
Page 1

 XML Metadata Services

Mehmet S. Aktas
1,2

, Sangyoon Oh
 1,2

, Geoffrey C. Fox
1,2,3

, Marlon E. Pierce
1

1
Community Grids Laboratory

2
Department of Computer Science

3
Department of Physics

Indiana University
{maktas, ohsangy, gcf, mpierce}@cs.indiana.edu

Abstract: As the Service Oriented Architecture (SOA) principles have gained
importance, an emerging need has appeared for methodologies to locate desired
services that provide access to their capability descriptions. These services must
typically be assembled into short-term service collections that, together with code
execution services, are combined into a meta-application to perform a particular task. To
address metadata requirements of these problems, we introduce a hybrid Information Service to
manage both stateless and stateful (transient) metadata. We leverage the two widely used web
service standards: Universal Description, Discovery, and Integration (UDDI) and Web Services
Context (WS-Context) in our design. We describe our approach and experiences when designing
“semantics”. We report results from a prototype of the system that is applied to mobile
environment for optimizing Web Service communications.

1. Introduction

As the Service Oriented Architecture (SOA) principles have gained importance,
an emerging need has appeared for methodologies to locate desired services
that provide access to their capability descriptions. As these services interact
with each other within a workflow session to produce a common functionality,
another emerging need has also appeared for storing, querying, and sharing the
resulting metadata needed to describe session state information.

Zhuge identifies the two mainstream research focuses in next-generation Web in [1]. The first
research theme investigates how to overcome the existing Web’s limitations such as difficulties
in supporting intelligent services. Some example areas of investigation of this approach are
Semantic Web and Web Services. The second research theme focuses on the Grid as an
alternative application platform. The Grid offers a model for solving computational science
problems by utilizing the idle resources of large numbers of distributed computers. Zhuge also
mentions the Semantic Grid research, as an extension to the Grid, evolved as result of integration
of the two aforementioned mainstream research themes.

As the SOA-oriented architectures gained popularity in both the traditional and Semantic Grid,

metadata management problems of Grid applications form an important area of investigation.

For an example, Geographical Information Systems (GIS) provide very useful problems in

supporting “virtual organizations” and their associated information systems. These systems are

comprised of various archival data services (Web Feature Services), data sources (Web-enabled

sensors), and map generating services. All of these services are metadata-rich, as each of them

must describe their capabilities (What sorts of features do they provide? What

geographic bounding boxes do they support?). Organizations like the Open Geospatial

Page 2

Consortium define these metadata standards.

These services must typically be assembled into short-term, stateful service collections that,

together with code execution services and filter services (for data transformations), are

combined into a composite application (e.g. a workflow).

To address metadata requirements of these problems, we introduce XML Metadata Services to

manage both stateless and stateful (transient) metadata. We use and extend the two Web Service

standards: Universal Description, Discovery, and Integration (UDDI) [2] and Web Services

Context (WS-Context) [3] in our design. We utilize existing UDDI Specifications and design an

extension to UDDI Data Structure and UDDI XML API to be able to associate both prescriptive

and descriptive metadata with service entries. We extend WS-Context specifications to provide

search/access/storage interface to session metadata.

In this paper, we describe the “semantics” of the proposed approach and give an overview of

implementation details. In addition, we also discuss a motivating application scenario and the

way that the hybrid system is being used. We report results from a prototype that has been

applied to mobile environment for optimizing Web Service communications.

2. Background

There have been some approaches introduced to provide better retrieval

mechanism by extending existing UDDI Specifications. UDDI-M [4] and UDDIe [5] projects

introduce the idea of associating metadata and lifetime with UDDI Registry service

descriptions where retrieval relies on the matches of attribute name-value pairs between service

description and service requests. In our design, we too extend UDDI’s Information Model, by

providing an extension where we associate metadata with service descriptions

similar to existing solutions where we use name-value pairs to describe

characteristics of services. Apart from the existing methodologies, we provide both

general and domain-specific query capabilities. An example for domain-specific query

capability could be XPATH and RDQL queries on the auxiliary and domain-specific metadata

files stored in the UDDI Registry.

The primary use of our approach is to support information in dynamically
assembled workflow-style Grid applications where services are tied together in
a dynamic workflow to solve a particular problem. There are varying specifications, such as
WSRF [6], WS-Context, WS-Transfer [7], and WS-Metadata Exchange [8], that have been
introduced to define stateful interactions among services. Among them, we have chosen the WS-
Context specifications to create a metadata catalog system for storing transitory metadata needed
to describe distributed session state information. Unlike the other specifications defining service
communications, WS-Context models a session metadata repository as an
external entity where more than two services can easily access/store highly
dynamic, shared metadata.

Page 3

3. Abstract Data Models

We have designed and built a novel architecture [9-10] for an hybrid Information

Service supporting handling and discovery of not only quasi-static, stateless metadata, but also

session related metadata. We based the information model and programming interface of our

system on two widely used specifications: WS-Context and Universal Description, Discovery

and Integration (UDDI).

We have identified following base elements of the semantics of proposed system: a) data

semantics, b) semantics for publication and inquiry XML API, and c) semantics for security and

access control XML API. These semantics have been designed under two constraints. First, both

UDDI and WS-Context Specifications should be extended in such a way that client applications

to these specifications can easily be integrated with the proposed system. Second, the semantics

of the proposed system should be modular enough so that it can easily be operated with future

releases of these specifications.

3.1. Extensions to UDDI Abstract Data Model

The extended version of UDDI information model consists of various additional entities to

existing UDDI Specifications (Detailed design documents can be found at

http://www.opengrids.org/extendeduddi). These entities are represented in XML. We describe

extensions to UDDI information model as following: serviceAttributeEntity: A service attribute

data structure describes metadata associated with service entities. Each “serviceAttribute”

corresponds to a piece of metadata and it is simply expressed with (name, value) pairs. A

“serviceAttribute” can be categorized based on custom classification schemes. A simple

classification could be whether the “serviceAttribute” is prescriptive or descriptive. A service

attribute may also correspond to a domain-specific metadata and could be directly related with

functionality of the service. leaseEntity: A lease entity describes the lifetime associated with

services or context. This entity indicates that the service or context will be considered alive and

can be discovered by client applications until the lease expires.

3.2. WS-Context Abstract Data Model

Although WS-Context Specification presents XML API to standardize behavior and

communication of the service, it does not define an information model. We introduce an

information model comprised of various entities. Here, entities are represented in XML and

stored by the service. The proposed information model composed of instances of the entities as

following. sessionEntity: A session entity describes a period of time devoted to a specific

activity, associated contexts, and services involved in the activity. A session can be considered as

an information holder for the dynamically generated information. Each session is associated with

its participant web services. Also, each session contains contexts which might be associated with

either services or session or both. contextEntity: A context entity describes dynamically

generated metadata that is associated either to a session or a service or both. leaseEntity: A lease

entity describes a period of time during which a service or a context can be discoverable. A lease

entity is associated to both session and context entities.

Page 4

3.3. Extended UDDI and WS-Context Inquiry and Publication API Sets

We present extensions/modifications to existing WS-Context and UDDI APIs to standardize the

additional capabilities of our implementation. We then integrate both extended UDDI and WS-

Context API sets within a uniform programming interface: Hybrid Grid/Web Information

Service. The API sets of the hybrid service can be grouped as following: ExtendedUDDI Inquiry,

ExtendedUDDI Publication, WS-Context Inquiry, WS-Context Publication, WS-Context

Security and Publisher XML APIs.

3.3.1. Extended UDDI Inquiry API

We introduced various APIs representing inquiries that can be used to retrieve data from the

hybrid service as following: find_service: Used to extend the out-of-box UDDI find service

functionality. The find_service API call locates specific services within the service. It takes

additional input parameters such as serviceAttributeBag, contextBag and Lease to facilitate

additional capabilities of the proposed system. find_serviceAttribute: Used to find

aforementioned serviceAttribute elements. The find_serviceAttribute API call returns a list of

serviceAttribute structure matching the conditions specified in the arguments.

get_serviceAttributeDetail: Used to retrieve semi-static metadata associated to a unique

identifier. The get_serviceAttributeDetail API call returns the serviceAttribute structure

corresponding to each attributeKey values specified in the arguments.

3.3.2. Extended UDDI Publication API

We introduce various extensions to UDDI Publication API set to publish and update semi-static

metadata associated with service. save_service: Used to extend the out-of-box UDDI save

service functionality. The save_service API call adds/updates one or more web services into the

service. Each service entity may contain one to many serviceAttribute and/or one to many

contextEntity elements and may have a life time (lease). save_serviceAttribute: Used to register

or update one or more semi-static metadata associated to a web service. delete_serviceAttribute:

Used to delete existing serviceAttribute element from the service.

3.3.3. WS-Context Inquiry API

We introduce extensions to WS-Context Specification for both inquiry and publication

functionalities. The extensions to WS-Context Inquiry API set are outlined as following:

find_session: Used to find sessionEntity elements. The find_session API call returns a session

list matching the conditions specified in the arguments. get_sessionDetail: Used to retrieve

sessionEntity data structure corresponding to each of the session key values specified in the

arguments. find_context: Used to find contextEntity elements. The find_context API call returns

a context list matching the criteria specified in the arguments. get_contextDetail: Used to retrieve

the context structure corresponding to the context key values specified.

3.3.4. WS-Context Publication API

We outline the extensions to WS-Context Specification Publication API set to publish and update

dynamic metadata as following: save_session: Used to add/update one or more session entities

into the service. Each session may contain one to many serviceAttribute, have a life time (lease)

and be associated with service entries. delete_session: Used to delete one or more sessionEntity

Page 5

structures. save_context: Used to add/update on or more context (dynamic metadata) entities into

the service. delete_context: Used to delete one or more contextEntity structures.

3.4. Authentication Mechanism

In order to avoid unauthorized access to the system, we adopted semantics from existing UDDI

Security XML API and implemented a simple authentication mechanism. In this scenario, each

publication/inquiry request is required to include authentication information (authInfo XML

element). Although this information may enable variety of authentication mechanisms such as

X.509 certificates, for simplicity, we implemented a username/password based authentication

scheme. A client can only access to the system if he/she is an authorized user by the system and

his/her credentials match. If the client is authorized, he/she is granted with an authentication

token. An authentication token needs to be passed in the argument lists of publication and

inquiry functions, so that these operations can take place.

3.4.1. WS-Context Security API

We adopt the semantics from out-of-box UDDI Security API set in our design. The Security API

includes following function calls. get_authToken: Used to request an authentication token as an

“authInfo” (authentication information) element from the service. The autInfo element allows the

system implement access control. To this end, both publication and inquiry API set includes

authentication information in their input arguments. discard_authToken: Used to inform hybrid

WSContext service that an authentication token is no longer required and should be considered

as invalid.

3.5. Authorization Mechanism

When a context is published to the system, by default an owner-relationship is established

between the publisher and the context. The owner of the context specify various permissions

such as what access rights a) the owner, b) the members of the owner’s group, and c) the rest of

the users will have to the context. For each of these categories there exist read, write and

read/write access rights. This basic security mechanism is also used in UNIX operating system.

Upon receiving a request, the system checks access permission rights specified in a context,

before granting inquiry/publication request to the context.

3.5.1. WS-Context Publisher API

We introduce various APIs to provide find/add/modify/delete on the publisher list, i.e.,

authorized users of the system. These APIs include the following function calls. find_publisher:

Used to find publishers registered with the system matching the conditions specified in the

arguments. save_publisher: Used to add or update information about a publisher.

delete_publisher: Used to delete information about a publisher with a given publisherID from the

metadata service. get_publisherDetail: Used to retrieve detailed information regarding one or

more publishers with given publisherID(s).

Given these capabilities, one can simply populate the hybrid service with metadata as in the

following scenario. Say, a user publishes a new service into the system. In this case, the user

Page 6

constructs both “metadataBag” filled with “serviceAttributes” and “contextBag” filled with

“contexts” where each context describes the sessions that this service will be participating. As

both the “metadataBag” and “contextBag” is constructed, they can be attached to a new

“service” element which can then be published with extended “save_service” functionality of the

hybrid service. On receiving publishing service metadata request, the system applies following

steps to process service metadata. First, the system separates the dynamic and static portions of

the metadata. Then the system issues the static portion (“metadataBag”) of the query on the

extended UDDI MySQL database, while it issues dynamic portion (“contextBag”) of the query

on the WSContext MySQL database. Further design documentation on hybrid XML Metadata

Service is available at http://www.opengrids.org.

4. An Application Usage Scenario: Handle Flexible Representation
(HHFR) System

In order to present the applicability of our system, we briefly outline a metadata storage

component (the Context-store) of an application use domain (mobile environment) in which the

proposed hybrid system is used.

4.1. An Overview of the Service Oriented Architecture for HHFR System

A novel Web Service architecture, Handheld Flexible Representation (HHFR) is developed for
optimizing Web Service performance in mobile computing which is physically constrained and
requires an optimized messaging scheme to prevent performance degradations. Despite its
important role in distributed computing, mobile computing hasn't reached its full potential
because of the limited availability of high speed wireless connections (e.g. third generation
cellular technology) as well as shortened the device’s use time when it is connected to a faster
channel and do more computation. Thus, applying current Web Service communication models
to mobile computing may result in unacceptable performance overheads caused by the encoding
and decoding of verbose XML-based SOAP messages.

Figure 1 Overview of HHFR Architecture

Page 7

HHFR let two end-points exchange information in a form of a message stream which is achieved
on both semantic and protocol level by which mobile devices are able to overcome possible
communication overheads caused by many factors: not only encoding/decoding overhead stated
above, but also high latencies of mobile connection using HTTP. It provides a framework to
negotiate characteristics of the message stream and representation between a mobile application
and a corresponding service node.

Message streaming on semantic level is achieved by two methods. First, HHFR provides a
scheme to separate the semantics of a message and its representation. Using Data Format
Description Language (DFDL)-style data description language, HHFR describes the data format
in Simple_DFDL language and the stub in the framework converts data from and to a preferred
representation. The other method used by HHFR for building a message stream is storing
unchanging/redundant message parts to hybrid information service (i.e. Context-store).

Let’s consider a scenario where a user has a cell phone, which is running a

videoconferencing application packaged as a “lightweight” Web Service. Such

service could be a conferencing, streaming, or instant messaging service. To optimize service

communication, the redundant/unchanging parts of the messages, exchanged between two

services, must be stored on a third-party repository, i.e., Context-store.

The redundant/unchanging parts of a SOAP message are XML elements which are
encoded in every SOAP message exchanged between two services. These XML
elements can be considered as “context”, i.e. metadata associated to a conversation. Here, hybrid
XML Metadata Service is being used as the Context-store [11]. Each context is referred
with a system defined URI where the uniqueness of the URI is ensured by
the system. The corresponding URI replaces the redundant XML elements in
the SOAP messages which in turn reduce the size of the message for faster message transfer.
Upon receiving the SOAP message, the corresponding parties in service conversation interacts
with the hybrid service to retrieve the context associated with the URIs listed in the SOAP
message.

4.2. Usage of the Context-store

The Context-store archives the static context information from a SOAP negotiation message,
such as unchanging or redundant SOAP headers, a Simple_DFDL document as a message
representation, and the character of the stream. By archiving, the Context-store can serve as a
meta-data repository for the participating nodes in the HHFR architecture (i.e. database
semantic). The hybrid metadata service is essential to HHFR architecture since the service
provides a method to store message parts and sharing them between messages in the stream
makes them related each other and ultimately reduce the size and complexity of them. The
Context-store in the architecture also guarantees a semantically persistent recovery from
disconnections which is more common in intermittent mobile domain than conventional
computing domain.

We integrate a hybrid metadata service with HHFR through a direct serialization of the SOAP
request message and a parsing SOAP without Axis SOAP-Java binding. It is because Axis
version for mobile environment is not developed yet. We use the kSOAP library for those
processes.

Page 8

4.3. Performance Improvements in HHFR with the Context-store

To show the effectiveness of using the hybrid metadata service (i.e. Context-store), we measured
a round trip time of both the full SOAP message and the optimized message with Context-store
usage. As stated, the size of the message can be reduced and the performance of the messaging
can also be increased.

The experiment uses various sizes of SOAP example documents as message; the round trip times
for a large message are collected using a WS-Security headers and a sample message with WS-
Addressing headers is used for a medium size. In this experiment, the messages between mobile
devices and services are exchanged over HHFR. The result show we save 83% of message size
on average and 41% of transit time on average by using the Context-store. The results are shown
in Table 1 and the configuration of the mobile devices and the service provider machine is given
in Table 2 and Table 3 respectively.

Message Size
Full SOAP Message Optimized Message

Ave.±±±±error Stdev Ave.±±±±error Stdev

Medium: 513byte (sec) 2.76±0.034 0.187 1.75±0.040 0.217

Large: 2.61KB (sec) 5.20±0.158 0.867 2.81±0.098 0.538

 Table 1 Summary of the Round Trip Time

Service Client: Treo 600

Processor ARM (144MHz)

RAM 32MB total, 24MB user available

Network Bandwidth 14.4Kbps (Sprint PCS Vision)

OS Palm 5.2.1.H

Java Version Java 2, Micro CLDC 1.1, MIDP 2.0

 Table 2 Summary of Mobile Device Configuration

Service Provider: Grid Farm 8

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB total

Network Bandwidth 100Mbps

OS GNU/Linux (kernel release 2.4.22)

Java Version Java 2 platform, (1.5.0-06)

 Table 3 Summary of Service Provider Machine Configuration

5. An Overview of the prototype implementation of the hybrid XML
Metadata Service

We assume a range of applications which may be interested in integrated results from two

different metadata spaces; UDDI and WS-Context. When combining the functionalities of these

two technologies in one hybrid service, we may enable uniform query capabilities on context

(service metadata) catalog. To this end, we have implemented a uniform programming interface,

i.e. a hybrid information service combining both extended UDDI and WS-Context. (see Session

Page 9

3 for detailed discussion on Information Model and XML API Sets of the hybrid service). Here,

we give an overview of the system components, their functionalities and discuss how these

components interact with each other.

Our implementation consists of various modules such as Query and Publishing, Expeditor,

Access, Storage and Sequencer Modules. The Query and Publishing Module is responsible for

performing operations issued by end-users. The Expeditor Module forms a generalized caching

mechanism. One consults the expediter to find how to get (or set) information about a dataset in

an optimal fashion. The Access and Storage modules are responsible for actual communication

between the distributed Hybrid Services in order to form a distributed replica hosting

environment. In particular, the Access module deals with client request distributions, while the

Storage module deals with replication. Finally, the Sequencer Module is used to label each

metadata which will be stored in the system.

When receiving a query, the Query and Publishing Module first processes the query. Then, it

forwards the query to Expediter, where the Expeditor Module checks whether the requested data

is in the cache. The Expeditor Module implements a generalized caching mechanism and forms a

built-in memory. It utilizes the TupleSpaces paradigm [12] which is a space based programming

providing mutual exclusive access that in turn enables data sharing between processes. For the

purposes of this research, a tuple is termed as context and the tuplespaces as ContextSpaces. The

Expeditor Module implementation is built on MicroSpaces libraries [13]. MicroSpaces is a free,

open-source, and a light-weight implementation of TupleSpaces paradigm. The MicroSpaces

codebase is expanded in the following ways in order to incorporate with our implementation.

First, a context management scheme is implemented to manage storage and dynamic replication

decisions for the contexts stored in the ContextSpace. This is succeeded by implementing a Java

Thread which is responsible for a) checking the ContextSpace for updates with frequent time

intervals, b) storing updated contexts into MySQL database and c) deciding on dynamic replica

placements. Second, an Expeditor Handler library is implemented in order to query/publish data

in local database. An Expeditor handler allows processes to do operations on the ContextSpace

as the primary storage. As the system keeps all metadata keys in memory, if the Expeditor

Module can not find the result, then the Query and Publishing Module will forward the query to

Access Module, where the Access Module multicast a probe message to available services

through a messaging infrastructure which is based on publish/subscribe paradigm. We use

NaradaBrokering (NB) [14] software which is an open-source and distributed messaging

infrastructure implementing publish/subscribe paradigm. This way the service communicates

with the original data sources to satisfy the query under consideration. The query is responded by

those services that host the matching context. At last, on receiving the results, the Query and

Publishing Module returns the results to the querying client.

6. EVALUATION

We have performed experiments to investigate the performance and scalability of
aforementioned hybrid service.

Page 10

Machine Configurations

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB total

Network Bandwidth 100Mbps

OS GNU/Linux (kernel release 2.4.22)

Java Version Java 2 platform, (1.5.0-06)

 Table 4 Summary of Linux Machine Configurations

We tested our code using various nodes of a cluster located at the Community Grids Laboratory
of Indiana University. This cluster consists of eight Linux machines that have been setup for
experimental usage. The cluster node configuration is given at Table 5. We wrote all our code in
Java, using the Java 2 Standard Edition. In the experiments, we used Tomcat Apache Server with
version 5.5.8 and Axis software with version 2 as a service deployment container.

Firstly we applied a performance experiment. The primary interest in doing this experiment is to
understand the baseline performance of the implementation of hybrid Information Service. The
performance evaluation of the service is done for inquiry and publication functions under normal
conditions, i.e., when there is no additional traffic.

In this experiment, we particularly investigate performance of our caching methodology for WS-

Context standard operations. We conduct following testing cases: a) A client sends queries to a

dummy service. The dummy service receives a message and then sends it back to the client with

no processing applied. b) A single client sends inquiry/publication requests to a hybrid

Information Service where the system grants the request with memory access. c) A single client

sends inquiry/publication requests to a hybrid Information Service where the system grants the

request with database access.

This experiment studies the effect of various overheads that might affect the system

performance. To do this, a dummy service, which is simply an echo service that returns the input

parameter passed to it, is being used. This service helps measuring various overheads such as

the network communication, client application initialization and container processing. By

comparing and contrasting the results from the dummy service and the actual hybrid service, the

actual time spent for pure server side processing can be observed. In this experiment, we use the

same Web Service container engine (Apache Axis with version 2) for all testing cases.

In our investigation of system performance, we conducted the testing cases when there were
5000 metadata published in the system. At each testing case, the client sends 200 sequential
requests for either publication or inquiry purposes. We record the average response time. This
experiment was repeated five times. Figure 3 illustrates the system performance when the inquiry
function was executed, while Figure 4 illustrates the same when the publication function was
executed. The detailed statistics corresponding to these testing cases is listed in Table 7 and
Table 8.

Page 11

We also conduct an experiment where we investigate the best possible backup-interval period to
provide fault-tolerance and high performance at the same time. Based on this experiment, we
observe the trade-off in choosing the value for backup-time-interval. If the backup frequency is
too high such as every 10 milliseconds, then the time required for a publication function is
around 10.2 milliseconds. If the backup frequency is every 10 seconds or lower, we find that
average execution time for publication operation stabilized to 7.46 milliseconds. Therefore, we
choose the value for backup frequency as every 10 seconds in our experiments.

Round Trip Chart for WS-Context Standard Operations for varying backup-interval times

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

10 100 1000 10000 100000

Backup-time interval (logaritmic scale)

A
v
e
ra

g
e
 E

x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c
)

Average for Publication with varying

backup-interval times

Standard Deviation for Publication

function with varying backup-interval

times

Average for Inquiry function with varying

backup-interval times

Standard Deviation for Inquiry Function

with varying backup-interval times

 Figure 2 Test results for backup frequency investigation

 Publication Function Inquiry Function

Kbytes mean stdev mean stdev

0.01 10.24 3.57 7.20 1.80

0.1 8.29 3.13 6.86 1.71

1 7.76 2.48 6.85 1.70

10 7.46 1.94 6.85 1.71

100 7.46 1.82 6.81 1.60

 Table 6 Statistics for the Figure 2

Figure 3 shows the performance results of inquiry function, while Figure 4 shows the
performance results of publication function. The empirical results show that a) for inquiry
function, we gain around 47% performance increase and b) for publication function, we gain
around 30% performance increase by employing a cache mechanism in our design. This
experimental study indicates that one can achieve noticeable performance improvements in
metadata management for standard inquiry and publication operations by simply employing a
memory built-in caching mechanism (the Expeditor Module), while preserving a certain fault-
tolerance level as the contexts have to be backed up offline in at most N time unit. Based on our

Page 12

investigation on backup frequency, we choose the value of N to be 10 seconds.

Round Trip Time Chart for WS-Context Inquiry Requests

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Repeated Test Cases

T
im

e
 (

m
s

e
c
)

Average Round Trip Time for Dummy

service

Average Round Trip Time for WS-

Context inquiry with memory access

Average Round Trip Time for WS-

Context inquiry with dabase access

Standard Deviation for Dummy Service

Standard Deviation for WS-Context

inquiry with memory access

Standard Deviation for WS-Context

inquiry with database access

 Figure 3 Round Trip Time Chart for Inquiry Requests

Statistics for the first test set from different publication request testing cases

 mean stdev

Test-1 6.64 1.40

Test-2 6.92 1.70

Test-3 13.73 2.08

Table 7 Statistics for the first test set from each testing cases conducted to test inquiry operation performance. (Test-
1: Dummy service testing case, Test-2: WS-Context inquiry with memory access testing case, Test-3: WS-Context

inquiry with database access testing case). The time units are in milliseconds.

Round Trip Time Chart for WS-Context Publication Requests

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

Repeated Test Cases

T
im

e
 (
m

s
e
c

)

Average Round Trip Time for Dummy

service

Average Round Trip Time for WS-

Context publication with memory

access

Average Round Trip Time for WS-

Context publication with dabase access

Standard Deviation for dummy service

Standard Deviation for WS-Context

database access

Standard Deviation for WS-Context with

memory access

 Figure 4 Round Trip Time Chart for Publication Requests

Page 13

Statistics for the first test set from different publication request testing cases

 mean stdev

Test-1 6.64 1.82

Test-2 7.46 1.40

Test-3 16.19 2.06

Table 8 Statistics for the first test set from each testing cases conducted to test publication operation performance.
(Test-1: Dummy service testing case, Test-2: WS-Context publication with memory access testing case, Test-3: WS-
Context publication with database access testing case.) Time units are in milliseconds.

By comparing the results of inquiry and publication functions when the request is granted with
database access, we observe that publication again requires more time compared to inquiry. This
performance difference is the effect the database commit that must take place for publication
operations.

Secondly, we conducted two testing cases on the system to investigate the scalability to answer
following two questions: a) how well does the system perform when the context payload size
gets increased, b) how well does the system perform when the message rate per second gets
increased.

In the first testing case, our goal is to quantify the degradation in response time when contexts,
with larger sizes, published/retrieved into/from the hybrid Service. We have done this by
increasing the context sizes until the response time degrades. In this experiment round trip time
was recorded at each inquiry/publication request message. The results are depicted in Figure 5
and Figure 6. The detailed statistics corresponding to this experiment is listed in

Table 9 and Table 10.

In the second testing case, we want to determine how well the number of users anticipated can be
supported by the system for constant loads. Our goal is to quantify the degradation in response
time at various levels of simultaneous users. In order to understand such performance
degradation, we evaluate standard hybrid Service functionalities with additional concurrent
traffic. We have done this by ramping-up the number of messages sent per second until the
system performance degrades. In this testing case, messages were sent of randomly within a
second. We again recorded the round trip time at each inquiry/publication request message and
applied this test for both publication and inquiry standard operations. The results are depicted in
Figure 7. The detailed statistics are given in Table 11.

Based on the results, we note that WS-Context standard operations performed well for small-size
context payloads. For example, Figure 5 indicates that the cost of inquiry and publication
operations remains the same, as the context’s payload size increases from 100Bytes up to
10KBytes. Figure 6 indicates the system behavior for the message sizes between 10Kbytes and
100Kbytes. Based on these results, we observe a linear increase for the time required to complete
a publication operation. By comparing the results from a dummy service, which returns the same
size message with no processing applied, and hybrid service, we observe that the pure server

Page 14

processing time remains the same as the size of the messages vary. In our implementation, we
keep all available metadata identifiers in memory as well as the modest size metadata values.
Thus, if the metadata value is above a certain value, which could be specified in the
configuration files, then the system makes a database access to store/retrieve corresponding
metadata. This way, the system is able to keep high number of modest size messages in
memory. Figure 6 also indicates the system performance behavior when the size of value
requires a database access for the context payload sizes ranging from 10 Kbytes to 100 Kbytes.
We observe an increase of ~7 ms when the publication operation requires a database access.

Round Trip Time Chart for WS-Context Standard Operations

0

5

10

15

20

25

30

0.1 1.0 10.0 100.0

context payload size (KB)

a
v
g

 r
o

u
n

d
 t

ri
p

 t
im

e
 (

m
il
li
s
e
c
o

n
d

s
) Average Round Trip Time for

publication operation

Average Round Trip Time for

inquiry operation

Standard Deviation for Publication

Operation

Standard Deviation for Inquiry

Operation

Figure 5 Logarithmic scale round trip time chart for inquiry and publication requests when context payload size
increases

WS-Context
inquiry operation

WS-Context
publication operation

Kbytes mean stdev mean stdev

0.1 7.18 1.34 7.38 1.70

1 7.17 1.73 7.43 1.75

10 7.50 1.79 8.58 1.67

100 15.50 1.77 28.76 1.75

Table 9 Statistics of Figure 5 for hybrid Information Service - WS-Context inquiry and publication operations with
changing context payload sizes. Time units are in milliseconds.

Page 15

Round Trip Time Chart for WS-Context Publication Operation

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

context payload size (KB)

a
v

g
 r

o
u

n
d

 t
ri

p
 t

im
e

 (
m

il
li

s
e

c
o

n
d

s
)

Average Round Trip Time for Dummy

Service

Standard Deviation for Dummy

Service

Average Round Trip Time when

metadata value is kept in Cache

Standard Deviation when metadata

value is kept in cache

Average Round Trip Time when

metadata value is kept in database

Standard Deviation when metadata

value is kept in database

 Figure 6 Round Trip Time chart for publication requests when context payload size increases from 10Kbytes to
100Kbtyes

 Dummy service
Hybrid Service with
memory access

 Hybrid-Service with
 database access

Kbytes mean stdev mean stdev mean stdev

10 8.58 1.67 8.93 1.68 16.33 1.79

20 10.78 1.66 11.68 1.67 18.78 1.86

30 12.52 1.72 13.50 1.74 21.23 1.76

40 15.72 1.67 16.42 1.67 24.12 1.62

50 18.17 1.73 18.87 1.75 27.57 1.65

60 19.94 1.41 20.73 1.40 29.43 1.68

70 22.29 1.76 22.98 1.76 31.98 1.72

80 24.85 1.83 25.70 1.83 35.17 2.05

90 27.38 1.83 28.29 1.84 37.37 1.58

100 29.73 1.94 30.64 1.93 40.51 2.42

Table 10 Statistics of Figure 6 for hybrid service - WS-Context publication operations with changing context
payload sizes. Time units are in milliseconds

Page 16

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

message rate (message/per second)

a
v

g
 r

o
u

n
d

 t
ri

p
ti

m
e

(m
s

)
inquiry message rate

publication message rate

Figure 7 Average hybrid service - WS-Context inquiry and publication response time chart - response time at
various levels of message rates per (simultaneous users) per second

WS-Context inquiry operation

messages/second mean stdev

167 5.45 0.65

751 5.84 0.97

778 5.9 0.91

940 47.05 33.52

942 92.25 45.13

WS-Context publication operation

messages/second mean stdev

186 5.65 10.31

359 5.86 39.49

469 10.69 53

479 21.36 203.65

480 70.57 300.56

Table 11 Statistics of the experiment depicted in Figure 7. These measurements were taken with the service when
the inquiry and publication request is granted with memory access. Time units are in milliseconds.

Based on the results depicted in Figure 7 and listed in Table 11, we determine that large number
of concurrent inquiry requests may well be responded without any error by the system and do not
cause significant overhead on the system performance. We observe a threshold between 800 and
940 inquiry messages per second, for the maximum number of concurrent inquiries that can be
handled by the system within a second. This threshold is mainly due to the limitations of Web
Service container, as we observe the similar threshold when we test the system with an echo
service that returns the input parameter passed to it with no message processing is applied.

Based on the results depicted in Figure 7 and listed in Table 11, we also determine that a
significant number of concurrent publication requests may well be responded without any error

Page 17

by the system and do not cause big overhead on the system performance. We observed a
threshold, ~ 360 - 480 publication messages per second, for the maximum number of concurrent
publication requests that can be handled by the system within a second. This threshold is mainly
due to the fault-tolerance level. As the publication message rate is increased, the number of
updated/newly written contexts (within a unit time interval) in the ContextSpaces (TupleSpaces)
is also increased. In turn, the time required for writing the larger number of updates into MySQL
database is increased. Thus, we see higher fluctuations in the response times for increasing
number of simultaneous publication requests by examining the standard deviations results listed
in Table 11. This experimental study points out the inevitable trade-off between the fault-
tolerance and scalability. The lower the fault-tolerance level, the higher the scalability numbers
would be for publication operations.

7. Conclusions

We examined the hybrid Grid Information Service as an important tool for knowledge and

information grids. We focused on the semantics and identified the base elements of the

architecture: data semantics and semantics for XML API sets such as publication, inquiry,

security and access control. With this identification made, we discussed our approach and

experiences in designing “semantics” for hybrid service. Also, we outlined a real-life application

use scenario to identify a way and reason of using hybrid information service in Grids. We

implemented the system as open-source software which has been used successfully in varying

types of Grids: collaboration, earth science and so forth. We discussed the prototype

implementation design and presented the results of the proposed approach.

Acknowledgement: This work was supported in part by the U.S. National Aeronautical and
Space Administration’s Advanced Information Systems Technology program. The authors would
like to thank Prof. Gordon Erlebacher for his critique on the Hybrid Information Service project
and Community Grids Laboratory graduate research assistants who have been using the system
in their applications.

8. References

[1] Zhuge, H., China's E-Science Knowledge Grid Environment, IEEE Intelligent Systems,
19 (1), (2004) 13-17

[2] Bellwood, T., et al. UDDI Version 3.0.1: UDDI Spec Technical Committee Specification.
Available from http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

[3] Bunting, B., et al. K. Web Services Context (WS-Context), available from
http://www.arjuna.com/library/-specs/ws_caf_1-0/WS-CTX.pdf

[4] V. Dialani. UDDI-M Version 1.0 API Specification. University of Southampton – UK.
02.

[5] Ali ShaikhAli, el al. UDDIe: An Extended Registry for Web Services. Proc. of the
Service Oriented Computing: Models, Architectures and Applications, SAINT-2003 IEEE
Comp. Society Press., USA

[6] Czajkowski, K., et al. 2004. The WS-Resource Framework.

Page 18

http://www.globus.org/wsrf/specs/ws-wsrf.pdf

[7] Alexander, J., et al. 2004 The Web Service Transfer (WS-Transfer)
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wstransfer.pdf

[8] Ballinger, K., et al. 2004 The Web Services Metadata Exchange
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

[9] Aktas, M. S., Fox, G. C., Pierce, M. Fault Tolerant High Performance Information
Services for Dynamic Collections of Grid and Web Services FGCS Special issue from SKG2005
Beijing China November, 2005.

[10] Aktas, M. S., Fox, G. C., Pierce, M., Managing Dynamic Metadata as Context. The 2005
Istanbul International Computational Science and Engineering Conference (ICCSE2005),
Istanbul, Turkey.

[11] Oh, S., Aktas, M. S., Pierce, M., Fox, G. C., Optimizing Web Service Messaging
Performance Using a Context Store for Static Data, 5th WSEAS Int. Conf. on
Telecommunications and Informatics, Turkey, 05

[12] Gelernter, N. C. a. D. (1989). "Linda in Context." Commun. ACM, 32(4): 444-458.

[13] Coleman, R., et al., MicroSpaces software with version 1.5.2 available at
http://microspaces.sourceforge.net/. May 2004.

[14] Fox, S. P. a. G. (2003). NaradaBrokering: A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware-2003, Rio Janeiro, Brazil.

