dpconline.org/graphics/events/digitalarchives.html (Several
presentations are available from this link)

40. [DAME] DAME Distributed Aircraft Maintenance Environment project
http://www.cs.york.ac.uk/dame/

41. [DC] Dublin Core Metadata Initiative, http://dublincore.org

 136

42. [DDMS] Department of Defense Discovery Metadata Standard (DDMS) Version 1.2
http://diides.ncr.disa.mil/mdreg/user/DDMS.cfm

43. [DFDL] The Data Format Description Language (DFDL) working group.
https://forge.gridforum.org/projects/dfdl-wg/

44. [DMSO] Defense Modeling and Simulation Office DMSO
https://www.dmso.mil/public/

45. [DMTF] Distributed Management Task Force http://www.dmtf.org/home
46. [DoDescience] Geoffrey Fox, Marlon Pierce Implications of Grids, e-Science and

CyberInfrastructure for the DoD High Performance Computing Modernization
Program Technical Report September 7 2003
http://grids.ucs.indiana.edu/ptliupages/publications/DODe-ScienceGrids.pdf

47. [Dongarra02A] The Sourcebook of Parallel Computing edited by Jack Dongarra,
Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy
White, Morgan Kaufmann, November 2002

48. [EBI] EBI: European Bioinformatics Institute http://www.ebi.ac.uk/
49. [EDG-A] European DataGrid EDG http://eu-datagrid.web.cern.ch/eu-datagrid/
50. [ESS02A] Report from the NASA Earth Science Enterprise Computational

Technology Requirements Workshop, held April 30 - May 1, 2002 http://esto-
doc.gsfc.nasa.gov:8080/documents/Information_Systems/CT/ESE-CT-
Workshop/2002/ctreqreport.pdf

51. [ExpSensorGrid] Expeditionary Sensor Grid
http://www.nwdc.navy.mil/OperationsHome/CNAN.asp

52. [Eubank2004] S. Eubank, H. Guclu, V.S. Anil Kumar, M. Marathe, A. Srinivasan,
Z. Toroczkai and N.Wang,.Modeling Disease Outbreaks in Realistic Urban Social
Networks, Nature, 429, pp. 180-184, May (2004).

53. [Ferguson03A] Donald Ferguson, Brad Lovering, John Shewchuk, Tony Storey,
Secure, Reliable, Transacted Web Services : Architecture and Composition,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/wsoverview.asp

54. [FleetGrid] Fleet Battle Experiments
http://www.nwdc.navy.mil/products/fbe/default.cfm

55. [Foster1998] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. Proc. A Security
Architecture for Computational Grids. 5th ACM Conference on Computer and
Communications Security Conference, pp. 83-92, 1998.

56. [Foster99A] Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

57. [Foster04A] The Grid 2: Blueprint for a new Computing Infrastructure, edited by
Ian Foster and Carl Kesselman, Morgan Kaufmann 2004.

58. [Fox98A] Fox, G., Furmanski, W., Nair, S., and Ozdemir, Z., ``Microsoft
DirectPlay Meets DMSO RTI for Virtual Prototyping in HPC T&E Environments,''
in Proceedings of the International Test and Evaluation Workshop on High
Performance Computing, June 10, 1998. Syracuse http://www.new-
npac.org/users/fox/documents/furmpapers/directplaypaper15.html

59. [Fox98B] Fox, G., Furmanski, W., and Ozdemir, H., ``Object Web (Java/CORBA)
based RTI to Support Metacomputing M&S,'' in Proceedings of the International
Test and Evaluation Workshop on High Performance Computing, June 10, 1998.
http://www.new-npac.org/users/fox/documents/furmpapers/owrtipaper16.html

 137

60. [Fox98C] Fox, G., Furmanski, W., Goveas, B., Natarajan, B., and Shanbhag, S.,
``WebFlow Based Visual Authoring Tools for HLA Applications,'' in Proceedings
of the International Test and Evaluation Workshop on High Performance
Computing, June 10, 1998. http://www.new-
npac.org/users/fox/documents/furmpapers/authoringpaper14.html

61. [Fox98D] Fox, G., Furmanski, W., Nair, S., Ozdemir, H., Ozdemir, Z., and Pulikal,
T., ``WebHLA-An Interactive Programming and Training Environment for High
Performance Modeling and Simulation,'' in Proceedings of the SISO Simulation
Interoperability Workshop, S/W-98F-216, July 1, 1998. http://www.new-
npac.org/users/fox/documents/furmpapers/paper12.html

62. [Fox98E] Fox, G., Furmanski, W. Nair, S., Ozdemir, H., Ozdemir, Z., and Pulikal,
T., ``WebHLA-An Interactive Multiplayer Environment for High Performance
Distributed Modeling and Simulation''. October 9, 1998. http://www.new-
npac.org/users/fox/documents/furmpapers/paper7.html

63. [Fox99A] Geoffrey C. Fox, Wojtek Furmanski, Ganesh Krishnamurthy, Hasan T.
Ozdemir, Zeynep Odcikin-Ozdemir, Tom A. Pulikal, Krishnan Rangarajan and
Ankur Sood, “Using WebHLA to Integrate HPC FMS Modules with
Web/Commodity based Distributed Object Technologies of CORBA, Java, COM
and XML”, in Proceedings of the Advanced Simulation Technologies Conference
(ASTC99), San Diego, CA, Apr 11-15, 1999. http://www.new-
npac.org/users/fox/documents/furmpapers/paper3.html

64. [Fox99B] G. Fox, W. Furmanski, G. Krishnamurthy, H. Ozdemir, Z. Ozdemir,
T.Pulikal, K. Rangarajan and A. Sood, WebHLA as Integration Platform for FMS
and other Metacomputing Application Domains, In Proceedings of the DoD HPC
Users Group Conference, Monterey, CA, June 8-15, 1999. http://www.new-
npac.org/users/fox/documents/furmpapers/paper1.html

65. [Fox03A] Geoffrey Fox, Dennis Gannon and Mary Thomas, Overview of Grid
Computing Environments, Chapter 20 of [Berman03A]

66. [Fox04A] Fox, G., WS-FlexibleRepresentation, Community Grids Lab, Indiana
University, 2004.
http://grids.ucs.indiana.edu/ptliupages/publications/presentations/jsunov04.ppt

67. [Fox04B] Geoffrey Fox, Sang Lim, Shrideep Pallickara, Marlon Pierce “Message-
Based Cellular Peer-to-Peer Grids: Foundations for Secure Federation and
Autonomic Services” published in Peer to Peer Computing and Interaction with the
Grid -- a Special issue of Future Generation Computer Systems 2004.
http://grids.ucs.indiana.edu/ptliupages/publications/cellularGrid_final.pdf

68. [Fox05A] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan
Gadgil, Building Messaging Substrates for Web and Grid Applications to be
published in special Issue on Scientific Applications of Grid Computing in
Philosophical Transactions of the Royal Society of London 2005
http://grids.ucs.indiana.edu/ptliupages/publications/RS-CGL-
ColorOnlineSubmission-Dec2004.pdf

69. [Fox05B] Geoffrey Fox Possible Architectural Principles for OGSA-UK and other
Grids UK e-Science Core Programme Town Meeting London Monday 31st January
2005 “Defining the next Level of Services for e-Science”
http://grids.ucs.indiana.edu/ptliupages/presentations/ogsaukjan05.ppt

 138

70. [Fox05C] Geoffrey Fox, Alex Ho, Marlon Pierce Grid Technology Overview and
Status, Internal Report June 2005, Anabas Inc., Community Grids Laboratory Indiana
University http://grids.ucs.indiana.edu/ptliupages/publications/gig

71. [Fox05D] Geoffrey Fox, Alex Ho, Marlon Pierce Grid Opportunities for the GiG
and NCOW, Internal Report July 2005, Anabas Inc., Community Grids Laboratory
Indiana University http://grids.ucs.indiana.edu/ptliupages/publications/gig

72. [Fox05E] Geoffrey Fox, Alex Ho, Marlon Pierce Overview of Some Grid
Application Areas within DoD, Internal Report June 2005, Anabas Inc., Community
Grids Laboratory Indiana University
http://grids.ucs.indiana.edu/ptliupages/publications/gig

73. [Fox05F] Geoffrey Fox, Alex Ho, Marlon Pierce Implementing some Grid
Application Areas within NCOW 1.1 of DoD, Internal Report July 2005, Anabas
Inc., Community Grids Laboratory Indiana University
http://grids.ucs.indiana.edu/ptliupages/publications/gig

74. [Fox05G] Geoffrey Fox, Alex Ho, Marlon Pierce References for DoD Grid Reports,
Internal Report July 2005, Anabas Inc., Community Grids Laboratory Indiana
University http://grids.ucs.indiana.edu/ptliupages/publications/gig

75. [Fox05H] Geoffrey Fox, Alex Ho, Shrideep Pallickara, Marlon Pierce, Wenjun Wu
Grids for the GiG and Real Time Simulations, Proceedings of Ninth IEEE
International Symposium DS-RT 2005 on Distributed Simulation and Real Time
Applications' Montreal October 10-12 2005
http://grids.ucs.indiana.edu/ptliupages/publications/gig

76. [Gadgil04A] Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon
Pierce, Robert Granat A Scripting based Architecture for Management of Streams
and Services in Real-time Grid Applications Technical Report December 2004.
Available from http://grids.ucs.indiana.edu/ptliupages/publications/HPSearch-
mgmtArch.pdf

77. [Gannon04A] D. Gannon, J. Alameda, O. Chipara, M. Christie, V. Dukle, L., Fang,
M. Farrellee, G. Fox, S. Hampton, G. Kandaswamy, D. Kodeboyina, S. Krishnan, C.
Moad, M. Pierce, B. Plale, A. Rossi, Y. Simmhan, A. Sarangi, A. Slominski, S.
Shirasuna, T. Thomas, Building Grid Portal Applications from a Web-Service
Component Architecture to appear in a special issue of IEEE Distributed
Computing on Grid Systems 2004.
http://grids.ucs.indiana.edu/ptliupages/publications/portal-apps-arch.pdf

78. [GapAnalysis] Geoffrey Fox, David Walker, e-Science Gap Analysis, June 30 2003.
Report UKeS-2003-01, http://www.nesc.ac.uk/technical_papers/UKeS-2003-
01/index.html. This report has 390 Grid references and an extensive glossary

79. [Gateway] Gateway Portal http://www.gatewayportal.org/
80. [GCE] GGF Grid Computing Environments Research Group

https://forge.gridforum.org/projects/gce-rg
81. [GEF] The Grid Enterprise Forum http://www.opengroup.org/gesforum/
82. [GGF-A] Global Grid Forum http://www.gridforum.org
83. [GiG] DoD Global Information Grid Architectures https://disain.disa.mil/ncow.html
84. [GiGExecSumm] Global Information Grid Architecture Version 2: Net-Centric

Operations and Warfare Executive Summary, 5 May 2003

 139

85. [GiG-Block] Global Information Grid Architecture Version 2 white papers for the
Block 2(SecDef Force Allocation Decision), 3(Homeland Defense) and
4(Southwest Asia Warfighting)

86. [Globus-A] Globus Project http://www.globus.org
87. [Globus-GT4] Globus Toolkit GT4 April 30 2005

http://www.globus.org/toolkit/docs/4.0/
88. [GlobalMMCS] GlobalMMCS Service oriented Collaboration Environment from

Community Grids Laboratory http://www.globalmmcs.org
89. [Globus-Security] Collected Globus security papers are available from

http://www.globus.org/alliance/publications/papers.php#Security%20Components.
90. [GofG] Geoffrey Fox, “Grids of Grids of Simple Services” Computers in Science

and Engineering July/August 2004, p84-87
http://grids.ucs.indiana.edu/ptliupages/publications/Cisegridofgrids.pdf or
http://csdl.computer.org/dl/mags/cs/2004/04/c4084.pdf

91. [GridShib] GridShib integration of Shibboleth Internet2 Security framework
[Shibboleth] with the Grid http://grid.ncsa.uiuc.edu/GridShib/ funded by NSF
Middleware Initiative

92. [GridSphere] GridSphere open source portal
http://www.gridsphere.org/gridsphere/gridsphere

93. [Groove] Groove Desktop Collaboration Software, http://www.groove.net/
94. [Hayes04] Rick Hayes-Roth Comments on NCOW RM 1.01, October 19 2004

http://www.w2cog.org/documents/RHR_comments_re_NCOW_RM_1.01.doc
95. [Haupt03A] Tom Haupt and Marlon Pierce, Distributed object-based grid

computing environments, Chapter 30 of [Berman03A]
96. [HLA] High Level Architecture HLA https://www.dmso.mil/public/transition/hla/ -

a framework for distributed military models and simulations
97. [Horn01A] Paul Horn, IBM, 10/15/2001 presentation at the AGENDA 2001

conference in Scottsdale, AZ, Autonomic Computing : IBM's Perspective on the
State of Information Technology,
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

98. [HotPage] NPACI HotPage http://hotpage.npaci.edu/
99. [HPCMP] High Performance Computing Modernization Program (HPCMP)

http://www.hpcmo.hpc.mil/
100. [HPSearch] HPSearch Web Service Scripting Interface http://www.hpsearch.org
101. [Humphrey2005] Marty Humphrey, Glenn Wasson, Jarek Gawor, Joe Bester,

Sam Lang, Ian Foster, Stephen Pickles, Mark Mc Keown, Keith Jackson, Joshua
Boverhof, Matt Rodriguez, and Sam Meder, “State and Events for Web Services: A
Comparison of Five WS-Resource Framework and WS-Notification
Implementations.” HPDC 14, July 24-27, 2005.
http://www.caip.rutgers.edu/hpdc2005/index.html

102. [ICCM] Intelligence Community Metadata Working Group web site:
http://www.xml.saic.com/icml/

103. [IEEE1516] P1516 - Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) — Framework and Rules
http://standards.ieee.org/board/nes/projects/1516.pdf; there are associated IEEE
standards projects.

 140

104. [Interwise] Interwise Enterprise Communications Platform,
http://www.interwise.com

105. [IOTA1] Infrastructure Operations Tool Access web site:
https://extranet.if.afrl.af.mil/iota/

106. [IOTA2] Infrastructure Operations Tools Access (IOTA) Functional
Requirements Document (FRD). Available from
https://extranet.if.afrl.af.mil/iota/10docs/IOTA_V_1_0_FRD.DOC

107. [IPG] NASA Information Power Grid http://www.ipg.nasa.gov/
108. [iVOA] International Virtual Observatory Alliance http://www.ivoa.net/
109. [JBI] Joint Battlespace Infosphere JBI.

http://www.rl.af.mil/programs/jbi/documents/JBIVolume1.pdf
110. [JBIGrid] Joint Battlespace Infosphere

http://www.rl.af.mil/programs/jbi/default.cfm
111. [Johnston03A] Bill Johnston NASA IPG, DoE Science Grid, Implementing

Production Grids, Chapter 5 of [Berman03A]
112. [Jetspeed] Apache Portal project http://portals.apache.org/
113. [JMS] The Java Message Service JMS http://java.sun.com/products/jms/
114. [JSR168] JSR-000168 Portlet Specification for Java binding (Java Community

Process) October 2003
http://www.jcp.org/aboutJava/communityprocess/final/jsr168/

115. [JV2020] Joint Vision 2020 http://www.dtic.mil/jointvision
116. [JXTA] JXTA peer to peer environment from Sun Microsystems

http://www.jxta.org
117. [Kepler] Kepler scientific workflow http://kepler.ecoinformatics.org/
118. [Kerr04] (Service Oriented) Software Development Guidance to the Department

of the Navy Project Manager An overview by Bill Kerr, Fleet Numerical
Meteorology and Oceanography Center Science and Technology Advancement
Team, 5 August 2004
http://www.w2cog.org/documents/Kerr_Guidance_overview.doc

119. [KK] KnowledgeKinetics, Ball Aerospace enterprise collaboration environment in
CEE architecture http://www.ball.com/aerospace/k2_home.html

120. [Krieger03] Mike Krieger Director, Information Management DASD(DCIO),
OASD(NII) NCES Net-Centric Enterprise Services The Open Group Conference
Washington DC 20-24 October 2003
http://www.opengroup.org/public/member/proceedings/q403/krieger.pdf

121. [Laszewski02A] Gregor von Laszewski, Mei-Hui Su, Ian Foster, Carl Kesselman,
Quasi Real-Time Microtomography Experiments at Photon Sources, in
[Dongarra02A]

122. [Lau04] Yun-Tung Lau , Service-Oriented Architecture and the C4ISR
Framework, http://www.stsc.hill.af.mil/crosstalk/2004/09/0409Lau.html

123. [LCG] LCG: LHC Computing Grid, http://lcg.web.cern.ch/LCG/
124. [Levitt05] Bill Levitt, NCOW RM Development Group Update on Target

Technical View - Emerging Net-Centric Standards - NCOW Reference Model v1.1
The Open Group Conference January 25, 2005, San Francisco
http://www.opengroup.org/gesforum/uploads/40/6574/NCOW_TTV_V1.1_Open_
Group.ppt

 141

125. [Liberty] Liberty digital identity alliance http://www.projectliberty.org/
126. [Mayfield03] Terry Mayfield IDA Net Centric Operations & Warfare Reference

Model(Version 1.0) National Defense Industry Association 3 October 2003
http://www.afei.org/pdf/ncow/Mayfield.pdf

127. [McQuay04] Bill McQuay, Collaborative Enterprise Technologies, presentation
at AFRL-Ball Aerospace-Community Grids Laboratory meeting Dayton Aug 4
2004.

128. [Moen03A] D. M. Moen and J. M. Pullen, Enabling real-time distributed virtual
simulation over the internet using host-based overlay multicast, in Proceedings of
the IEEE/ACM Distributed Simulation-Real Time Application Symposium, 2003,
pp. 30–36. http://netlab.gmu.edu/XMSF/pubs/ds-rt03_moen-pullen.pdf

129. [Morse04A] Katherine L. Morse, David L. Drake, Ryan P.Z. Brunton, Web
Enabling HLA Compliant Simulations to Support Network Centric Applications
CCRTS Command and Control Research and Technology Symposium San Diego
15-17 June 2004
http://www.dodccrp.org/events/2004/CCRTS_San_Diego/CD/papers/172.pdf

130. [MQSeries] MQSeries in IBM WebSphere http://www-
3.ibm.com/software/integration/websphere/services/

131. [MSBinaryXML] Adam Bosworth, Don Box, Martin Gudgin, Mark Nottingham,
David Orchard, Jeffrey Schlimmer, Microsoft and BEA, XML, SOAP, and Binary
Data
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.as
px?pull=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp

132. [MSSecurity] Microsoft Web Service security summary
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.as
px?pull=/library/en-us/dnglobspec/html/wssecurspecindex.asp and this page
references both other summaries and specifications.

133. [MSTXS] Luis Felipe Cabrera, George Copeland, Jim Johnson, David
Langworthy Microsoft, Coordinating Web Services Activities with WS-
Coordination, WS-AtomicTransaction, and WS-BusinessActivity
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.as
px?pull=/library/en-us/dnwebsrv/html/wsacoord.asp

134. [MSWSSite] Microsoft Summary of Web Service Specifications
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.as
px

135. [MTOM] SOAP Message Transmission Optimization Mechanism. Microsoft,
IBM and BEA. http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

136. [myGrid-B] Taverna myGrid Workflow
http://mygrid.man.ac.uk/myGrid/web/components/Workflow/

137. [myGrid-D] The myGrid Provenance Service
http://mygrid.man.ac.uk/myGrid/web/components/ProvenanceData/

138. [NCBI] National Center for Biotechnology Information
http://www.ncbi.nlm.nih.gov/

139. [NaradaBrokering] NaradaBrokering open source Messaging System
http://www.naradabrokering.org

140. [Netwarfare] Network-Centric Warfare http://www.c3i.osd.mil/NCW

 142

141. [NCOIC] NCOIC Network Centric Operations Industry Consortium
http://www.ncoic.org/

142. [NCOW1.1] Global Information Grid Net-Centric Operations and Warfare
Reference Model (NCOW RM) Version 1.1 (Draft) 8 November 2004

143. [NCOW1.1-B] Global Information Grid Net-Centric Operations and Warfare
Reference Model (NCOW RM) Appendix B – NCOW RM Operational Description

144. [NCOW1.1-C] Global Information Grid Net-Centric Operations and Warfare
Reference Model (NCOW RM) Appendix C – NCOW RM System/Services
Description

145. [NCOW1.1-D] Global Information Grid Net-Centric Operations and Warfare
Reference Model (NCOW RM) Appendix D – NCOW RM Target Technical View
(TTV)

146. [NCOW1.1-E] Global Information Grid Net-Centric Operations and Warfare
Reference Model (NCOW RM) Appendix E – NCOW RM Integrated Dictionary
including Section 7 (Abbreviations and Acronyms)

147. [Netsolve] NetSolve and GridSolve network server project
http://icl.cs.utk.edu/netsolve/

148. [Ninf] Ninf network server project http://ninf.apgrid.org/
149. [NSF03A] Report of the National Science Foundation Blue-Ribbon Advisory

Panel, Revolutionizing Science and Engineering Through Cyberinfrastructure,
http://www.cise.nsf.gov/evnt/reports/toc.htm

150. [OASIS] OASIS: Organization for the Advancement of Structured Information
Standards http://www.oasis-open.org/home/index.php

151. [OGCE] Open Grid Computing Environment OGCE Portal Collaboration
http://www.collab-ogce.org/nmi/index.jsp

152. [OGSA] Open Grid Services Architecture (OGSA) Version 1.0
https://forge.gridforum.org/projects/ogsa-wg/docman/

153. [OGSAGloss] Open Grid Services Architecture (OGSA) Glossary
https://forge.gridforum.org/projects/ogsa-wg/docman/

154. [OGSA-DAI] OGSA-DAI Grid and Web database interface http://www.ogsa-
dai.org/

155. [OGSA-Globus] GGF Open Grid Services Architecture
http://www.globus.org/ogsa/

156. [OGSIv1] OGSI Open Grid Service Infrastructure (OGSI) version 1
http://www.gridforum.org/documents/GFD.15.pdf

157. [Oh03A] Sangyoon Oh, Geoffrey C. Fox , Sunghoon Ko GMSME: An
Architecture for Heterogeneous Collaboration with Mobile Devices The Fifth IEEE
International Conference on Mobile and Wireless Communications Networks
(MWCN 2003) Singapore in September / October, 2003.
http://grids.ucs.indiana.edu/ptliupages/publications/mwcn2003.pdf and
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/

158. [Oh2005] Sangyoon Oh, Hasan Bulut, Ahmet Uyar, Wenjun Wu, Geoffrey Fox
Optimized Communication using the SOAP Infoset For Mobile Multimedia
Collaboration Applications Proceedings of the International Symposium on
Collaborative Technologies and Systems CTS05 May 2005, St. Louis Missouri,
USA.

 143

159. [OMII] OMII UK e-Science Open Middleware Infrastructure Institute
http://download.omii.ac.uk

160. [openGIS] Open GIS Consortium, Inc. http://www.opengis.org/
161. [Pallickara03A] Shrideep Pallickara, Marlon Pierce, Geoffrey Fox, Yan Yan, Yi

Huang A Security Framework for Distributed Brokering Systems.
http://grids.ucs.indiana.edu/ptliupages/publications/NB-
SecurityFramework_acmcss.pdf.

162. [Pegasus] Globus Pegasus Planning System in Data Management: The Globus
Perspective, Globus World January 2003,
http://www.globusworld.org/globusworld_web/track2/4_DataManagement1.pdf

163. [Pierce02A] Marlon. E. Pierce, Choonhan Youn, Geoffrey C. Fox The Gateway
Computational Web Portal Concurrency and Computation: Practice and Experience
in Grid Computing environments Special Issue 14, 1411-1426(2002).
http://grids.ucs.indiana.edu/ptliupages/publications/c543finalGateway.pdf

164. [Placeware] Placeware Collaboration Environment. http://www.placeware.com
165. [PST] The Practical Supercomputing Toolkit. http://www.pstoolkit.org/index.html.
166. [Pullen04A] J. Mark Pullen, Ryan Brunton, Don Brutzman, David Drake,

Michael Hieb, Katherine L. Morse, Andreas Tolk. Using Web Services to Integrate
Heterogeneous Simulations in a Grid Environment. To appear in Proceedings of the
International Conference on Computational Science 2004, Krakow, Poland
http://www.vmasc.odu.edu/publications/tolk/DS-GRID04-10.pdf

167. [QuakesimCGL] The Quakesim portlet-based portal at Indiana University
http://complexity.ucs.indiana.edu:8282

168. [Quakesim] QuakeSim Earthquake Simulation Project Home Page
http://quakesim.jpl.nasa.gov/

169. [RDF-A] RDF: O. Lassila and R. R. Swick, eds. , Resource Description
Framework (RDF) Model and Syntax Specification, W3C Recommendation 22
February 1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

170. [RDF-B] RDF Schema: D. Brinkley and R.V. Guha, eds., RDF Vocabulary
Description Language 1.0: RDF Schema, W3C Working Draft 23 January 2003.
http://www.w3.org/TR/rdf-schema/.

171. [RIB] Repository in a Box for web-based metadata catalog
http://icl.cs.utk.edu/rib/

172. [RTI] RTI or Runtime Infrastructure software implementing the HLA architecture
[HLA] (interfaces) https://www.dmso.mil/public/transition/hla/rti/

173. [Rycerz04] Rycerz, K.; Balis, B.; Szymacha, R.; Bubak, M.; Sloot, P. Monitoring
of HLA Grid Application Federates with OCM-G Proceedings of 8th IEEE DS-RT
2004. 21-23 Oct. 2004, Pages: 125 - 132

174. [SAM] Scientific Annotation Middleware (SAM),
http://collaboratory.emsl.pnl.gov/docs/collab/sam/

175. [SAML] OASIS Security Services (SAML) TC. SAML documents and
specifications are available from http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security .

176. [Schneier1996] Bruce Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C. John Wiley and Sons, 1996.

177. [SemanticGrid] Semantic Grid http://www.semanticgrid.org

 144

178. [SemanticWeb] Semantic Web http://www.w3.org/2001/sw/
179. [SensorML] Sensor Model Language (SensorML) project and specification page:

http://vast.nsstc.uah.edu/SensorML/.
180. [SERVOGrid] Solid Earth Research Virtual Observatory

http://www.servogrid.org
181. [SETI] SETI@Home Internet Computing http://setiathome.ssl.berkeley.edu/
182. [Sherman03] Sherman, A.T. and McGrew, D. A., Key Establishment in Large

Dynamic Groups Using One-way Function Trees, IEEE Transactions on Software
Engineering, vol. 29, NO. 5, May 2003, pp. 444-458.

183. [Shibboleth] Shibboleth Internet2 Security framework designed for university
environments http://shibboleth.internet2.edu/

184. [Slide] Apache Slide Content Management System supporting WebDAV
http://jakarta.apache.org/slide/

185. [SmartFrog] Hewlett Packard SmartFrog Configuration Framework http://www-
uk.hpl.hp.com/smartfrog/

186. [SOAP] SOAP: Simple Object Access Protocol http://www.w3.org/TR/SOAP/
187. [SOAPInfoset1] SOAP Infoset described in SOAP 1.2 Primer

http://www.w3c.org/TR/2003/REC-soap12-part0-20030624/
188. [SOAPInfoset2] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging

Framework," June 2003. http://www.w3.org/TR/2003/REC-soap12-part1-
20030624/

189. [SVG] Scalable Vector Graphics SVG from W3C
http://www.w3.org/Graphics/SVG/

190. [TeraGrid] NSF TeraGrid Project http://www.teragrid.org
191. [Thomas03A] Mary Thomas, Marlon Pierce, Tomasz Haupt, Building

Interoperable Portals with Web Services Technical Report of ET011 Project
October 2003 http://grids.ucs.indiana.edu/ptliupages/publications/ET-03-
011%20FY%2003%20project%20final%20rpt.doc

192. [Taiani2005] Francois Taiani, Matti A. Hiltunen, and Richard D. Schlichting,
“The Impact of Web Service Integration on Grid Performance.” HPDC 14, July 24-
27, 2005. http://www.caip.rutgers.edu/hpdc2005/index.html

193. [Tolk04A] Andreas Tolk, XML Mediation Services utilizing Model Based Data
Management, 2004 Winter Simulation Conference, SCS, Arlington, VA, December
2004 http://www.vmasc.odu.edu/publications/Tolk/tolka42424i.pdf

194. [Triana-A] Triana Project http://www.triana.co.uk/
195. [UDDI] UDDI: Universal Description, Discovery and Integration technology

from OASIS http://www.uddi.org/
196. [UKeS-A] UK e-Science Program http://www.escience-grid.org.uk/
197. [Unicore-A] UNICORE UNiform Interface to COmputing Resources

http://www.unicore.de/
198. [uPortal] Portal from a consortium of universities http://www.uportal.org/
199. [Venugopal05A] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri

Ramamohanarao, A Taxonomy of Data Grids for Distributed Data Sharing,
Management and Processing, Technical Report, GRIDS-TR-2005-3, Grid
Computing and Distributed Systems Laboratory, University of Melbourne,
Australia, April 21, 2005. http://www.gridbus.org/reports/DataGridTaxonomy.pdf

 145

200. [VNC] Virtual Network Computing System (VNC).
http://www.uk.research.att.com/vnc

201. [Vogels03A] W. Vogels, Web Services Are Not Distrubted Objects. IEEE Internet
Computing, vol. 7 (6), pp59-66, 2003.

202. [VPG] Virtual Proving Ground (VPG) http://vpg.dtc.army.mil
203. [VRVS] VRVS Collaboration Environment from Caltech http://www.vrvs.org/
204. [W2COG] W2COG World Wide Consortium for the Grid http://www.w2cog.org/
205. [W3CBinaryXML] W3C XML Binary Characterization Working Group

http://www.w3.org/XML/Binary/
206. [WebDAV] WebDAV: Web-based Distributed Authoring and Versioning,

http://www.webdav.org/
207. [WebDAV-IETF] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen,

“HTTP Extensions for Distributed Authoring—WEBDAV.” Internet Engineering
Task Force (IETF) Request for Comments 2518. Available from
http://www.ietf.org/rfc/rfc2518.txt.

208. [WebEx] WebEx Collaboration Environment. http://www.webex.com
209. [Weerawarana05A] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann,

Tony Storey, Donald F. Ferguson, Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More,
Prentice Hall March 22, 2005, ISBN: 0-13-148874-0

210. [Wong98] Wong, C. K. and Gouda, M. and Lam, S. S., Secure Group
Communication Using Key Graphs, ACM SIGCOMM, 1998.

211. [workflow] Grid workflow is summarized in GGF10 Berlin meeting
http://www.extreme.indiana.edu/groc/ggf10-ww/ with longer papers to appear in a
special issue of Concurrency&Computation: Practice&Experience at
http://www.cc-pe.net/iuhome/workflow2004index.html. Editorial is Dennis Gannon
and Geoffrey Fox Workflow in Grid Systems
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf.

212. [WSA] WS-Addressing Web Services Addressing
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

213. [WS-Context] WS-Context from OASIS http://www.oasis-
open.org/committees/download.php/9904/WS-Context.zip November 2004

214. [WS-DM] WS-DM Web Services Distributed Management Framework (OASIS)
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

215. [WSE] WS-Eventing.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/WS-Eventing.asp

216. [WSFL] WSFL: Web Services Flow Language http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

217. [WSGrids] M. Atkinson et al., ‘Web Service Grids: An evolutionary approach’,
Concurrency and Computation: Practice and Experience 17, 377-389, 2005;
http://www.nesc.ac.uk/technical_papers/UKeS-2004-05.pdf (defines WS-I+)

218. [WS-I] WS-I, "Web Services Interoperability (WS-I) Interoperability Profile
1.0a." http://www.ws-i.org.

219. [WS-Man] WS-Management
http://www.intel.com/technology/manage/downloads/ws_management.pdf

 146

220. [WSN] WS-Notification. http://www-
106.ibm.com/developerworks/library/specification/ws-notification

221. [WS-Reliability] Web Services Reliable Messaging TC WS-Reliability.
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-
01-26.pdf

222. [WSRF] WSRF Web Service Resource Framework http://www.oasis-
open.org/committees/tc_home.php?wgabbrev=wsrf

223. [WS-RM] WS-RM Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) http://www-
106.ibm.com/developerworks/webservices/library/ws-rm/

224. [WSRP] WSRP OASIS Web Services for Remote Portlets (WSRP)
http://www.oasis-open.org/committees/

225. [WS-Security] Web Services Security: SOAP Message Security (OASIS)
Standard March 2004 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf with WS-I Basic Security Profile May 12 2004
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html

226. [WS-SC] WS-SecureConversation Web Services Secure Conversation Language
May 2004 http://www-106.ibm.com/developerworks/library/specification/ws-
secon/

227. [WS-SP] Web Service Security Policy Language (WS-Policy) July 2005.
Available from http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
securitypolicy.pdf.

228. [WS-T] Web Services Trust Language (WS-Trust) February 2005. Available
from http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf.

229. [Wu04a] W. Wu, G. C. Fox, H. Bulut, A. Uyar, H. Altay, Design and
Implementation of A Collaboration Web-services system, Journal of Neural, Parallel
& Scientific Computations, Volume 12, 2004.
http://grids.ucs.indiana.edu/ptliupages/publications/npsc_xgsp-final.pdf

230. [Wulf89] Wulf, William. 1989.”The National Collaboratory - A White Paper in
Towards a National Collaboratory”. Unpublished report of a NSF workshop,
Rockefeller University, NY. March 17-18.

231. [Wytzisk03] A. Wytzisk, I. Simonis, and U. Raape, Integration of HLA simulation
models into a standardized web service world, in Proceedings of the 2003 European
Simulation Interoperability Workshop, no. 03E-SIW-019, 2003. http://ifgi.uni-
muenster.de/~simonis/download/eurosiw2003.pdf

232. [X3D] XML-enabled 3D file format superseding VRML
http://www.web3d.org/x3d/

233. [XGSP] XML General Session Protocol developed by the GlobalMMS project
[GlobalMMCS]

234. [Xie04A] Y. Xie, Y.M. Teo, W.T. Cai and S.J. Turner, A Distributed Simulation
Backbone for Executing HLA-based Simulation over the Internet, Workshop on
Grid Computing and Applications, Proceedings of the 2nd International Conference
on Scientific and Engineering Computation, pp. 96-103, Singapore, June 2004.
http://www.comp.nus.edu.sg/~xieyong/publication/ICSEC2004.pdf

235. [Xie05A] Y. Xie, Y.M. Teo, W.T. Cai and S.J. Turner, Extending HLA’s
Interoperability and Reusability to the Grid, 19th ACM/IEEE/SCS Workshop on

 147

Principles of Advanced and Distributed Simulation (PADS 2005) Monterey, CA,
USA, June
2005. http://www.comp.nus.edu.sg/~xieyong/publication/PADS2005_xie.pdf

236. [Xie05B] Y. Xie, Y.M. Teo, W.T. Cai and S.J. Turner, Towards Grid-Wide
Modeling and Simulation, 5th Singapore-Massachusetts Institute of Technology
Alliance SMA) Annual Symposium, January, 2005.
http://www.comp.nus.edu.sg/~xieyong/publication/SMA_Symposium2005_xie.pdf

237. [Xie05C] Yong Xie, Yong Meng Teo, Wentong Cai and Stephen J Turner.
"Service Provisioning for HLA-based Distributed Simulation on the Grid", in Procs
of the 19th IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed
Simulation (PADS 2005), pp.282-291, Monterey, California, USA, June 2005
http://www.comp.nus.edu.sg/~xieyong/publication/PADS2005_xie.pdf

238. [XMLC14N] Exclusive XML Canonicalization Version 1.0. W3C
Recommendation 18 July 2002. Available from http://www.w3.org/TR/xmlenc-
core/.

239. [XMLDSIG] XML-Signature Syntax and Processing, W3C Recommendation 12
February 2002. Available from http://www.w3.org/TR/xmldsig-core/.

240. [XMLENC] XML Encryption Syntax and Processing, W3C Recommendation 10
December 2002. Available from http://www.w3.org/TR/xmlenc-core/.

241. [XMSF1] Extensible Modeling and Simulation Framework (XMSF) Project
http://www.movesinstitute.org/xmsf/xmsf.html

242. [XMSF2] Brutzman, Don , M. Zyda, J. Pullen, K. Morse, Extensible Modeling
and Simulation Framework (XMSF), Challenges for Web-Based Modeling and
Simulation, Technical Challenges Workshop, Strategic Opportunities Symposium,
22 October,
http://www.movesinstitute.org/xmsf/XmsfWorkshopSymposiumReportOctober200
2.pdf

243. [XMSF3] The MOVES Institute Open House with several definitive papers on
XMSF and its Application to modeling and simulation,
http://www.movesinstitute.org/OpenHouse2004.html.

244. [XOM] Extensible Modeling and Simulation Framework Overlay Multicast XOM
http://netlab.gmu.edu/XOM/

245. [XOP] XML-binary Optimized Packing. Microsoft, IBM and BEA.
http://www.w3.org/TR/2005/REC-xop10-20050125/

246. [XSBC] XSBC XML Binary Serialization Project
http://cvs.sourceforge.net/viewcvs.py/xmsf/xsbc/docs/xsbc.html and
http://www.movesinstitute.org/Openhouse2004slides/Norbratenopenhouse2004.ppt

247. [Yu05A] Jia Yu and Rajkumar Buyya, A Taxonomy of Workflow Management
Systems for Grid Computing, Technical Report, GRIDS-TR-2005-1, Grid
Computing and Distributed Systems Laboratory, University of Melbourne,
Australia, March 10, 2005.
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

248. [Zajac04] K. Zajac, M. Bubak, M. Malawski, and P. M. A. Sloot, Towards a grid
management system for HLA-based interactive simulations, in Proceedings of
Seventh IEEE International Symposium on Distributed Simulation and Real Time

 148

Applications (DS-RT 2003), S. Turner and S. Taylor, Eds. Delft, The Netherlands:
IEEE Computer Society, October 2003, pp. 4–11.

249. [Zong04] W. Zong, Y. Wang, W. Cai, and S. J. Turner, Grid services and service
discovery for HLA-based distributed simulation, in Proceedings of the IEEE/ACM
Distributed Simulation-Real Time Application Symposium, 2004.
http://www.cs.unibo.it/DS-RT2004/DSRT_TPweb.htm

250. [CloudByrantCMU] R. Byrant, Data Intensive Cloud Computing, Carneige
Mellon University, HPDC Cloud Panel, ACM International Symposium on High
Performance Distributed Computing, 2008.

251. [CloudQuanIBM] D. Quan, Cloud Computing, HPDC Cloud Panel, ACM
International Symposium on High Performance Distributed Computing, 2008.

252. [CloudReedMicrosoft] D. Reed, Seattle: We Know About Clouds!, HPDC Cloud
Panel, ACM International Symposium on High Performance Distributed Computing,
2008.

253. [CloudFoxIU] S. Jha, A. Merzky, G.C. Fox, Clouds Provide Grids with Higher-
Levels of Abstraction and Explicit Support for Usage Modes, Open Grid Forum 23,
Cloud Workshop, June 2008.

254. [CloudRichardson] A. Richardson, Being in the Clouds, Elastic Server, Open Grid
Forum 23, Cloud Workshop, June 2008.

255. [CloudWBergerIBM] I.Wladawsky-Berger, Keynote - Cloud Computing, Grids,
and the coming Cambrian Explosion, Open Grid Forum 22, February 2008.

256. [RFIDWomble] P.Womble, A. Barzioov, J. Paschal, L. Hopper, A. Music, T.
Morgan, R. Moore, D. Pinson, F. Schultz, M. Maston and R. Kowalik, A tracking
technology for security personnel and first responders, in Proceedings of SPIE –
Volume 5778: Sensors, Command, Control, Communications and Intelligence (C3I)
Technologies for Homeland Security and Homeland Defense IV, pp.51-56, May
2005.

257. [RFIDNi] L. Ni, Y. Liu, Y. Lau and A. Patil, LANDMARC: Indoor Location
sensing using active RFID, in Proceedings of IEEE International Conferencec in
Pervasive Computing and Communications (PerCom), pp.407-415, March 2003.

258. [RFIDYin] J. Yin, Q. Yang and L. Ni, Learning Adaptive Temporal Radio Maps
for Signal Strength-based Location Estimation, in IEEE Transcations on Mobile
Computing, 2007.

259. [RFIDYin2] J. Yin, Q. Yang and L. Ni, Adaptive Temporatl Radio Maps for
Indoor Location Estimation, in Proceedings of IEEE International Conferencec on
Pervasive Computing and Communications (PerCom), pp.85-94, March 2005.

 149

9 Appendice

Appendix A - User Guide for Sensor Developers
A.1 Overall SSAL Architecture

Figure 9-1 Sensor Service Abstraction Layer

One of the major objectives of SCGMMS is to allow sensor developers to create and
connect their own sensors to SCGMMS so that it can be utilized by all applications based
on their UDOP requirements.

Sensor Service Abstraction Layer (SSAL) provides a common interface for all kinds of
sensors. Sensor developers add new sensors to SCGMMS by writing Sensor Client
Programs (SCP) which connects to SCGMMS through libraries in SSAL.

So basically sensor developers write SCPs which is the software bridge for connecting
SCGMMS with the actual sensors. A sensor developer should have programming
experience using J2SE in order to use SSAL effectively.

A.2 System Requirements
SSAL is written in Java. We recommend using Java SE 5 JDK for SCP development
using the SSAL.

Here is the recommended System Requirement for PC which runs application developed
through the Application API

• Pentium IV 3.0 GHz Processor or above
• 512 MB RAM

 150

• Sun Microsystems Java Runtime Environment 1.5.0 or above

A.3 Libraries
SSAL consists of a set of jar files. They include all class files necessary for
communication with SCGMMS. To use it as external library, make sure that the file is in
the CLASSPATH during compilation.

A.4 Detailed Descriptions
This section provides detailed descriptions on how to use different classes in SSAL to
construct a SCP for connecting the sensor and SCGMMS.

A.4.1 Sensor Definition
To make the sensor understandable by SCGMMS, the first thing is to define properties of
the sensor in a SensorProperty object.

Table 9-1 A sensor property object

SensorProperty
Field: Description
String sensorId A string which helps identifying the sensor. Different from the

unique system-generated id
String groupId A string which identifies the name of logical group which the

sensor belongs to
String sensorType A string which represents the type of sensor (e.g. “GPS”). A list

of predefined types are defined as static variables in class
PredefinedType (e.g. PredefinedType.VIDEO)

int sensorTypeId An integer which helps identifying the sensor type. Application
has to compare this together with field sensorType to uniquely
identify the type of a sensor. A set of predefined ids can be
found in class PredefinedType (e.g. GPS_ID)

String location A string which represents the geo-spatial location of the sensor
(e.g. United States, California). A list of predefined locations
can be found in class PredefinedLocation. All predefined
locations are associated with a latitude-longitude coordinate in
the world map

boolean historical Whether sensor data has time inter-dependence with one
another

int[] sensorControl An integer array which identifies all control messages
understood by a sensor. Each control message is represented by
an integer

String[]
controlDescription[]

An array which contains textual description of what each
control message represents. Shall align with sensorControl array

String
userDefinedPropXml

For any other properties of the sensor, they can be put here as
XML string. SSAL also allows sensor developers to create a
class which extends UserDefinedProperty. This class can be
serialized into xml string using
SensorClassificationUtil.userDefinedPropertyToXml()

 151

All these fields have to be defined as parameters to the constructor of SensorProperty.
Now we are going to see how to define the SensorProperty of a NXT Humanoid Lego
Robot, which has the following properties:

1. The robot comes with a software interface which connects the robot with a PC

through Bluetooth. User has to provide the Bluetooth address of the robot in order to
connect it with the interface

2. There are several types of NXT robots each has different physical form and perform
different actions according to received control messages. Humanoid is two-legged
model with 2 arms. It takes control messages to move forward and backward with
legs and swing its arms continuously

3. Each robot has 4 input ports which allow 4 different types of sensors to be connected,
including light, touch, sound, ultrasonic, compass, temperature and gyro sensors.

Defining Sensor Type
Firstly let define the String and integer which uniquely identifies the sensor type of NXT
robot.

String sensorType = “NXT ROBOT”;
int sensorTypeId = 0;

Defining User-defined Properties
As there are some properties of the NXT robot that are quite specific, they have to be
defined using the userDefinedPropXml String. In this subsection we are going to
demonstrate how to write a class which represents user-defined properties by extending
class UserDefinedProperty.

First of all, define a class which holds all constants needed for better code management.

import java.util.HashMap;

public class RobotConstants {
 // To add a support of sensor, please add it to t he end
 // Its description must be added to PREDEFINED_RO BOT_SENSORS as well
 public static final int SENSOR_INIT_IDX = 0;
 public static final int NONE = SENSOR_INIT_IDX;
 public static final int LIGHT = 1;
 public static final int TOUCH = 2;
 public static final int SOUND = 3;
 public static final int ULTRASONIC = 4;
 public static final int COMPASS = 5;
 public static final int TEMPERATURE = 6;
 public static final int GYRO = 7;

 // To add a support of robot type, please add it to the end
 // and change TYPE_END_IDX
 // Its description must be added to PREDEFINED_RO BOTS as well
 public static final int TYPE_INIT_IDX = 100;
 public static final int HUMANOID = TYPE_INIT_IDX;
 public static final int TRIBOT = 101;

 152

 public static final String[] PREDEFINED_ROBOT_SEN SORS = new
String[]{"None", "Light", "Touch", "Sound", "Ultras onic", "Compass",
"Temperature", "Gyro"};
 public static final HashMap ROBOT_SENSOR_2_ID = n ew HashMap();
 static {
 for(int i = 0; i < PREDEFINED_ROBOT_SENSORS.le ngth; i++) {
 ROBOT_SENSOR_2_ID.put(PREDEFINED_ROBOT_SENSOR S[i],
SENSOR_INIT_IDX + i);
 }
 }

 public static final String[] PREDEFINED_ROBOTS = new
String[]{"Humanoid", "Tribot"};
 public static final HashMap ROBOT_TYPE_2_ID = new HashMap();
 static {
 for(int i = 0; i < PREDEFINED_ROBOTS.length; i ++) {
 ROBOT_TYPE_2_ID.put(PREDEFINED_ROBOTS[i], TYP E_INIT_IDX + i);
 }
 }
}

The next step is to define a class which extends UserDefinedProperty which holds
specific details of the robot defined by constants in RobotConstants.

import
com.anabas.sensorgrid.classification.userdefinedpro p.UserDefinedPropert
y;

public class RobotUserDefinedProperty extends UserD efinedProperty {

 // Bluetooth address for connecting to physical r obot
 private String btAddress;

 // the type of NXT robot, e.g. Humanoid, Tribot
 private int robotType;

 // type of sensors connected to the ports
 private int[] ports;

 public RobotUserDefinedProperty(String btAddress, int robotType, int
port1, int port2, int port3, int port4) {
 this.btAddress = btAddress;
 this.robotType = robotType;
 this.ports = new int[4];
 this.ports[0] = port1;
 this.ports[1] = port2;
 this.ports[2] = port3;
 this.ports[3] = port4;
 }

 public String getBtAddress() {
 return btAddress;
 }

 public int getRobotType() {

 153

 return robotType;
 }

 public int[] getPorts() {
 return ports;
 }
}

Defining Sensor Control
NXT Humanoid robot takes 5 different controls messages for leg and arm movements.
We define a class which contains an integer array for holding integer value of control
messages and a String array for description of the control messages. They will be passed
to SensorProperty as parameters during construction.

public interface NXTHumanoidControl {
 public static final int MOVE_FORWARD = 0;
 public static final int MOVE_BACKWARD = 1;
 public static final int STOP_MOVING = 2;
 public static final int MOVE_ARM = 3;
 public static final int STOP_ARM = 4;

 public static final int[] control = new int[]{
 MOVE_FORWARD,
 MOVE_BACKWARD,
 STOP_MOVING,
 MOVE_ARM,
 STOP_ARM};

 public static final String MOVE_FORWARD_DESC = "M ove Forward";
 public static final String MOVE_BACKWARD_DESC = " Move Backward";
 public static final String STOP_MOVING_DESC = "St op Moving";
 public static final String MOVE_ARM_DESC = "Move Arm";
 public static final String STOP_ARM_DESC = "Stop Arm";

 public static final String[] controlDesc = new St ring[]{
 MOVE_FORWARD_DESC,
 MOVE_BACKWARD_DESC,
 STOP_MOVING_DESC,
 MOVE_ARM_DESC,
 STOP_ARM_DESC};
}

Defining SensorData
Different type of sensor gives output with different characteristics and format. To allow
applications decoding data from different sensors effectively, each type of sensor are
required to have a class extending
com.anabas.sensorgrid.classification.senordata.Sens orData
which defines the properties of data the sensor gives.

Here are classes for some of the NXT robot sensors.

NXTSensorData
// all NXT sensor data class extends this class

 154

public abstract class NXTSensorData extends SensorD ata{

 public NXTSensorData()
 {

 }

 public NXTSensorData(long timestamp)
 {
 super(timestamp);
 }
}

NXTCompassData
// data class for compass sensor
public class NXTCompassData extends NXTSensorData{

 // degree of compass
 private int data = 0;

 public NXTCompassData()
 {

 }

 public NXTCompassData(long timestamp, int data)
 {
 super(timestamp);
 this.data = data;
 }

 public int getData()
 {
 return data;
 }
}

NXTTemperatureData
// data class for temperature sensors
public class NXTTemperatureData extends NXTSensorDa ta {

 // temperature in degree celcius
 private float data = 0.0f;

 public NXTTemperatureData()
 {

 }

 public NXTTemperatureData(long timestamp, float d ata) {
 super(timestamp);
 this.data = data;
 }

 public float getData() {
 return data;

 155

 }
}

NXTRobotData
import java.util.Vector;

// this class holds data of all robot sensors as a single entity
public class NXTRobotData extends SensorData{

 private Vector<NXTSensorData> sensorDataList = ne w
Vector<NXTSensorData>();

 public NXTRobotData()
 {

 }

 public NXTRobotData(long timestamp)
 {
 super(timestamp);
 }

 public void addSensorData(NXTSensorData data)
 {
 sensorDataList.add(data);
 }

 public Vector<NXTSensorData> getSensorDataList()
 {
 return sensorDataList;
 }
}

Putting Everything to SensorProperty
Now we have enough definitions to create a SensorProperty object for NXT Humanoid
robot. Suppose we want to deploy the robot with the following details:

1. sensorId = “Humanoid”
2. groupId = “demo”
3. sensorType = “NXT ROBOT”
4. sensorTypeId = 0
5. location = “US”
6. historical = true
7. Bluetooth address = 00165302ea7c
8. Robot Type = “Humanoid”
9. Robot attached with touch, sound, light and ultrasonic sensors

The following code should create a SensorProperty object with these details:

RobotUserDefinedProperty robotProperty = new RobotU serDefinedProperty(
 "00165302ea7c",
 RobotConstants.HUMANOID,
 RobotConstants.TOUCH,

 156

 RobotConstants.SOUND,
 RobotConstants.LIGHT,
 RobotConstants.ULTRASONIC
);

SensorProperty property = new SensorProperty(
 "Humanoid",
 "demo",
 "NXT ROBOT",
 0,
 "US",
 true,
 NXTHumanoidControl.control,
 NXTHumanoidControl.controlDesc,
 robotProperty
);

A.4.2 Start Connection
To deploy a sensor, the corresponding SCP has to instantiate a SensorAdapter object
which notifies SCGMMS for its presence and data publishing. The constructor of
SensorAdapter takes three parameters:

Table 9-2 A sensor adapter objecct

SensorAdapter
Parameter: Description
SensorPolicy Defines the policy of the sensor. It is contains a

SensorProperty object (described in the previous
subsection) which actually defines all sensor properties

SensorGridControlListener An interface for listening to control messages from
applications

SensorAdapterListener An interface for listening to application specific events,
such as connection loss

To make connection with SCGMMS , the SCP has to create a Java class which
implements the SensorGridControlListener and
SensorAdapterListener interface. Details on their usage will be discussed in later
subsections.

To initiate the communication between SCP and SCGMMS, creates a SensorAdapter
object like the following sample code:

public class RobotClient implements SensorGridContr olListener,
SensorAdapterListener {

 SensorAdapter m_sensorAdapter;

 public void RobotClient(SensorProperty robotPrope rty)
 {
 // suppose robotProperty is already defined
 SensorPolicy sPolicy = new SensorPolicy(robotPr operty)

 157

 //Start connection
 m_sensorAdapter = new SensorAdapter(sPolicy, th is, this);
 }
}

public void handleSensorControl(int ctrl) {}

public void handleSensorControl(int ctrl, Serializa ble[] parameters) {}

public void handleSensorStopRequest() {}

public void handleSensorConnectionLoss() {}

A.4.3 Publish Data
SCP is responsible for collecting data from the sensor, and then publishes it through
Sensor Adapter. Sensor Adapter in turn forwards the data to SCGMMS and finally to all
applications that need the sensor according to their UDOP requirements.

It is SCP’s responsibility to read raw data from the sensor and serialize it into any class
which extends SensorData so that they can be interpreted by SCGMMS. The serialized
data can then be published through SensorAdapter, which is demonstrated by following
sample code:

// a class extending SensorData defined by sensor d eveloper
CustomData customData;

/* some code to read raw data from sensor, and put it into customData
 * ...
 * end
 */

// publish the data
m_sensorAdapter.publishData(customData);

A.4.4 Receive Control Messages
To receive control messages from applications, SCP should contain a class which
implements SensorGridControlListener interface. Two callback functions will be invoked
automatically upon arrival of control messages.

For control messages without parameters, the following callback function is used:

public void handleSensorControl(int ctrl) {
 // some actions to handle control messages
}

Sometimes control messages can be associated with parameters. In this case the
following callback function is used:

public void handleSensorControl(int ctrl, Serializa ble[] parameters) {}

 158

The type of control message received depends on how they are sent from applications. It
is a good idea to define these messages in common libraries which will be used by both
sensor and application developers.

A.4.5 Listen to Program Specific Instructions
Sometimes the user may want to perform some actions remotely on the SCP, such as
pausing or terminating the SCP. SCP listens for these actions through the
SensorAdapterListener interface. Two callback functions will be invoked upon arrival of
these events:

This callback function allows applications to stop the SCP
public void handleSensorStopRequest() {
 // close the SCP. Release resources
}

public void handleSensorConnectionLoss() {
 // this sensor is not managed by SCGMMS anymore o f unexpected
disconnection. Close the SCP and release resources
}

A.5 Sample Program
This section shows a sample program which reads data from a NXT Lego Robot and uses
SSAL to connect the device with SCGMMS.

import java.io.*;

import cgl.hpsearch.core.policies.SensorPolicy;

import com.anabas.sensorgrid.sensor.SensorGridContr olListener;
import com.anabas.sensorgrid.classification.SensorP roperty;
import com.anabas.sensorgrid.classification.predefi ned.PredefinedType;
import
com.anabas.sensorgrid.classification.predefined.rob ot.RobotUserDefinedP
roperty;
import
com.anabas.sensorgrid.classification.predefined.rob ot.RobotConstants;
import com.anabas.sensorgrid.classification.sensord ata.NXTSensorData;
import com.anabas.sensorgrid.classification.sensord ata.NXTRobotData;

import com.anabas.sensor.client.WatchDog;
import com.anabas.sensor.sensoradapter.SensorAdapte r;
import com.anabas.sensor.sensoradapter.SensorAdapte rListener;

public class RobotClient implements SensorGridContr olListener,
SensorAdapterListener {

 private SensorAdapter m_sensorAdapter;

 private SensorPolicy m_sensorPolicy;

 private Robot robot;
 private RobotDataGenerator dataGenerator;

 159

 private boolean isVirtual;

 private WatchDog watchDog;

 public RobotClient(SensorPolicy sPolicy) {
 this.m_sensorPolicy = sPolicy;

 //Start connection
 m_sensorAdapter = new SensorAdapter(sPolicy, th is, this);

 RobotUserDefinedProperty userDefinedProp =
(RobotUserDefinedProperty)m_sensorPolicy.getSensorP roperty().getUserDef
inedProp();
 String btAddress = userDefinedProp.getBtAddress ();
 int robotType = userDefinedProp.getRobotType();
 int[] robotSensors = userDefinedProp.getPorts() ;

 this.isVirtual = btAddress.equalsIgnoreCase ("Virtual");

 if(!isVirtual) {
 // change icommand.properties
 ICommandPropertyManager.changeFile(btAd dress);
 }

 try {
 robot = new Robot(isVirtual, robotType, r obotSensors);
 } catch (RuntimeException e) {
 close();
 }
 dataGenerator = new RobotDataGenerator();
 dataGenerator.start();

 watchDog = new WatchDog(60000) {

 public void timeoutAction() {
 close();
 }
 };

 watchDog.start();

 }

 private class RobotDataGenerator extends Thread {
 boolean isDestroyed = false;
 private String[] fakeLatLon;

 public void run() {
 while(!isDestroyed) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 // ignore
 }

 robot.keepAlive();

 160

 NXTSensorData[] sensorData = robot.sensorDa ta();
 NXTRobotData robotData = new
NXTRobotData(System.currentTimeMillis());
 for(int i = 0; i < sensorData.length; i++) {
 robotData.addSensorData(sensorData[i]);
 }
 m_sensorAdapter.publishData(robotData);
 watchDog.refresh();
 }
 }

 public void destroy() {
 isDestroyed = true;
 }
 }

 public void close() {
 if(dataGenerator != null) {
 dataGenerator.destroy();
 dataGenerator = null;
 }

 if (robot != null) {
 robot.stopConnection();
 robot = null;
 }

 if(m_sensorAdapter != null) {
 m_sensorAdapter.close();
 m_sensorAdapter = null;
 }

 if(watchDog != null) {
 watchDog.destroy();
 watchDog = null;
 }
 }

 public void handleSensorControl(int ctrl) {
 robot.handleSensorControl(ctrl);
 }

 public void handleSensorControl(int ctrl, Seriali zable[] parameters){}

 public void handleSensorStopRequest() {
 close();
 }

 public void handleSensorConnectionLoss() {
 close();
 }

 public static void main(String[] args) {
 RobotClient myRobotClient = null;
 String btAddress;
 int robotType;

 161

 int[] ports = new int[4];

 if(args.length != 9) {
 System.out.println("Usage: RobotClient <senso rId> <groupId>
<location> <btAddress> <robotType> <port1> <port2> <port3> <port4>");
 System.exit(-1);
 }

 try {
 btAddress = args[3];
 robotType = Integer.valueOf(args[4]);
 ports[0] = Integer.valueOf(args[5]);
 ports[1] = Integer.valueOf(args[6]);
 ports[2] = Integer.valueOf(args[7]);
 ports[3] = Integer.valueOf(args[8]);

 if(robotType != RobotConstants.HUMANOID && r obotType !=
RobotConstants.TRIBOT) {
 System.out.println("Robot type is not suppo rted!");
 System.exit(-1);
 }

 for(int i = 0; i < ports.length; i++) {
 if(ports[i] != RobotConstants.NONE &&
 ports[i] != RobotConstants.LIGHT &&
 ports[i] != RobotConstants.TOUCH &&
 ports[i] != RobotConstants.SOUND &&
 ports[i] != RobotConstants.ULTRASONIC &&
 ports[i] != RobotConstants.COMPASS &&
 ports[i] != RobotConstants.TEMPERATURE &&
 ports[i] != RobotConstants.GYRO) {
 System.out.println("Robot sensor type is not supported!");
 System.exit(-1);
 }
 }
 SensorProperty sProp =
PredefinedType.getRobotSensorProperty(args[0], args [1], args[2],
btAddress, robotType, ports[0], ports[1], ports[2], ports[3]);
 SensorPolicy sPolicy = new SensorPolicy(sProp);
 myRobotClient = new RobotClient(sPolicy);

 while(true) {
 try {
 Thread.sleep(60000);
 } catch (InterruptedException e) {
 // ignore
 }
 }
 } catch(NumberFormatException e) {
 System.out.println("Robot type and all ports must be integer!");
 System.exit(-1);
 }
 }
}

A.6 Deployment

 162

The current implementation requires sensor developers to place the SCP inside Grid
Builder package. Since Grid Builder runs on Windows, your SCP should also run on
Windows. Please follow the instructions below to package your SCP.

1. Package you SCP into a single Jar file using some Java packaging tools such as

Apache Ant.
2. Get the Grid Builder package and extract into a location which does not have any

space characters in its full path (e.g. C:\GBPackage). From now on we use
<installation directory> to represent this path

Figure 9-2 Screenshot of Grid Builder deployment

3. In the extracted package, put the SCP’s jar file to a directory (e.g. <installation
directory>\GridBuilder\scp\). Suppose your SCP’s jar file is named
“CustomSensor.jar”, you file should be placed here:

Figure 9-3 Screenshot of Sensor Client Program (SCP) extration

 163

4. Go to <installation directory>\GridBuilder\bin. Create a .bat file with the following
format. Remember to replace the name of main class with the main class of your SCP.

@echo off

rem USED To start Broker Service Adapter for creati ng and managing
Brokers
rem Usage:
rem runBrokerServiceAdapter --uuid=<UUID> [--resour ceGroup=<GROUP>]

set cp=
CALL setEnv.bat

for %%i in ("%HPSEARCH_HOME%\lib\sensor*.jar") do call cpappend.bat
%%i
set CP=%CP%;"%HPSEARCH_HOME%\scp\CustomSensor.jar"

set LIBPATH=%HPSEARCH_HOME%\lib\sensor\native
set JAVA_LIB=-Djava.library.path=%LIBPATH%

java "%JAVA_LIB%" -classpath %CP% customsensor.Robo tClient

5. In <installation directory>\GridBuilder\conf\mgmtSystem.conf, setup the NB address
of where the SCGMMS server is located. Here is the section in the file where the
address is located:

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=192.168.1.51
ServiceAdapter.RegistryUDPPort_1=65050

6. Deploy the sensor by executing the .bat file

The directory
of your SCP

Main class of
your SCP

NB address
of SCGMMS
server

 164

Appendix B - User Guide for Sensor-Centric Applicat ion
Developers

Below shows a sample program which uses the Application API:

Application API allows any third party application to connect and utilize functions
provided by SCGMMS. An application can do the following through Application API:

1. Obtains the policies and data of all sensors which are currently up and running
2. Selectively subscribes to sensors with their policies fulfilling filtering criteria defined

by the application
3. Sends control messages to sensors
4. Dynamically notified for new sensors which fulfill the filtering criteria, and for

sensors which have been disconnected

Figure 9-4 Overview of Application API

 165

B.1 System Requirements
The Application API is written in Java. We recommend using Java SE 5 JDK for
application development using the Application API.

Here is the recommended System Requirement for PC which runs application developed
through the Application API

• Pentium IV 3.0 GHz Processor or above
• 512 MB RAM
• Sun Microsystems Java Runtime Environment 1.5.0 or above

B.2 Libraries
The Application API has a single library file - SensorGridBroker.jar. It includes all class
files necessary for communication with SCGMMS. To use it as external library, make
sure that the file is in the CLASSPATH during compilation.

B.3 Detailed Descriptions
This section provides detailed descriptions on how to use different classes in the API to
retrieve information from SCGMMS.

B.3.1 Make Connection
First of all, create a Java class which implements the
SensorGridConnectionLossListener and ClientGridChangeListener interface for
detecting connection loss with SCGMMS and receiving sensor change notifications (will
be discussed in next subsection).

To initiate the communication between your application and SCGMMS, creates an
ClientGridBroker object, providing the host and port of a SCGMMS server as parameters.
(For instructions on setting up a SCGMMS server please refer to Appendix C -

 166

User Guide for System Administrator). Below shows some sample code to initiate
connection with a SCGMMS server.

class SampleApplication implements SensorGridConnec tionLossListener,
ClientGridChangeListener
{
 // broker for communication with SCGMMS
 ClientGridBroker m_gridBroker;

 public SampleApplication()
 {
 // host and port of SCGMMS
 String sensorGridHost = “64.151.140.118”;
 String sensorGridPort = “3035”;

 // instantiates the broker

m_gridBroker = new ClientGridBroker(sensorGridHost, sensorGridPort,
this, this);
 }

 public void handleSensorGridConnectionLoss()
 {
 // some code to handle connection loss, e.g. re connection
 }

}

B.3.2 Sensor Change Notification
After the application is successfully connected to SCGMMS, it will be notified for a list
of sensors available through the handleClientInit() callback function in
ClientGridChangeListener interface. Each sensor can be identified by a unique
system-generated String id and associated with a SensorGridResource object.
This object contains all the properties of the sensor and will be discussed in detail in the
next subsection.

After getting the initial list of sensors, each subsequent change will be notified through
the handleClientChange() callback function in
ClientGridChangeListener interface. A parameterized HashMap<String,
SensorGridResource> is passed as parameter of the callback function, which maps
sensor id to resource. There are several reasons which cause changes in sensor properties,
including:

1. new sensors are deployed
2. some sensors are disconnected (for cause or accidentally)
3. application changes the filtering criteria

The third reason will be discussed later in this section.

Below shows sample code of handleClientInit() and
handleClientChange() callback functions.

 167

public void handleClientInit(HashMap<String, Sensor GridResource> sinfo)
{

 // create an iterator from sinfo
 Iterator<String> it = sinfo.keySet().iterator() ;

 while (it.hasNext()) {
 // unique system generated sensor id
 String sensorID = it.next();

 // sensor resource
 SensorGridResource resource = sinfo.get(senso rID);

 // get sensor policy
 SensorPolicy policy = (SensorPolicy) resource .getPolicy();
 };
}

public void handleClientChange(HashMap<String, Sens orGridResource>
sinfo) {

 // create an iterator from sinfo
 Iterator<String> it = sinfo.keySet().iterator();

 while (it.hasNext()) {
 // unique system generated sensor id
 String sensorID = it.next();

 // sensor resource
 SensorGridResource resource = sinfo.get(sensorI D);

 // online, offline status of sensor
 Short status = resource.getStatus();

 // sensor policy
 SensorPolicy policy = (SensorPolicy) resource.g etPolicy();

}

B.3.3 Process Sensor Policy
After getting the SensorGridResource of sensors from ClientGridChangeListener, the
application can access various properties of the sensor through this object.

Table 9-3 A sensor grid resource interface

SensorGridResource
Interface: Description
Policy getPolicy() Get a Policy object which describes the properties of the sensor
short getStatus() Get the online (represented by SensorStatus.ONLINE) and

offline (represented by SensorStatus.OFFLINE) status of the
sensor

 168

After getting Policy, the application should cast it to SensorPolicy using the SensorPolicy
interface as shown in Table 9-4.

Table 9-4 A sensor policy interface

SensorPolicy
Interface: Description
SensorProperty
getSensorProperty()

Get a SensorProperty object which describes the properties of
the sensor

A SensorProperty object contains metadata of a sensor, which can be extracted using the
SensorProperty interface depicted in Table 9-5.

 169

Table 9-5 A sensor property interface

SensorProperty
Interface: Description
String getSensorId() A string which helps identifying the sensor. Different from the

unique system-generated id
String getGroupId() A string which identifies the name of logical group which the

sensor belongs to
String getSensorType() A string which represents the type of sensor. A list of

predefined types are defined as static variables in class
PredefinedType (e.g. PredefinedType.VIDEO)

int getSensorTypeId() An integer which helps identifying the sensor type. Application
has to compare this together with field sensorType to uniquely
identify the type of a sensor

String getLocation() A string which represents the geo-spatial location of the sensor.
A list of predefined locations can be found in class
PredefinedLocation

boolean isHistorical() Whether sensor data has time inter-dependence with one
another

int[]
getSensorControl()

An integer array which identifies control messages understood
by a sensor

String[]
getControlDescription()

Textual description of control messages

UserDefinedProperty
getUserDefinedProp()

Sensor developers can create classes which extends
UserDefinedProperty and put sensor-specific properties inside
the class

B.3.4 Subscribe Sensor Data
After the application is aware of the presence of a sensor through
ClientGridChangeListener, it can subscribe or unsubscribe to the data stream of this
sensor. The application has to create a class which implements the
ClientGridDataListener interface and pass it to ClientGridBroker.subscribeSensorData()
with the data listener and sensor id as parameters. handleSensorData() will be invoked
whenever data arrives. Different sensor types have to define its only data class by
extending SensorData. This class should encapsulate the specific data structures for
different sensors.

Here is the sample code:

// subscribe to data of sensor123
DataMonitor dataMonitor = new DataMonitor(“sensor12 3”);
m_gridBroker.subscribeSensorData(“sensor123”, dataM onitor);

// unsubscribe to data of sensor123
m_gridBroker.unsubscribeSensorData(“sensor123”, dat aMonitor);

// data listener class

 170

private class DataMonitor extends Thread implements
ClientGridDataListener {
 boolean isDestroyed = false;
 private String id;
 private GenericSensorControl ctrl = new Generic SensorControl();

 public DataMonitor(String id) {
 this.id = id;
 }

 public void run() {
 while(!isDestroyed) {
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 // ignore
 }
 }
 }

 public void destroy() {
 isDestroyed = true;
 }

 public void handleSensorData(SensorData data) {
 if(data instanceof GpsData) {
 // data from GPS
 } else if(data instanceof RfidSensorStrength Data) {
 // data from RFID tag
 }
 }
 }
}

B.3.5 Filtering
An application does not always want information from all sensors. It is allowed to filter
away those sensors which do not match some criteria. The criteria are defined by a
SensorFilter object. A SensorFilter is composed of a set of properties defined in
SensorProperty connected with Boolean “and” or “or” operators. Given that a list of
sensor properties in a sensor filter are connected together with the “and” operator, only
sensors which have properties with exact match in string comparison with ALL the
properties defined in the filter should get through. Similarly sensors which have
properties with exact match in string comparison with ANY of the properties defined in a
sensor filter with sensor properties connected together with the “or” operator should get
through.

The list of “and” and “or” sensor properties are represented as a 2D string array in
SensorFilter. For example, if someone wants to get a list of SAID which have policy
((sensorType=GPS and location="Hong Kong") or (sensorType=RFID and
location="New York" and historical=true)), set the filter like this:

SensorFilter filter=new SensorFilter();
String[][] comp=new String[2][];

 171

comp[0]=new String[2];
comp[1]=new String[3];
comp[0][0]="sensorType=GPS";
comp[0][1]="location=Hong Kong";
comp[1][0]="sensorType=RFID";
comp[1][1]="location=New York";
comp[1][2]="historical=true";
filter.setOrComparison(comp);

After the SensorFilter object is created, send it to SCGMMS with the following sample
code:

m_gridBroker.setFilter(filter);

After SCGMMS receives the request, it examines the filter and checks it with the current
list of sensors for the application. It then notifies the application through
handleSensorChange() of ClientGridChangeListener by setting the properties of sensors
which do not fulfill the filtering criteria as offline and those fulfilling the criteria as
online.

B.3.6 Send Control
An application is able to send control to a particular sensor identified by its sensor id.
Each control message is just an integer and its meaning is defined in SensorProperty.
Here is the sample code for sending control message.

m_gridBroker.sendControl(“sensor123”, 1);

B.4 Sample Application

package com.anabas.meeting.test;

import java.util.*;
import java.io.*;

import com.anabas.sensorgrid.client.ClientGridBroke r;
import com.anabas.sensorgrid.client.ClientGridChang eListener;
import com.anabas.sensorgrid.client.ClientGridDataL istener;
import com.anabas.sensorgrid.client.ClientGridSenso rStatus;
//import com.anabas.sensorgrid.client.ClientGridRes ource;

import
com.anabas.sensorgrid.classification.sensorControl. GenericSensorControl;
import com.anabas.sensorgrid.classification.sensord ata.*;

import cgl.hpsearch.core.policies.SensorPolicy;
import com.anabas.sensorgrid.classification.SensorP roperty;

import com.anabas.sensorgrid.session.sharedlet.SGRe source;

import com.anabas.util.misc.LogManager;

 172

public class MeetingTest implements ClientGridChang eListener {
 ClientGridBroker m_broker;
 HashSet<String> m_onlineSensors;
 HashMap<String, DataMonitor> m_sensorID2Monitor;
 HashMap<String, SensorProperty> m_sensorID2Proper ty;
 Object m_lock = new Object();

 public MeetingTest(String hostname, String port) {
 m_broker = new ClientGridBroker(this, hostname, port);
 }

 public void handleSensorInit(HashMap<String, SGRe source>
sensorInitInfo) {
 synchronized(m_lock) {
 System.out.println("\n\n\nNumber of sensors: " +
sensorInitInfo.size() + "\n\n\n");

 m_onlineSensors = new HashSet<String>();
 m_sensorID2Monitor = new HashMap<String, Data Monitor>();
 m_sensorID2Property = new HashMap<String, Sen sorProperty>();

 Iterator<String> it = sensorInitInfo.keySet() .iterator();
 while(it.hasNext()) {
 String sensorID = it.next();
 m_onlineSensors.add(sensorID);

 SensorPolicy policy =
(SensorPolicy)sensorInitInfo.get(sensorID).getPolic y();

 if(policy == null) {
 System.out.println("\n\n\nPolicy is null! !!\n\n\n");
 } else {
 System.out.println("\n\n\nPolicy is not n ull!!!\n\n\n");
 }
 m_sensorID2Property.put(sensorID,
((SensorPolicy)sensorInitInfo.get(sensorID).getPoli cy()).getSensorPrope
rty());

 DataMonitor monitor = new DataMonitor(senso rID);
 monitor.start();

 m_sensorID2Monitor.put(sensorID, monitor) ;
 m_broker.subscribeSensorData(sensorID, moni tor);
 }
 }
 }

 public void handleSensorChange(HashMap<String, SG Resource>
sensorChangeInfo) {
 synchronized(m_lock) {
 Iterator<String> it = sensorChangeInfo.keySet ().iterator();

 while(it.hasNext()) {
 String sensorID = it.next();
 SGResource resource = sensorChangeInfo.get(sensorID);
 Short status = resource.getStatus();

 173

 if(status == ClientGridSensorStatus.ONLINE) {
 System.out.println("\n\n\nHERE!!!\n\n\n") ;

 m_onlineSensors.add(sensorID);
 SensorPolicy policy = (SensorPolicy)resou rce.getPolicy();

 if(policy == null) {
 System.out.println("\n\n\nPolicy is nul l!!!\n\n\n");
 } else {
 System.out.println("\n\n\nPolicy is not null!!!\n\n\n");
 }

 m_sensorID2Property.put(sensorID,
((SensorPolicy)resource.getPolicy()).getSensorPrope rty());

 DataMonitor monitor = new DataMonitor(sen sorID);
 monitor.start();

 m_sensorID2Monitor.put(sensorID, monitor);
 m_broker.subscribeSensorData(sensorID, mo nitor);
 } else {
 m_onlineSensors.remove(sensorID);
 m_sensorID2Property.remove(sensorID);

 DataMonitor monitor = m_sensorID2Monitor. remove(sensorID);
 m_broker.unsubscribeSensorData(sensorID, monitor);

 monitor.destroy();
 }
 }
 }
 }

 public static void main(String[] args) {
 if(args.length != 2) {
 System.out.println("Usage: java GPSManager <h ostname> <port>");
 System.exit(0);
 }

 MeetingTest test = new MeetingTest(args[0], arg s[1]);
 while (true) {
 try{
 Thread.sleep(10000);
 System.gc();
 } catch (java.lang.InterruptedException e){
 // ignore
 }
 }
 }

 private class DataMonitor extends Thread implemen ts
ClientGridDataListener {
 boolean isDestroyed = false;
 private String id;
 private GenericSensorControl ctrl = new Generic SensorControl();

 174

 public DataMonitor(String id) {
 this.id = id;
 }

 public void run() {
 while(!isDestroyed) {
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 // ignore
 }
 }
 }

 public void destroy() {
 isDestroyed = true;
 }

 public void handleSensorData(SensorData data) {
 if(data instanceof GpsData) {
 GpsData gpsData = (GpsData)data;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ gpsData.getLat() + ", " + gpsData.getLng() + ", timeStamp: " +
gpsData.getTimestamp() + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if(data instanceof RfidSensorStrength Data) {
 RfidSensorStrengthData rfidData = (RfidSens orStrengthData)data;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ rfidData.getSignalStrength() + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if(data instanceof NXTTouchData) {
 NXTTouchData robotData= (NXTTouchData)data;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ String.valueOf(robotData.getData()) + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if(data instanceof NXTSoundData) {
 NXTSoundData robotData = (NXTSoundData)data ;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ String.valueOf(robotData.getData()) + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if(data instanceof NXTUltrasonicData) {
 NXTUltrasonicData robotData = (NXTUltrasoni cData)data;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ String.valueOf(robotData.getData()) + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if(data instanceof NXTTemperatureData) {
 NXTTemperatureData robotData = (NXTTemperat ureData)data;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ String.valueOf(robotData.getData()) + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if(data instanceof NXTCompassData) {
 NXTCompassData robotData = (NXTCompassData) data;
 String output = "\n\n\nData received, id: " + id + ", data: "
+ String.valueOf(robotData.getData()) + "\n\n\n";
 LogManager.log("DataMonitor", output);
 } else if (data instanceof NXTLightData) {
 NXTLightData robotData = (NXTLightData)data ;

 175

 String output = "\n\n\nData received, id: " + id + ", data: "
+ String.valueOf(robotData.getData()) + "\n\n\n";
 LogManager.log("DataMonitor", output);
 }

 //m_broker.sendControl(id, ctrl);
 }
 }
}

 176

Appendix C - User Guide for System Administrator
In SCGMMS, a perpetual session server known as Sensor Grid (SG) has to be up and
running all the time to communicate with sensors, Grid Builder and applications. This
guide will show you how to setup a SG server.

C.1 System Requirements

Please make sure that all minimum are met in your operating environment before
installing and using the SG server. Not meeting all the minimum requirements may
cause undesired system behavior that includes inoperable system or affects or impairs
conferencing sessions.

C.1.1 SG Server Requirements

Recommended Server Requirements

• Fedora FC4
• Pentium IV 3.2 GHz processor or above
• 1 GB RAM
• 210 GB disk space
• Access to SMTP mail server

C.2 Server Installation Preparations

Before you start the installation process

(1) Ensure that your network configuration is setup properly.

(2) Ensure that the proper ports are open for installation, and

(3) Ensure that you have root privilege on the Linux server

C.2.1 Verifying Your Network Configuration

Here we need to verify certain network configuration is correct. Follow these simple
steps to ensure a successful installation.

Make sure that the "hostname" command works by typing

 > hostname -i

This command will report your computer's IP address if it is working properly. If it
reports nothing, 127.0.0.1, or some errors then you will need to add a hostname entry.

 177

Perform the following modification to /etc/hosts to ensure the network is configured for
proper operation.

To modify /etc/hosts, add the hostname and IP address of the installation machine. For
example, if your computer is called "elearningconferencing.me.com" and its IP address is
65.112.117.218, then you should add the line at the beginning of the /etc/hosts file:

 65.112.117.218 elearningconferencing.me.com

Please restart the server for the settings to take effect

C.2.2 Ensuring A Set of Open Ports

The SG server requires several ports to be open. We recommend you use a dedicated
machine. The following is a list of ports which have to be opened:

25050, 3035, 80, 5060, ALL UDP ports

C.2.3 Firewall Settings
To ensure that the above ports are exposed, you always have to check your firewall
settings. In Linux FC4 firewall rules are usually defined by iptables. If you are familiar
with firewall settings you may skip this section. Instructions below describe how to
disable the firewall in FC4.

(1) Check if any rules are defined in iptables by:
> iptables -L

(2) Change iptables configuration so that the firewall settings are saved on reboot.
You are recommend to backup this file before editing
> vi /etc/sysconfig/iptables-config

Find and change the following entries in the file:
IPTABLES_SAVE_ON_STOP="yes"
IPTABLES_SAVE_ON_RESTART="yes"
IPTABLES_SAVE_COUNTER="yes"

(3) Clear all rules of iptables
> iptables -F

C.2.4 Java Virtual Machine
If this is the first time installing SG on your Linux server, please make sure that a JVM is
installed. We recommend using JDK 1.5.x. Please follow the instructions below for
installing the JVM.

 178

(1) Download the JDK package from http://202.94.237.244/tools/jdk-1_5_0_06-
linux-i586-rpm.bin. For instance, our installation package is called jdk-
1_5_0_06-linux-i586-rpm.bin

(2) Change the file to executable mode, and install it

> chmod +x jdk-1_5_0_06-linux-i586-rpm.bin
> ./jdk-1_5_0_06-linux-i586-rpm.bin

(3) Add a soft link /usr/local/java to the JDK directory

> ln -s /usr/java/jdk1.5.0_06 /usr/local/java

(4) Open a file ~/.bashrc with VM and add a line export
PATH=/usr/local/java/bin:$PATH to the file

(5) You have to restart the terminal for the new PATH to take effect

 179

C.3 Server Installation

Obtain the installation package. It should be in jar format. Suppose the installation file is
named SGInstaller.jar. Follow these steps to install it on your server.

You need to have super user privilege to install this package.

(a) Unjar SGInstaller.jar into a temporary directory and run the following commands:

> /usr/local/java/bin/jar xvf SGInstaller.jar
> sh install.sh

(b) Enter the target installation directory. Suppose we want to install SG to

/opt/anabas/sensorgrid_demo

The package will be extracted and installed into the directory you have chosen as the
installation directory. From now on, we will refer to this directory as <SG HOME>.
Toward the end of the installation, you will be asked to configure the most important
parameters of the system.

(c) Please go to the next step if you cannot see this screen. If the hostname of your server
is not correct, the wizard will try to help you making it correct. However, it is your
responsibility to make sure that the IP address and hostname of your server is correct
before the installation. Please refer to the installation preparation section for details.

 180

(d) After a while we proceed to the port configuration section of the installation. To use

default ports just press the “enter” key every time a question is asked. We recommend
using the default ports. Otherwise, you have to make sure that the ports do not clash
with other applications.

 181

(e) Now we enter the server IP definition section. 3 sets of IP/hostname will be asked.
For the first two sets just enter the IP which will be exposed to all applications and
sensors, which should be same as the one get by hostname –i. For the third set, it is
the address of media server for VOIP module. For now, it doesn’t affect the SG
server.

(f) Please use “supplychain” here and ignore the last warning message

 182

(g) The installation is completed.

C.4 Server Execution

C.4.1 Starting the packages
After installation, the server will be started automatically by Cronjob.

To check the cronjob file, open the crontab editor with the following command:
> crontab –e

This table is responsible for starting our server processes at a predefined interval. This
table shows 3 entries. The first line means that system will keep checking if SG is
running on the server. The second line means that log files will be cleaned and archived
every day at 13:00. The third line means that the server will be rebooted at 15:00 every
day.

To stop the server, type the following command to kill all processes of the server:
> killall java

Unless you have commented out the entries in cronjob, the server will start itself
automatically for every 5 minutes.

C.4.2 Check the status of server
You can check whether the server is running properly by the following command:
> jps

 183

If everything is fine, you should be able to see the following processes running:

Now the installation is completed. Sensors, applications and Grid Builder can connect to
this server from now on.

 184

Appendix D - User Guide for Sensor Administrator

The role of a sensor administrator is to manage sensor definition and deployment using
Grid Builder (GB). Before we start, a brief introduction to GB concept is given below:

D.1 Domain Management
To allow a flexible way to manage sensors, GB administration is arranged hierarchically
into Domains. Each domain should run on a single PC which manages sensors which are
closely related. In each domain, each module is run as a separate process which
communicates with one another through NaradaBrokering. Different module has different
responsibility. Fork Daemon is responsible for starting up different modules as processes.
Bootstrap Service monitors the health of a domain and the whole domain hierarchy.
Messaging Node is responsible for intra and inter-domain communications using
NaradaBrokering.

Each domain is connected to at most one parent domain and any number of child
domains. The hierarchy is maintained by inter-communication between the domains
using heartbeat messages. The role of a domain is different according to their relative
position in the hierarchy. There are three types of domains:

Root Domain
For each domain hierarchy there exists a single Root Domain. The Root Domain is
responsible for checking whether a Bootstrap Service is running in each directly
connected child domain. If not, it notifies the Fork Daemon of that particular domain to
start Bootstrap Service by sending a fork message. This process is done recursively for
each domain along the hierarchy until the Leaf Domains are reached. Root Domain is the
starting point of building up the domain hierarchy. No sensors can be deployed in Root
Domain.

Sub Domain
A domain which is neither a Root Domain nor a Leaf Domain is a Sub Domain. Each Sub
Domain is responsible for checking the Bootstrap Service of its child domains. No
sensors can be deployed in Sub Domains.

Leaf Domain
A Leaf Domain does not have any children. Sensors can be deployed from any PC which
is accessible from one of the Leaf Domains. The current implementation does not allow
deployment of sensors on non-leaf domains.

 185

Figure 9-5 GB Domain Management

Figure 9-5 shows a GB domain hierarchy. Each domain consists of several processes.
Inter-process communication is done by messaging passing. Through message passing
domains and sensors are logically linked together with the use of heartbeat message and
in memory hash tables.

D.2 Installation Preparation

D.2.1 System Requirement

Here is the recommend System Requirement for PC of a domain

• Pentium IV 3.0 GHz Processor or above

 186

• 512 MB RAM
• Internet Explorer 6.0+ (requires all Microsoft recommended IE critical patches
• Windows XP (requires all Microsoft recommended OS critical patches)
• Sun Microsystems Java Runtime Environment 1.5.0 or above

D.2.2 Network Requirement

The current implementation uses UDP protocol for inter-domain communication,
including heartbeat and fork messages. To ensure proper functioning of GB, make sure
that you fulfill the following network requirements:

• All PCs in the domain hierarchy should be accessible to one another
• At least 4 UDP ports should be open for access from other domains. The port number

should match you configurations (see section D.4 for details)
• Port 3035 opened for sensor client programs
• Port 25050 opened for NB communications

D.3 Installation Package

Please get the required zip package and extract it to a location. The full path of the
extracted location should NOT contain any space characters (e.g. c:\GBPackage). The
installation package comes with 4 modules:

Grid Builder
This is the main package for sensor management.

NaradaBrokering-1.3.2
This package is a NaradaBrokering client used by sensor client programs to communicate
with Sensor Grid. It has to be started manually on PCs where sensor client programs are
launched.

NaradaBrokering-3.2.0
This package is a NaradaBrokering client used by GB’s Messaging Node for
communication with sensors and Sensor Grid.

WS-Context
This package contains all elements needed for WS-Context support such as AXIS server
and MySQL server.

 187

Figure 9-6 GB Package

D.4 Grid Builder Management Console

The Grid Builder Management Console (GBMC) provides a graphical user interface for
sensor deployment. From any PC with GB installed, you can view sensors deployed in
domains connected by a particular NB network through GBMC.

On the left hand side all domains detected in the NB network are shown with sensors
deployed within the domains. On the right hand side various information of sensor is
shown, including:

1. Current status – REGISTERED, MANAGED or UNREACHEABLE
2. UUID – unique ID assigned to the sensor
3. Policies – the property of the sensor, such as sensor type, location and user

defined properties

Please refer to section D.6 for sample usage.

 188

Figure 9-7 GB Management Console

D.5 Configuration Files
For each domain there is a configuration file which defines various parameters of a
domain. The following configuration files are present which serve different purposes:

D.5.1 mgmtSystem.conf

The full path of this file is GridBuilder/conf/mgmtSystem.conf. This file contains:

1. The unique identifier of the domain
2. The name of the domain
3. Locator of Fork Daemon, Bootstrap Service and Registry of the domain
4. Number of child domains and their corresponding Fork Daemon locators
5. Locator of Messaging Node used for deploying sensors
6. Locator of Messaging Node which the User Management Console connects to
7. Locator of Messaging Node which the Bootstrap UI connects to

The name of a domain follows the domain naming syntax described below:

• Each domain in a hierarchy should have a unique name
• For Root Domain we tag it with keyword ROOT followed by a hyphen and then

the word bootstrap.
• For subsequent domains, we put an underscore after the domain name E.g.

ROOT/CGL becomes ROOT_CGL-bootstrap
ROOT/UK/CARDIFF becomes ROOT_UK_CARDIFF-bootstrap etc.

 189

Here are sample mgmtSystem.conf files for two Domains namely HK1 and HK2. HK1 is
the ROOT domain.

Configuration file of Domain HK1

Config Entries for Fork Daemon

This string should be unique for different netwo rks
It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-HK1

Config Entries for Root Bootstrap Node

The domain of the bootstrap program
ROOT-bootstrap.Level=/
ROOT-bootstrap.ForkProcessLocator=topic://FORKDAEMO N/ATGLOBAL-
HK1/:65535

Number of registered subDomains
ROOT-bootstrap.NumOfRegisteredSubDomains=2

Domain URI of subDomains and their locations
ROOT-bootstrap.RegisteredSubDomain_1=/HK1
ROOT-
bootstrap.RegisteredSubDomainForkProcess_1=topic:// FORKDAEMON/ATGLOBAL-
HK1/:65535
ROOT-bootstrap.RegisteredSubDomain_2=/HK2
ROOT-
bootstrap.RegisteredSubDomainForkProcess_2=topic:// FORKDAEMON/ATGLOBAL-
HK2/:65535

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT-bootstrap.NumberOfForkDaemons=0

Locaton of Messaging Node
ROOT-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT-bootstrap.MessagingNode_1=127.0.0.1

Config Entries for HK1 - Bootstrap Node

The domain of the bootstrap program
ROOT_HK1-bootstrap.Level=/HK1

Number of registered subDomains
ROOT_HK1-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations

Registry Locator

A unique string for
ForkDaemon. It is
used as NB topic

Locator of ROOT’s
ForkDaemon.

Altogether 2 sub-
domains

Locators of sub-
domains’
ForkDaemons

Name of the
domain. Notice
how the name
appears at the start
of the line

 190

ROOT_HK1-bootstrap.RegistryForkDaemon=topic://FORKD AEMON/ATGLOBAL-
HK1/:65535
ROOT_HK1-bootstrap.RegistryPersistentStore=wscontex t:HK1

Locaton of Messaging Node
ROOT_HK1-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_HK1-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT_HK1-bootstrap.NumberOfForkDaemons=1
ROOT_HK1-bootstrap.ForkDaemon_1=topic://FORKDAEMON/ ATGLOBAL-HK1/:65535

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/HK1

Config Entries for User Console

user.MessagingNode=127.0.0.1
user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

Configuration file of Domain HK2

Config Entries for Fork Daemon

This string should be unique for different netwo rks
It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-HK2

Config Entries for HK2 - Bootstrap Node

The domain of the bootstrap program
ROOT_HK2-bootstrap.Level=/HK2

Number of registered subDomains
ROOT_HK2-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations

Registry Locator

If this line is present,
WS-Context is used as
persistent storage.
Otherwise everything is
just saved in memory

Sensors will be
deployed to this
domain

Connect to local
Messaging Node

A unique string for
ForkDaemon. It is
used as NB topic

Name of the
domain

 191

ROOT_HK2-bootstrap.RegistryForkDaemon=topic://FORKD AEMON/ATGLOBAL-
HK2/:65535
ROOT_HK2-bootstrap.RegistryPersistentStore=wscontex t:HK2

Locaton of Messaging Node
ROOT_HK2-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_HK2-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT_HK2-bootstrap.NumberOfForkDaemons=1
ROOT_HK2-bootstrap.ForkDaemon_1=topic://FORKDAEMON/ ATGLOBAL-HK2/:65535

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/HK2

Config Entries for User Console

user.MessagingNode=127.0.0.1
user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

D.5.2 defaultMessagingNode.conf

The full path of this file is GridBuilder/conf/defaultMessagingNode.conf. This
configuration file is used to define various properties of the Messaging Node. The
Messaging Node determines which NB network the domain connects to. You SHOULD
connect the domain to a messaging node which connects directly or indirectly to the
Sensor Grid server.

Here is a sample file.

Prioritized Protocols

PRIORITIZED_PROTOCOL_LIST.prioritizedProtocolList=n iotcp,tcp,udp,http,h
ttps,ssl

Default Messaging Node properties

 192

DEFAULT_MESSAGING_NODE.NIOTCPBrokerPort=25050
DEFAULT_MESSAGING_NODE.TCPBrokerPort=25060
DEFAULT_MESSAGING_NODE.UDPBrokerPort=25070
DEFAULT_MESSAGING_NODE.HTTPBrokerPort=0
DEFAULT_MESSAGING_NODE.HTTPSBrokerPort=0
DEFAULT_MESSAGING_NODE.SSLBrokerPort=0
DEFAULT_MESSAGING_NODE.PTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupHost=224.224.2 24.224
DEFAULT_MESSAGING_NODE.PoolTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.PTCPStreamNumber=5
DEFAULT_MESSAGING_NODE.AssignedAddress=false
DEFAULT_MESSAGING_NODE.NodeAddress=1,1,1,1
DEFAULT_MESSAGING_NODE.VirtualBrokerNetwork=network -CGL-1
DEFAULT_MESSAGING_NODE.SupportRTP=no
DEFAULT_MESSAGING_NODE.BDNList=
DEFAULT_MESSAGING_NODE.ConcurrentConnectionLimit=30 00
DEFAULT_MESSAGING_NODE.Discriminator=156.56.*
DEFAULT_MESSAGING_NODE.AboutThisBroker=Default Mess aging Node
DEFAULT_MESSAGING_NODE.MAXBrokerDiscoRequests=1000
DEFAULT_MESSAGING_NODE.DiscoveryResponsePolicy=cgl. narada.discovery.bro
ker.DefaultBrokerDiscoveryRequestResponsePolicy
DEFAULT_MESSAGING_NODE.BrokerKeyStore=keystore/NBSe curityTest.keys

These are required only if AssignedAddress is fal se
DEFAULT_MESSAGING_NODE.ConnectAddress=202.94.237.24 2
DEFAULT_MESSAGING_NODE.ConnectTransport=niotcp
DEFAULT_MESSAGING_NODE.ConnectPort=25050

D.5.3 setEnv.bat

The full path of this file is GridBuilder/bin/setEnv.bat. This configuration files setups
environment variables that will be used by Grid Builder. You would only have to modify
the path of package NaradaBrokering-3.2.0.

Here is a sample file:

@echo off

REM NOTES:
REM --- ---------------
REM March 24, 2005
REM Modified to put saaj.jar before other AXiS jars . because without
REM this, the system gives a java.lang.Incompatible ClassChangeError
REM Ref: http://buzz.bowstreet.com/snitz/topic.asp? TOPIC_ID=500

REM Sets the environment variables. This must be ca lled from all
run*.bat
REM files to set the proper environment
REM --- ---------------

REM To enable Asynchronous WSContext service set th is to -async
REM For Sync version, set to blank
REM --- ---------------

Messaging Node
connects to this
address

 193

set HPSEARCH_HOME=..\
set NB_HOME=..\..\NaradaBrokering-3.2.0

REM --- ---------------
REM Set the classpath
REM Please make path changes 1IF and AS required

REM NOTE: For the "FOR ..." command to work, The cm d.exe must
REM be started using the /vk parameter, else use the cpappend below
REM FOR %%j IN (%HPSEARCH_HOME%\lib*.jar) do set c p=!cp!;%%j
REM --- ---------------

set cp=%HPSEARCH_HOME%\lib\saaj.jar

FOR %%i IN ("%HPSEARCH_HOME%\lib*.jar") DO CALL cp append.bat %%i
FOR %%i IN ("%NB_HOME%\lib*.jar") DO CALL cpappend .bat %%i

set path=%path%;%NB_HOME%\dll

D.6 Step by Step Domain Deployment Guide

In this section you are going to walkthrough the deployment steps for setting up 3
domains namely ISAAC, XPS and 5150, with ISAAC as the ROOT Domain. Figure 9-8
shows the overview of domains we are going to setup.

Figure 9-8 Step by step ensor deployment overview

Please follow the steps below to deploy the domains.

Path of NB 3.2
package. Should be
included in the GB
package

 194

Step 1 – Set Up Domains

Before you start, make sure that a Sensor Grid server is up and running. For instructions
on setting up a Sensor Grid server please refer to Appendix C -

 195

User Guide for System Administrator.

Suppose a Sensor Grid Server has been set up with IP address 202.94.237.242. Prepare 3
PCs each with its own unique IP address and fulfills the system and network
requirements. The Grid Builder package should also be installed on each of the PCs to a
path without any space characters (e.g. c:\GBPackage). From now on we will refer to this
directory as <installation directory> .

Step 2 – Configure defaultMessagingNode.conf

For all domains, use the following configuration in
<installation directory>\GridBuilder\conf\defaultMessagingNode.conf

Prioritized Protocols

PRIORITIZED_PROTOCOL_LIST.prioritizedProtocolList=n iotcp,tcp,udp,http,h
ttps,ssl

Default Messaging Node properties

DEFAULT_MESSAGING_NODE.NIOTCPBrokerPort=25050
DEFAULT_MESSAGING_NODE.TCPBrokerPort=25060
DEFAULT_MESSAGING_NODE.UDPBrokerPort=25070
DEFAULT_MESSAGING_NODE.HTTPBrokerPort=0
DEFAULT_MESSAGING_NODE.HTTPSBrokerPort=0
DEFAULT_MESSAGING_NODE.SSLBrokerPort=0
DEFAULT_MESSAGING_NODE.PTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupPort=0
DEFAULT_MESSAGING_NODE.MulticastGroupHost=224.224.2 24.224
DEFAULT_MESSAGING_NODE.PoolTCPBrokerPort=0
DEFAULT_MESSAGING_NODE.PTCPStreamNumber=5
DEFAULT_MESSAGING_NODE.AssignedAddress=false
DEFAULT_MESSAGING_NODE.NodeAddress=1,1,1,1
DEFAULT_MESSAGING_NODE.VirtualBrokerNetwork=network -CGL-1
DEFAULT_MESSAGING_NODE.SupportRTP=no
DEFAULT_MESSAGING_NODE.BDNList=
DEFAULT_MESSAGING_NODE.ConcurrentConnectionLimit=30 00
DEFAULT_MESSAGING_NODE.Discriminator=156.56.*
DEFAULT_MESSAGING_NODE.AboutThisBroker=Default Mess aging Node
DEFAULT_MESSAGING_NODE.MAXBrokerDiscoRequests=1000
DEFAULT_MESSAGING_NODE.DiscoveryResponsePolicy=cgl. narada.discovery.bro
ker.DefaultBrokerDiscoveryRequestResponsePolicy
DEFAULT_MESSAGING_NODE.BrokerKeyStore=keystore/NBSe curityTest.keys

These are required only if AssignedAddress is fal se
DEFAULT_MESSAGING_NODE.ConnectAddress=202.94.237.24 2
DEFAULT_MESSAGING_NODE.ConnectTransport=niotcp
DEFAULT_MESSAGING_NODE.ConnectPort=25050

Enter the address of
SG server here

 196

Step 3 – Configure setEnv.bat
For all domains, make sure that you have setup the correct path for NaradaBrokering-
3.2.0 package in <installation directory>\GridBuilder\bin\setEnv.bat

@echo off

REM NOTES:
REM --- ---------------
REM March 24, 2005
REM Modified to put saaj.jar before other AXiS jars . because without
REM this, the system gives a java.lang.Incompatible ClassChangeError
REM Ref: http://buzz.bowstreet.com/snitz/topic.asp? TOPIC_ID=500

REM Sets the environment variables. This must be ca lled from all
run*.bat
REM files to set the proper environment
REM --- ---------------

REM To enable Asynchronous WSContext service set th is to -async
REM For Sync version, set to blank
REM --- ---------------

set HPSEARCH_HOME=..\
set NB_HOME=..\..\NaradaBrokering-3.2.0

REM --- ---------------
REM Set the classpath
REM Please make path changes 1IF and AS required

REM NOTE: For the "FOR ..." command to work, The cm d.exe must
REM be started using the /vk parameter, else use the cpappend below
REM FOR %%j IN (%HPSEARCH_HOME%\lib*.jar) do set c p=!cp!;%%j
REM --- ---------------

set cp=%HPSEARCH_HOME%\lib\saaj.jar

FOR %%i IN ("%HPSEARCH_HOME%\lib*.jar") DO CALL cp append.bat %%i
FOR %%i IN ("%NB_HOME%\lib*.jar") DO CALL cpappend .bat %%i

set path=%path%;%NB_HOME%\dll

Step 4 – Configure mgmtSystem.conf

For each domain, the corresponding configuration in <installation
directory>\GridBuilder\conf\mgmtSystem.conf should be different. The corresponding
configuration files of the 3 domains are shown below:

Domain ISAAC:

Config Entries for Fork Daemon

This string should be unique for different netwo rks

Enter the correct
path of NB 3.2 here

 197

It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-ISAAC

Config Entries for Root Bootstrap Node

The domain of the bootstrap program
ROOT-bootstrap.Level=/
ROOT-bootstrap.ForkProcessLocator=topic://FORKDAEMO N/ATGLOBAL-
ISAAC/:65535

Number of registered subDomains
ROOT-bootstrap.NumOfRegisteredSubDomains=3

Domain URI of subDomains and their locations
ROOT-bootstrap.RegisteredSubDomain_1=/ISAAC
ROOT-
bootstrap.RegisteredSubDomainForkProcess_1=topic:// FORKDAEMON/ATGLOBAL-
ISAAC/:65535
ROOT-bootstrap.RegisteredSubDomain_2=/XPS
ROOT-
bootstrap.RegisteredSubDomainForkProcess_2=topic:// FORKDAEMON/ATGLOBAL-
XPS/:65535
ROOT-bootstrap.RegisteredSubDomain_3=/5150
ROOT-
bootstrap.RegisteredSubDomainForkProcess_3=topic:// FORKDAEMON/ATGLOBAL-
5150/:65535
ROOT-bootstrap.RegisteredSubDomain_4=/INDIANA
ROOT-
bootstrap.RegisteredSubDomainForkProcess_4=topic:// FORKDAEMON/ATGLOBAL-
INDIANA/:65535

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT-bootstrap.NumberOfForkDaemons=0

Locaton of Messaging Node
ROOT-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT-bootstrap.MessagingNode_1=127.0.0.1

Config Entries for ISAAC - Bootstrap Node

The domain of the bootstrap program
ROOT_ISAAC-bootstrap.Level=/ISAAC

Number of registered subDomains
ROOT_ISAAC-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations

Registry Locator
ROOT_ISAAC-bootstrap.RegistryForkDaemon=topic://FOR KDAEMON/ATGLOBAL-
ISAAC/:65535
ROOT_ISAAC-bootstrap.RegistryPersistentStore=wscont ext:ISAAC

 198

Locaton of Messaging Node
ROOT_ISAAC-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_ISAAC-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT_ISAAC-bootstrap.NumberOfForkDaemons=1
ROOT_ISAAC-bootstrap.ForkDaemon_1=topic://FORKDAEMO N/ATGLOBAL-
ISAAC/:65535

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/ISAAC

Config Entries for User Console

user.MessagingNode=127.0.0.1
user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

Domain XPS:

Config Entries for Fork Daemon

This string should be unique for different netwo rks
It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-XPS

Config Entries for XPS - Bootstrap Node

The domain of the bootstrap program
ROOT_XPS-bootstrap.Level=/XPS

Number of registered subDomains
ROOT_XPS-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations

Registry Locator
ROOT_XPS-bootstrap.RegistryForkDaemon=topic://FORKD AEMON/ATGLOBAL-
XPS/:65535
ROOT_XPS-bootstrap.RegistryPersistentStore=wscontex t:XPS

 199

Locaton of Messaging Node
ROOT_XPS-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_XPS-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT_XPS-bootstrap.NumberOfForkDaemons=1
ROOT_XPS-bootstrap.ForkDaemon_1=topic://FORKDAEMON/ ATGLOBAL-XPS/:65535

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/XPS

Config Entries for User Console

user.MessagingNode=127.0.0.1
user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

Domain 5150:

Config Entries for Fork Daemon

This string should be unique for different netwo rks
It is used to uniquely identify a Fork Daemon
ForkDaemon.UniqueString=ATGLOBAL-5150

Config Entries for 5150 - Bootstrap Node

The domain of the bootstrap program
ROOT_5150-bootstrap.Level=/5150

Number of registered subDomains
ROOT_5150-bootstrap.NumOfRegisteredSubDomains=0

Domain URI of subDomains and their locations

Registry Locator
ROOT_5150-bootstrap.RegistryForkDaemon=topic://FORK DAEMON/ATGLOBAL-
5150/:65535
ROOT_5150-bootstrap.RegistryPersistentStore=wsconte xt:5150

 200

Locaton of Messaging Node
ROOT_5150-bootstrap.NumberOfMessagingNodeDaemons=1
ROOT_5150-bootstrap.MessagingNode_1=127.0.0.1

Locaton of ForkProcess Daemons for spawning Manag ers
ROOT_5150-bootstrap.NumberOfForkDaemons=1
ROOT_5150-bootstrap.ForkDaemon_1=topic://FORKDAEMON /ATGLOBAL-
5150/:65535

Config Entries for Service Adapter

ServiceAdapter.NumOfMessagingNodes=1
ServiceAdapter.MessagingNode_1=127.0.0.1
ServiceAdapter.Level=/5150

Config Entries for User Console

user.MessagingNode=127.0.0.1
user.MessagingNodePort=25050
user.MessagingNodeTransport=niotcp
user.RegistryMonitorInterval=30000

Config Entries for BootStrapService UI

BootStrapServiceUI.MessagingNode=127.0.0.1
BootStrapServiceUI.MessagingNodePort=25050
BootStrapServiceUI.MessagingNodeTransport=niotcp

Step 5 – Configuring WS-Context

To use WS-Context, the following configuration files have to be modified.

wscontext.properties
This file is located at <installation directory>\GridBuilder\conf\wscontext.properties.
Please configure it as followed. You only have to pay attention to text highlighted in red.

####################

FTHPIS - Property file used to set parameters for UDDI-Extended
Information Service
Web Site: http://grids.ucs.indiana.edu/~maktas/ft hpis/index.html

####################

JDBC Connection parameters

####################

 201

cgl.fthpis.useConnectionPool = true
cgl.fthpis.jdbcDriver = org.gjt.mm.mysql.Driver
cgl.fthpis.wscontext.jdbcURL =
jdbc:mysql://127.0.0.1:3306/cgl_wscontext
cgl.fthpis.uddi.jdbcURL = jdbc:mysql://127.0. 0.1:3306/cgl_uddi
cgl.fthpis.jdbcMaxActive = 10
cgl.fthpis.jdbcMaxIdle = 5

####################

Userid/passwords should not generally be stored i n clear text

####################

cgl.fthpis.jdbcUser = uddi_user
cgl.fthpis.jdbcPassword = changeIt

####################

DataStore Modules

####################

DataStore module currently to use
juddi.dataStore = org.apache.juddi.datastore.jdbc.J DBCDataStore
ExtendedUDDI DataStore module currently to use
juddi.extendeduddiDataStore = cgl.fthpis.datastore. jdbc.JDBCDataStore
WSontext DataStore module currently to use
juddi.wscontextDataStore =
cgl.fthpis.datastore.jdbc.WSContextJDBCDataStore

####################

FTHPIS SYSTEM paramaters

####################

fthpis.type = 1
#1-centralized , 2-decentralized

#mappingFile.path = C:/MyApps/HybridService/mapping files
mappingFile.path = C:/GBPackage/wscontext_exe/apach e-tomcat-
5.5.26/webapps/axis2/WEB-INF/classes/HybridService/ mappingfiles

default.infoservice = UDDI
#default.infoservice = WS-CONTEXT

####################

The WSDL address for the inquiry and publishing A PI of the target

Change this to your
own installation
directory

 202

UDDI-Extended Information Service

####################

UDDI_WSContext_WSDL =
http://localhost:8080/axis2/services/HYBRID_SERVICE
#UDDI_WSContext_WSDL =
http://gf12.ucs.indiana.edu:4780/axis2/services/HYB RID_SERVICE
#UDDI_WSContext_WSDL =
http://gf6.ucs.indiana.edu:4347/axis2/services/HYBR ID_SERVICE

####################

Debug log enabled or not.
OFF/INFO
####################

logLevel=INFO

####################

BENCHMARK
####################

##eger publication test ediyorsak bu true olucak. i nquiry ise false
olucak
publication_benchmark=true
##eger inquiry test ediyorsak bu true olucak. publi cation ise false
olucak
inquiry_benchmark=false

####################

PUB-SUB System paramaters

####################

CACHE INFO - 20 MB = 1024 x 1024 x 20 = 20,971,52 0
highwatermark = 20971520

fthpis.timeout = 10000
fthpis.replicaset = 1

####################

NB Parameters. Please replace following NB parame ters to point to
your
Narada Broker

 203

####################

#FTHPIShostname = gf2.ucs.indiana.edu
#FTHPISID = 2
#hostname = gf6.ucs.indiana.edu
#portnum = 4648
#protocol = niotcp
#NB_HOME=/home/maktas/nb/NaradaBrokering-1.1.6

FTHPIShostname = localhost
FTHPISID = 1
hostname = localhost
portnum = 3035
protocol = niotcp
NB_HOME=C:/GBPackage/wscontext_exe/NaradaBrokering- 3.2.0

####################

NB Service Configuration Parameters
####################

#This specifies the location of the Fragmentation D irectory needed by
FragmentationDirectory=C:/TempFiles/tmpFiles/fragme nt

#This specifies the location of the coalescing dire ctory
CoalescingDirectory=C:/TempFiles/tmpFiles/coalesce

#This specifies the location of the Security keysto re
SecurityKeyStore=C:/SecurityStores/keystore

#This specifies the location of the Security trusts tore
SecurityTrustStore=C:/SecurityStores/truststore

#This specifies the cryptography provider within th e system
SecurityProvider=CryptixCrypto

#Specifies the location of the stratum-1 time serve rs used by entities.
#time-a.nist.gov,time-b.nist.gov,time-a.timefreq.bl drdoc.gov,time-
b.timefreq.bldrdoc.gov,
#time-c.timefreq.bldrdoc.gov,time.nist.gov,time-
nw.nist.gov,utcnist.colorado.edu
,131.107.1.10,128.138.140.44
#NTP_Servers =
129.6.15.28,129.6.15.29,132.163.4.101,132.163.4.102 ,132.163.4.103,192.4
3.244.18
NTP_Servers =

Change this to your
own installation
directory

 204

This is the time interval (milliseconds) between successive runs of
the NTP synchronization with an NTP time server,
The default value is 30 seconds.
#NTP_Interval=2000
NTP_Interval=30000

NTP_Debug=OFF

#These pertain to Reliable Delivery Service Impleme ntations
(db=Database, file=FileStorage)
Storage_Type=db

Database_JDBC_Driver=org.gjt.mm.mysql.Driver
Database_ConnectionProvider=jdbc:mysql
Database_ConnectionHost=localhost
Database_ConnectionPort=3306
Database_ConnectionDatabase=NbPersistence

FileStorage_BaseDirectory=C:/NBStorage/filebased/pe rsistent

TOB_MaximumTotalBufferSize=2500000

TOB_MaximumNumberOfBufferEntries=10000

#In milliseconds#
TOB_MaximumBufferEntryDuration=50000
TOB_BufferReleaseFactor=0.8

Comma seperated list of publicly known Broker Dis covery Services

BDNDiscoveryList=http://www.idonotexist.com,http:// trex.ucs.indiana.edu
:8080/BDN/servlet/Discover,http://www.gridservicelo cator.org/

MulticastGroupHost=224.224.224.224
MulticastGroupPort=0

 205

env.bat

This file is located at <installation directory>\wscontext_exe\env.bat. Please configure it
as followed. You only have to pay attention to text highlighted in red.

set PATH=C:\Program
Files\Java\jdk1.5.0_14\bin;C:\GBPackage\wscontext_e xe\maven-
1.0.2\bin;%PATH%
set JAVA_HOME=C:\Program Files\Java\jdk1.5.0_14
set MAVEN_HOME=C:\GBPackage\wscontext_exe\maven-1.0 .2
set CATALINA_HOME=C:\GBPackage\wscontext_exe\jakart a-tomcat-5.0.28

startjakartatomcat.bat
This file is located at <installation directory>\wscontext_exe\startjakartatomcat.bat.
Please configure it as followed. You only have to pay attention to text highlighted in red.

set CATALINA_HOME=C:\GBPackage\wscontext_exe\jakart a-tomcat-5.0.28
jakarta-tomcat-5.0.28\bin\startup.bat

startmysql4.0.bat
This file is located at <installation directory>\ wscontext_exe\startmysql4.0.bat. Please
configure it as followed. You only have to pay attention to text highlighted in red.

mysql-4.0.27-win32\bin\mysqld-nt --console --skip-i nnodb --
basedir=C:\GBPackage\wscontext_exe\mysql-4.0.27-win 32

properties.properties
This file is located at <installation directory>\wscontext_exe\jakarta-tomcat-
5.0.28\webapps\axis2\WEB-INF\classes\properties.properties. Please configure it as
followed. You only have to pay attention to text highlighted in red.

####################

FTHPIS - Property file used to set parameters for UDDI-Extended
Information Service
Web Site: http://grids.ucs.indiana.edu/~maktas/ft hpis/index.html

####################

Path of JDK 1.5
Your installation
directory

JAVA home

Your installation
directory

Your installation
directory

Your installation
directory

 206

JDBC Connection parameters

####################

cgl.fthpis.useConnectionPool = true
cgl.fthpis.jdbcDriver = org.gjt.mm.mysql.Driver
#cgl.fthpis.wscontext.jdbcURL =
jdbc:mysql://gf7.ucs.indiana.edu:3306/cgl_wscontext
#cgl.fthpis.uddi.jdbcURL =
jdbc:mysql://gf7.ucs.indiana.edu:3306/cgl_uddi
cgl.fthpis.wscontext.jdbcURL =
jdbc:mysql://127.0.0.1:3306/cgl_wscontext_deneme
cgl.fthpis.uddi.jdbcURL = jdbc:mysql://127.0. 0.1:3306/cgl_uddi
cgl.fthpis.jdbcMaxActive = 10
cgl.fthpis.jdbcMaxIdle = 5

####################

Userid/passwords should not generally be stored i n clear text

####################

cgl.fthpis.jdbcUser = uddi_user
cgl.fthpis.jdbcPassword = changeIt

####################

DataStore Modules

####################

DataStore module currently to use
juddi.dataStore = org.apache.juddi.datastore.jdbc.J DBCDataStore
ExtendedUDDI DataStore module currently to use
juddi.extendeduddiDataStore = cgl.fthpis.datastore. jdbc.JDBCDataStore
WSontext DataStore module currently to use
juddi.wscontextDataStore =
cgl.fthpis.datastore.jdbc.WSContextJDBCDataStore

####################

FTHPIS SYSTEM paramaters

####################

fthpis.type = 1
#1-centralized , 2-decentralized

#mappingFile.path = C:/MyApps/HybridService/mapping files

Your installation
directory

 207

mappingFile.path =C:/GBPackage/wscontext_exe/jakart a-tomcat-
5.0.28/webapps/axis2/WEB-INF/classes/HybridService/ mappingfiles

default.infoservice = UDDI
#default.infoservice = WS-CONTEXT

####################

The WSDL address for the inquiry and publishing A PI of the target
UDDI-Extended Information Service

####################

#UDDI_Extended_WSDL =
http://localhost:8080/uddi_wscontext/services/UDDI_ Extended
UDDI_WSContext_WSDL =
http://localhost:8080/axis2/services/UDDI_WSContext Service
#UDDI_WSContext_WSDL =
http://gf6.ucs.indiana.edu:4347/axis2/services/UDDI _WSContextService

#UDDI_Extended_WSDL =
http://gf6.ucs.indiana.edu:4347/uddi_wscontext/serv ices/UDDI_Extended
#UDDI_WSContext_WSDL =
http://gf6.ucs.indiana.edu:4347/uddi_wscontext/serv ices/UDDI_WSContext

#UDDI_Extended_WSDL =
http://gf8.ucs.indiana.edu:4647/uddi_wscontext/serv ices/UDDI_Extended
#UDDI_WSContext_WSDL =
http://gf8.ucs.indiana.edu:4647/uddi_wscontext/serv ices/UDDI_WSContext

#UDDI_Extended_WSDL =
http://gf8.ucs.indiana.edu:4947/uddi_wscontext/serv ices/UDDI_Extended
#UDDI_WSContext_WSDL =
http://gf8.ucs.indiana.edu:4947/uddi_wscontext/serv ices/UDDI_WSContext

####################

Debug log enabled or not.
OFF/INFO
####################

logLevel=INFO

####################

BENCHMARK
####################

##eger publication test ediyorsak bu true olucak. i nquiry ise false
olucak
publication_benchmark=true

 208

##eger inquiry test ediyorsak bu true olucak. publi cation ise false
olucak
inquiry_benchmark=false

####################

PUB-SUB System paramaters

####################

CACHE INFO - 20 MB = 1024 x 1024 x 20 = 20,971,52 0
highwatermark = 20971520

fthpis.timeout = 10000
fthpis.replicaset = 1

####################

NB Parameters. Please replace following NB parame ters to point to
your
Narada Broker
####################

#FTHPIShostname = gf2.ucs.indiana.edu
#FTHPISID = 2
#hostname = gf6.ucs.indiana.edu
#portnum = 4648
#protocol = niotcp
#NB_HOME=/home/maktas/nb/NaradaBrokering-1.1.6

FTHPIShostname = localhost
FTHPISID = 1
hostname = localhost
portnum = 4648
protocol = niotcp
NB_HOME=C:/GBPackage/wscontext_exe/NaradaBrokering- 3.2.0

####################

NB Service Configuration Parameters
####################

#This specifies the location of the Fragmentation D irectory needed by
FragmentationDirectory=C:/TempFiles/tmpFiles/fragme nt

#This specifies the location of the coalescing dire ctory
CoalescingDirectory=C:/TempFiles/tmpFiles/coalesce

#This specifies the location of the Security keysto re

Your installation
directory

 209

SecurityKeyStore=C:/SecurityStores/keystore

#This specifies the location of the Security trusts tore
SecurityTrustStore=C:/SecurityStores/truststore

#This specifies the cryptography provider within th e system
SecurityProvider=CryptixCrypto

#Specifies the location of the stratum-1 time serve rs used by entities.
#time-a.nist.gov,time-b.nist.gov,time-a.timefreq.bl drdoc.gov,time-
b.timefreq.bldrdoc.gov,
#time-c.timefreq.bldrdoc.gov,time.nist.gov,time-
nw.nist.gov,utcnist.colorado.edu
,131.107.1.10,128.138.140.44
#NTP_Servers =
129.6.15.28,129.6.15.29,132.163.4.101,132.163.4.102 ,132.163.4.103,192.4
3.244.18
NTP_Servers =

This is the time interval (milliseconds) between successive runs of
the NTP synchronization with an NTP time server,
The default value is 30 seconds.
#NTP_Interval=2000
NTP_Interval=30000

NTP_Debug=OFF

#These pertain to Reliable Delivery Service Impleme ntations
(db=Database, file=FileStorage)
Storage_Type=db

Database_JDBC_Driver=org.gjt.mm.mysql.Driver
Database_ConnectionProvider=jdbc:mysql
Database_ConnectionHost=localhost
Database_ConnectionPort=3306
Database_ConnectionDatabase=NbPersistence

FileStorage_BaseDirectory=C:/NBStorage/filebased/pe rsistent

TOB_MaximumTotalBufferSize=2500000

TOB_MaximumNumberOfBufferEntries=10000

#In milliseconds#
TOB_MaximumBufferEntryDuration=50000
TOB_BufferReleaseFactor=0.8

Comma seperated list of publicly known Broker Dis covery Services

 210

BDNDiscoveryList=http://www.idonotexist.com,http:// trex.ucs.indiana.edu
:8080/BDN/servlet/Discover,http://www.gridservicelo cator.org/

MulticastGroupHost=224.224.224.224
MulticastGroupPort=0

setpath.bat
This file is located at <installation directory>\wscontext_exe\
uddi_wscontext_services_v5\setpath.bat. Please configure it as followed. You only have
to pay attention to text highlighted in red.

::set AXIS2_HOME=D:\wscontext\axis2-1.3
::set AXIS2_HOME=D:\wscontext\axis2-1.2
::set AXIS2_HOME=D:\wscontext\axis2-1.1.1
::set AXIS2_HOME=D:\wscontext\axis2-1.1
::set AXIS2_HOME=D:\wscontext\axis2-std-1.0-bin
set
AXIS2_HOME=C:\GBPackage\wscontext_exe\uddi_wscontex t_services_v5\axis_l
ib\axis2_SNAPSHOT

Step 6 – Starting WS-Context
We are now ready to start the servers for WS-Context. Please follow the instructions
below to start and verify all components are setup correctly.

Starting MySQL
Please follow these steps to start MySQL:
1. Open “cmd” by clicking Windows’ “Start” -> Run -> type “cmd” -> OK
2. Go to <installation directory>\wscontext_exe
3. Execute “env.bat”

Your installation
directory

 211

4. Execute “startmysql4.0.bat”

Starting AXIS
Please follow these steps to start AXIS server:
1. Open “cmd” by clicking Windows’ “Start” -> Run -> type “cmd” -> OK
2. Go to <installation directory>\wscontext_exe
3. Execute “env.bat”

 212

4. Execute “startjakartatomcat.bat”. The following window should appear shortly.

Testing the deployment
Please follow these steps to verify that WS-Context servers are running correctly:
1. Open “cmd” by clicking Windows’ “Start” -> Run -> type “cmd” -> OK
2. Go to <installation directory>\wscontext_exe\uddi_wscontext_services_v5
3. Execute “setpath.bat”
4. Execute “startContextPublishExample.bat”. If you see the following lines, the servers

are running correctly

 213

5. Execute “startSessionPublishExample.bat”. If you see the following lines, the servers
are running correctly

Step 7 – Starting NB 1.3.2
The next step is to start a Messaging Node for sensor data connection. Please follow the
steps below to start the node:

1. Modify file <installation directory>\NaradaBrokering-

1.3.2_0.37\bin\startBroker.bat. Please configure it as followed. You only have to pay
attention to text highlighted in red.

@echo off

set NB_HOME=..
set brokerConfigFile=%NB_HOME%\config\BrokerConfigu ration.txt
set serviceConfigFile=%NB_HOME%\config\ServiceConfi guration.txt
set brokerCommunicatorPort=11111

set cp=.
path=%path%;%NB_HOME%\dll

for %%i in ("%NB_HOME%\lib*.jar") do call cpappend .bat %%i

java -classpath %cp% cgl.narada.node.BrokerNode %br okerConfigFile%
%serviceConfigFile% %brokerCommunicatorPort% 202.94 .237.242 3035

 Your installation

directory

 214

2. Execute the file by double-clicking it. You should be able to see the following screen:

Step 8 – Running Primary Health Check
In each domain, go to <installation directory>\GridBuilder\bin and execute
“runPrimaryHealthCheck.bat”. You should be able to see the following screen:

Before proceeding to the next step, make sure that you can see the sentence “… Sleeping
for 30 Sec and check the status again” in ALL domains.

Step 9 – Starting Bootstrap Service in ROOT
At this stage each domain has a Fork Daemon running and waiting for data arrival. Start
Bootstrap Service in the ROOT Domain (i.e. /ISAAC) by following the steps below:

 215

1. In <installation directory>\GridBuilder\bin, start the BootStrap Console by double-

clicking the “bootStrapUI.bat” icon or typing “bootStrapUI.bat” in a command
prompt. You should see the BootStrap Console pops up as follows:

Figure 9-9 User-interface to start the Bootstrap Service in the ROOT domain

2. Click the “Refresh” button. Then, the “Instantiate” button becomes enabled.
3. Click the “Instantiate” button and then click the “Refresh” button again. Now all

sub-domains should appear on the left window.

 216

Figure 9-10 A Bootstrap Console showing statuses of a sensor grid sub-domains

Notice that you do NOT have to do the bootstrap process in other domains. Bootstrap
processes of sub-domains will be started by ROOT domain automatically.

 217

Step 10 – Starting GB Management Console
Start the GB Management Console (GBMC) in any of the domains by executing
userUI.bat in <installation directory>\GridBuilder\bin. If all domains are working fine,
you should be able to see the screen shown below.

Figure 9-11 An initial view of a Grid Builder Management Console

D.7 Step by Step Sensor Deployment Guide
In this section we are going to deploy 6 types of sensors in the domains, including:

1. Video – a PC Web Camera
2. Video Edge Detection – a Computational Service which takes input from a Video

sensor and output processed video including “Edge Detection” and “Region
Finding” modes

3. RFID – a RF Code M220 RFID reader which can be connected to a PC through
Bluetooth interface. It detects signal strength, tamper, motion and panic
information from RFID tags

4. GPS – a satellite positioning device which provides geo-spatial latitude and
longitude coordinates. It can be connected to a PC through Bluetooth interface

5. Tribot – a NXT Tribot Lego robot carrying Light, Touch, Sound and Ultrasonic
sensors. It can be connected to a PC through Bluetooth interface

6. Wii Remote – a remote controller of the Wii game console. It can be connected to
a PC through Bluetooth interface

 218

D.7.1 Deploying a RFID Reader
Please follow these steps to deploy a RF Code M220 RFID reader (rfid1) in one of the
Leaf Domains. This RFID reader can be connected to a PC using Bluetooth interface.

1. Before using GBMC, pair up and connects the RFID reader to the PC of the target

domain. On the PC, right-click the Bluetooth icon and select “Bluetooth Setup
Wizard”

2. Configure a device

 219

3. Select the RFID reader and click next

4. Pair this RFID reader with its passkey

 220

5. Select “Serial Port” service

6. A window should be popped up to configure this service. Choose a COM port and

remember it for later use.

 221

7. Right-click the Bluetooth icon again and select “Explore My Bluetooth Places” this
time.

8. Double click the RFID reader

9. If this reader is connected successfully, the following status should be shown. The

RFID reader is now connected to COM4.

 222

10. Now go back to GBMC. GBMC shows all leaf domains connected to a particular

server. From any PC where GBMC is opened, you can deploy sensors remotely in
any domains shown on the left hand side. To start deploying sensors, click on one of
the domains on the left hand side, and click “Deploy”.

 223

11. A window should pop up. Enter details of the sensor. For “Sensor Type”, choose
RFID. Enter the COM port which the RFID reader is connected. Press “OK” to
proceed.

12. After a while you should be able to see a new sensor being deployed in the domain.

Notice the “Current Status” and “Resource Status” in the tab “Service Adapter
Properties”. “Current Status” shows whether the sensor is being managed by GB. In
normal circumstances, “Current Status” should change from REGISTERED to
MANAGED within one minute. “Resource Status” shows whether the sensor client
program is running. It should change from “Not Running” to “Running” within one
minute.

 224

13. After a while, the status of the sensor is updated.

 225

14. You can check the policies of the sensor in tab “Policies”.

D.7.2 Deploying a NXT Tribot Robot

Please follow these steps to deploy a NXT Tribot Robot (Tribot) in one of the Leaf
Domains. It can be connected to a PC using Bluetooth interface.

Before using GBMC, find out the Bluetooth address of the robot by following these steps:

1. Right-click on the Bluetooth icon on the Windows taskbar and choose “Explore my

Bluetooth place”.

2. On the left-column of the popup window, choose “View devices in range”.

 226

3. Right-click on the device named “NXT” and chooses “Properties”. If you cannot see
its presence, make sure that the robot is turned on and choose “Search for devices in
range”.

4. The Bluetooth address can be found in the popup window. Write it down on a piece

of paper.

 227

5. Now go back to GBMC. Choose a domain and click “Deploy”.

6. Enter the following details. You should enter the Bluetooth address which you have

found and written down in step 4. Click “OK”.

 228

7. You should be able to see the newly deployed robot shortly.

 229

8. After the while the status should be updated.

 230

D.7.3 Deploying a GPS
Please follow these steps to deploy aGPS in one of the Leaf Domains. This GPS can be
connected to a PC using Bluetooth interface.

1. Pair up and connects the GPS to the PC with similar techniques described in section

D.7.1 for RFID deployment.
2. Assume that the GPS is connected to COM3. In GBMC, click on one of the domains

on the left hand side, and click “Deploy”.

3. Enter details of the sensor. For “Sensor Type”, choose GPS. Press “OK” to proceed.

 231

4. After a while you should be able to see a new sensor being deployed in the domain.

Notice the “Current Status” and “Resource Status” in the tab “Service Adapter
Properties”. “Current Status” shows whether the sensor is being managed by GB. In
normal circumstances, “Current Status” should change from REGISTERED to
MANAGED within one minute. “Resource Status” shows whether the sensor client
program is running. It should change from “Not Running” to “Running” within one
minute.

 232

5. After a while, the status of the sensor is updated.

 233

D.7.4 Deploying a Wii Remote
Please follow these steps to deploy a Wii Remote in one of the Leaf Domains. This Wii
Remote can be connected to a PC using Bluetooth interface.

1. Make sure that a Wii Remote can be detected by a Bluetooth adapter connected to

one of the sub-domain computers.
2. On the Console, select the domain which the Wii Remote will be deployed on and

then click the “Deploy” button.
3. Enter details of the sensor. For “Sensor Type”, choose “Wii Remote”. Leave the field

“Bluetooth Address” blank. Press “OK” to proceed.

4. Now, a new item appears under the domain currently selected. Select the item to see

its service adapter properties. On the Service Adapter Properties page, you should see
that Current Status is REGISTERED and Resource Status is Not Running.

 234

5. Press button 1 and 2 of your Wii remote control and hold on. Wait for around 10-20

seconds until the 4 blue light spots stop flashing and only the leftmost one lights up,
which means the deployment is successful.

6. Shortly you can see the Wii Remote being deployed successfully.

 235

D.7.5 Deploying a Web Camera
Please follow these steps to deploy a Web Camera in one of the Leaf Domains. This Web
Camera can be connected to a PC using the USB interface.

1. Make sure that a webcam is connected to one of the sub-domain computers.
2. On the Console, select the domain which the Web Camera will be deployed on and

then click the “Deploy” button.
3. Enter details of the sensor. For “Sensor Type”, choose “Video”. Press “OK” to

proceed.

 236

4. Now, a new item appears under the domain currently selected. Select the item to see

its service adapter properties. On the Service Adapter Properties page, you should see
that Current Status is REGISTERED and Resource Status is Not Running.

 237

5. If the deployment is successful, Current Status and Resource Status change to

MANAGED and Running respectively after 10-20 seconds.

 238

D.7.6 Deploying a Video Edge Detection Service
Please follow these steps to deploy a Video Edge Detection (VED) service in one of the
Leaf Domains. This is a Computational Service and can be deployed in any domain

1. On the Console, select the domain which the VED will be deployed on and then click

the “Deploy” button.
2. Enter details of the sensor. For “Sensor Type”, choose “Video Edge Detection”. Press

“OK” to proceed.

3. Now, a new item appears under the domain currently selected. Select the item to see

its service adapter properties. On the Service Adapter Properties page, you should see
that Current Status is REGISTERED and Resource Status is Not Running.

 239

4. If the deployment is successful, Current Status and Resource Status change to

MANAGED and Running respectively after 10-20 seconds.

 240

Appendix E - User Guide for SCGMMS Application User

Impromptu is a framework for developing collaborative applications. Separate
applications can be plugged into Impromptu as “Sharedlets”. In order to demonstrate the
power of SCGMMS, we have developed a “Sensor Sharedlet”. Sensor Sharedlet is a
UDOP application which is defined on an operational environment of sensors. It aims at
demonstrating the ability of SCGMMS to support UDOP development by allowing the
user to do filtering, visualization and sharing information acquired from a grid of sensors
deployed in SCGMMS. The Sensor Sharedlet is labeled as Robot Demo in Figure 9-12.

E.1 Sensor Sharedlet

Figure 9-12 Overview of Sensor Sharedlet

The figure above shows a screenshot of Sensor Sharedlet. On the top left hand corner
shows a list of Sharedlets which are different applications developed under the
Impromptu framework. Among them, “Robot Demo” is the Sensor Sharedlet. The user
can click on the tab of the Sharedlet to open it.

Sharedlets

Send
Control
Messages

Filter

Synchronization
Mode

Meeting
Participants

VOIP
Status

Presentation
Area

Sensor
List

 241

Impromptu is meeting-based. There always exists a host and some participants. All
participants in the meeting share the same view. Any of them can perform different
actions and changes will be reflected on the screen of all participants. The bottom left
hand corner shows a list of participants who are currently in the meeting. They can
communicate with each other using VOIP.

After Sensor Sharedlet is opened, in the left column there are two areas for sending
control messages to sensors and defining filtering criteria respectively. On the right hand
side is the list of all sensors available. The list dynamically changes with the status of
sensors and filtering criteria.

The presentation area contains 4 panels for displaying data of sensors. The user can
decide data from which sensor he/she wants to be displayed by dragging a sensor from
the sensor list to one of the panels.

E.1.1 Sensor List
On the right hand side all sensors in the operational environment is shown. Each of them
provides a stream of raw data. Different types of sensor are displayed in a tree hierarchy
represented by different icons, with the corresponding sensor ID next to it.

User can display the data of a particular sensor by a drag-and-drop action from the sensor
list to one of the panels in the presentation area. Statuses of sensors are represented by
different colors. Sensors which are currently being displayed in the presentation area are
highlighted in yellow. If a sensor which was previously online is disconnected, it will be
highlighted in red to catch user’s attention. Offline sensors can be removed from the list
by applying an empty filter in the Filter Panel.

Figure 9-13 Sensors on SG sensor hierarchy highlighted in different colors

Sensor
goes
offline

Sensor
being
displayed

 242

Grouping
The sensor hierarchy viewing allows user to group sensors together by different
parameters. These parameters include name, group, type and status.

Group by name: Group by sensor

group:
Group by sensor
type:

Group by sensor
status:

Sensors are sort by
alphabetical order

Sensors are grouped
by their sensor group

Sensors are grouped
by their sensor type

Sensors are grouped
by their status

Figure 9-14 Grouping sensors into hierarchies

 243

E.1.2 Presentation Area
The presentation area contains four panels; each of them can display data from a sensor.
In order to display data of a sensor, the user has to drag and drop the icon of the sensor
from the sensor list to one of the panels.

Figure 9-15 Dragging a Lego Mindstorm NXT Humanoid Robot to the top right panel

 244

Figure 9-16 Visualization of NXT Humanoid Robot sensor streams

Each panel display can be expanded to the limit of the full presentation area by double-
clicking the sensor ID label. Double-click the label again to toggle it to the original
presentation panel size.

 245

Figure 9-17 A panel displaying data from GPS device is expanded

Each type of sensor is associated with a default presentation method after being dragged
to the panel. The following diagrams show the presentation used for different types of
sensors.

 246

GPS RFID Reader

RFID Tag NXT Robot

 247

Wii Remote Video

Video Edge Detection (Edge Detection) Video Edge Detection (Region Finding)

 248

E.1.3 Sending Control
To send control to a sensor, choose the sensor in the “Sensor Controls” panel. If the
sensor is capable of receiving control messages, a list of buttons will be available. Click
on the buttons to send the corresponding control message to the sensor.

NXT Robots can move in four directions (forward, barkward, left and right) and move
their arms according to the type of control messages sent. Control messages for different
types of robots are slightly different.

Figure 9-18 Control panel for NXT Humanoid Robot

Figure 9-19 Control panel for XNT Tribot Robot

Another type of sensor which takes control messages are Video Edge Detection (VED)
Computational Services. There are two types of control messages for VED – Edge
Detection and Region Finding.

Figure 9-20 VED with Edge Detection Control

 249

Figure 9-21 VED with Region Finding Control

E.1.4 Filtering

A user does not always want information from all sensors. He/she can filter away
unwanted sensors by entering filtering criteria by using the filtering panel.

The criteria are defined by a SensorFilter object. A SensorFilter is composed of a set of
properties defined in SensorProperty connected with Boolean “and” or “or” operators.
Given that a list of sensor properties in a sensor filter are connected together with the
“and” operator, only sensors which have properties with exact match in string
comparison with ALL the properties defined in the filter should get through. Similarly
sensors which have properties with exact match in string comparison with ANY of the
properties defined in a sensor filter with sensor properties connected together with the
“or” operator should get through.

 To use the filtering UI, follow these steps to construct a query consists of “and” and “or”
operators:

 250

1. In ONE of the fields, entering the

keyword which you would like to filter

2. Either press the “OR” or “AND” button

to add the keyword to the list according
to what your query is.

3. Suppose we want to show all GPS

devices in group “hk” and all RFID
devices in group “group2”, repeat step
1 and 2 to construct a query like this.
Then click “Apply Filter”

 251

Figure 9-22 Sensor List before Filtering

Figure 9-23 Sensor List after Filtering

 252

E.1.5 Computational Services
Some sensors, known as “Computational Services”, do not take input from the
environment. Instead, they take output of other sensors as their input, perform various
computations on the data, and output the processed data finally. What computation is
being performed depends on the type of service the sensor provides.

One of the Computational Services we currently have is the “Video Edge Detection
(VED)”. It provides two types of services on video processing – Edge Detection and
Region Finding. Edge detection is a service which detects the edges of moving objects in
the video stream. Detected edges are visualized as colorful lines out of the black
background. Region Finding is similar to Edge Detection but uses the original video as
background. Both services are encapsulated in a single Video Edge Detection. Two
different algorithms are requested by sending two different control messages.

To set which video stream as the source of a VED, you can drag the icon of a video on
the sensor list to a VED icon. Afterwards, drag the video service to one of the display
panels from right to left. The processed video should be shown.

Figure 9-24 Setting the Source of Video Service

 253

Figure 9-25 Source of VED has been set

Fault tolerance issue: If any attempt to drag a sensor to a Computational Service which
does not support that particular sensor type, a warning message will be displayed. For
example, an attempt to drag a GPS sensor to a Video Computational Service results in the
following error message:

E.1.6 Synchronization Mode

To support UDOP to the fullest extent, Sensor Sharedlet provides two synchronization
modes among meeting participants – Strictly Synchronous and Loosely Synchronous.
Strictly Synchronous means that all participants are sharing the same operatin picture,
with sensors being displayed in all panels in the presentation area and filtering criteria
being the same. Every attempt to change the operating picture by any of the participants
will be reflected on the screen of all participants.

On the other hand, Loosely Synchronous means every participant has his/her own
operating picture. The user can choose to display data from any of the sensors in the

 254

presentation area and define his/her filtering criteria without affecting the view of other
participants.

Only the host of the meeting has the right to switch between Strictly and Loosely
Synchronous modes.

Figure 9-26 Panel for setting mode of operating picture

Figure 9-27 View of meeting host in Strictly Synchronous Mode

Figure 9-28 View of meeting participant in Strictly Synchronous Mode

 255

Figure 9-29 View of meeting host in Loosely Synchronous mode

Figure 9-30 View of meeting participant in Loosely Synchronous mode

 256

E.2 Geo-Spatial Sharedlet
Geo-Spatial Sharedlet is another Sharedlet which was developed under Impromptu. The
purpose of this Sharedlet is to provide an operating picture for displaying the geo-spatial
location of all sensors being deployed through SCGMMS with a 2D world map
representation. Every sensor is represented by a numbered icon in the map with its sensor
ID displayed on the right hand column respectively.

Figure 9-31 The Geo-Spatial Sharedlet

The location of a sensor is determined by the following way:
If the sensor is a GPS device, the location of the sensor is determined by the data
streamed out of the device. For other types of sensors, their location are determined by
the street address entered during deployment (the address field is mandatory). The
sharedlet automatically translates the address to a 2D lat-lng position by using Google
Maps API [4].

To view the information of a particular sensor, simply click on the icon.

 257

Figure 9-32 Information of a sensor

A strictly synchronous view is shared among all meeting participants.

Figure 9-33 View of meeting participants

 258

E.2.1 User-interface for UDOP Applications
Having architectural support from SCGMMS, this section will illustrate how a front-end
application supports UDOP Management.

Creating the Operating Picture
In Sensor Sharedlet, you can define the operating picture in 3 perspectives:
1. Showing the data of which sensor in the presentation area by drag-and-drop?
2. What filtering criteria are defined?
3. What descriptions given to some of the sensors?

The figure below shows a sample operating picture showing data of 4 sensors. The filter
is set to show only GPS, NXT Robot, RFID and Wii Remote.

To set the description of a sensor, follow these steps:

1. Right-click on the sensor and choose “Set Description”

 259

2. Type the description of the sensor

3. The description can be viewed as tool-tip text when the mouse is over the icon of the
sensor in the sensor list

 260

Saving a UDOP Template
Once the operating picture is defined, the user can save it to a UDOP Template by using
the UDOP Service. To save, follow these steps:

1. Define your operating picture, then right-click “Save As” on “UDOP Service” in the

sensor list.

 261

2. Enter the Label and Description of the UDOP Template and press “ok”

3. You can see that the new Template has been added to the list.

 262

Opening a UDOP Template
You can load UDOP Templates from UDOP Service by following these steps:

1. Supposed the current operating picture is showing the view of a single NXT Robot

and the user wants to load the Template “all sensors”. Right-click on the Template
and press “Open”

 263

2. The UDOP Template is loaded successfully

 264

Deleting a UDOP Template
1. To delete a UDOP Template, just right-click on the Template and press “delete”

2. The Template is deleted successfully

 265

Showing Change History of a UDOP Template
The user can update a UDOP Template by using the “save” function. Each subsequent
updated will be recoded as a growing list and they can be loaded. Please follow these
steps to learn how to update, browse and load change history of a UDOP Template.

1. Once you have defined your operating picture, right-click on the UDOP Template

you would like to update and click “save”

2. Type your new description and press “OK”

 266

3. The Template is updated. You can browse the update history of the Template by
right-click on the Template and press “Show Trail”

4. So far we have updated this Template once. The previous entry can be found at the
bottom of the list

 267

5. To open it, choose it in the combo box and press “Open”. The previous Template is
loaded.

 268

Filtering UDOP Templates
The user can filter UDOP Templates by using keywords. The system will search through
the labels and descriptions of all UDOP Templates and show only those which match
with the keyword. To do filtering, follow these steps:

1. Right-click on UDOP Service and choose “Set Filter”.

2. Enter the keyword and press “OK”. Here we would like to find all Templates with
“gps”.

 269

3. Only 3 Templates left now

 270

Appendix F - RFID Positioning (Localization)

RFID reader: RFCode M220 Reader
RFID Tag: RFCode M100 Active Tag

Introduction

There are many studies about RFID positioning in both academic and commercial world.
In commercial world, one of the most successful products is AeroScout System. They use
both Time Difference of Arrival (TDOA) and Received Signal Strength Indication (RSSI)
algorithm to determine tags’ location with 3 of its dedicated AeroScout Location
Receivers. (For details, please refer to http://www.aeroscout.com). The study by Applied
Physics Institute, Western Kentucky University showed that its outdoor accuracy was less
than 1m but its indoor accuracy was as large as 6m [RFIDWomble].

In academic world, there are 2 algorithms on focus. One is LANDMARC (LocAtioN
iDentification based on dynaMic Active Rfid Calibration)[RFIDNi]. Another one is
LEMT (Location Estimation using Model Trees)[RFIDYin][RFIDYin2]. [RFIDNi] said
that LANDMARC’s indoor accuracy was: 50 % of errors were within 1 meter while the
maximum error distance was around 2 meters with 4 RFID readers.
[RFIDYin][RFIDYin2] said that LEMT’s indoor accuracy was: 40% of errors were
within 0.5meter and 80% of errors were within 1.5 meters with a considerable number of
readers and reference tags.

According to our initial testing, with the following algorithm, errors were around 0.5
meter with one reader and one tag only.

Model Building Algorithm:

The signal strength (power per unit square) received by a RFID reader from a RFID tag is
inversely proportional to the square of the distance between the reader and the tag. So we
have:

2

1

r
P ∝

However, the output of the signal strength received by a RFID reader is in dBm. To
express an arbitrary power P as x dBm, we have:

1010
x

P =

 271

Assume that the signal strength received by a RDID reader from a RFID tag depends on
their distance and their surrounding disturbance according to a multiplicative model as
follow:

()FactortalEnvironmen
r

P ⋅∝
2

1

Suppose that there are a reference tag and a target tag, which follow multiplicative
models as below respectively:

()etT

etT

etT FactortalEnvironmen
r

P arg2
arg

arg

1 ⋅∝

()ference

ference

ference FactortalEnvironmen
r

P Re2
Re

Re

1 ⋅∝

Further assume that the effect of the environmental factors on the 2 tags is similar, then
we can cancel the environmental factors in the way as follows:

2
arg

2
Re

Re

arg

etT

ference

ference

etT

r

r

P

P
∝

By taking logarithm, we can obtain a linear model as follows:

ε++++= ferenceetTferenceetT raraPaaP Re3arg2Re10arg lnlnlnln

By rearranging, we have:

'ln'ln'ln''ln Re3arg2Re10arg ε++++= ferenceetTferenceetT PaParaar

Substituting 1010
x

P = , we have:
''lnln Re3arg2Re10arg ε++++= ferenceetTferenceetT xbxbrbbr

This is a linear model on which our positioning program is based.

Position Detection

Having built a model from a number of training data, one could test the model by setting
up known positions and apply the position detected by the model for comparison.

For an initial special case, the model will be applied to detect a position collinear with
and between the 2 RFID readers. In order to reduce the fluctuation of the detected

 272

position due to the instability of signal strengths detected, the system has implemented
some smoothing technique:

1. Weighted average of the distances from 2 readers

Suppose there are 2 readers: Reader 1 at a position p1 and Reader 2 at a position p2
with p1<p2. Let s1 and s2 be the distance of a target tag from Reader 1 and Reader 2
estimated by the detected signal strengths with the model respectively. Also, let s12
be the distance between the 2 readers. Then, the position of the target tag pt is
calculated in the following way:

() ()

21

2
22

21

1
11 11

1

11

1

ss

s
sp

ss

s
sppt

+
×−+

+
×+=

2. Moving average

After pt is obtained by the weighted average as above, the estimated position is
further smoothed by the moving average technique. Let pt,N(T) be the position of the
target tag pt estimated at time T. Then the k-step moving average at time T is:

k

pppp
p kTNtTNtTNtTNt

TNt
1)(,2)(,1)(,)(,

)(,
+−−− ++++

=
Κ

N(T) is the number of the position detection recorded by the system. T=0 is the time
when the system starts.

 273

Lists of Acronyms, Abbreviations, and Symbols

Term Meaning
Sensor-Centric Grid Middleware
Management System (SCGMMS)

A Middleware for sensor management

Sensor a time-dependent stream of information
with a geo-spatial location

User-defined Operating Picture (UDOP) An operating picture with all its aspect
being defined by the user dynamically

Common Operating Picture (COP) An operating picture which is common to
all the participants involved in a session

Loosely synchronous model In the system, there exists one user who is
the presenter. Under certain condition (e.g.
during presentation), all participants have
the COP same as the presenter. Under other
condition, each participant can have his/her
own operating picture

Grid Builder (GB) Part of SCGMMS for management of
sensors

Sensor Grid (SG) Part of SCGMMS for brokering sensors,
applications and GB

Sensor Sharedlet A sample UDOP application developed on
Impromptu’s Sharedlet framework which
utilize SCGMMS

Computational Service Sensors which does not take input from the
environment. Instead, they take output of
other sensors as their input, perform
various computations on the data, and
output the processed data finally

Sensor Service Abstraction Layer (SSAL) A common interface for Sensors and
Computational Service to communicate
with SCGMMS

End of Document

