
Information Federation in Grids

Mehmet S. Aktas
#+*1

, Geoffrey Fox
#+2

, Marlon Pierce
#3

#
Computer Science Department, Indiana University

Bloomington, IN, USA
+
Community Grids Laboratory, Indiana University

Bloomington, IN, USA
*
Informatics Technologies Institute

Marmara Research Center, Gebze, TR
1
mehmet.aktas@bte.mam.gov.tr

2
gcf@indiana.edu

3
mpierce@indiana.edu

Abstract— Independent Grid projects have developed their own

solutions to Information Services. These solutions are not

interoperable with each other, target vastly different systems and

address diverse sets of requirements. To address these

challenges, we designed a novel architecture for a Grid

Information Service that provides unification, federation and

interoperability of major grid information services. The

proposed approach forms an add-on information system that

interacts with the local information services and assembles their

metadata instances. We introduce a prototype implementation

and present its evaluation. The results indicate that the proposed

approach achieves unification and federation of custom

implementations of grid information services with negligible

processing overheads.

Index Terms— Grid Information Services, Information Federation,

Metadata Services, Hybrid Services

I. INTRODUCTION

The data requirements of e-Science applications have been

increased over the years. These applications present an

environment for acquiring, processing and sharing data among

interested parties. Service Oriented Architecture (SOA)

principles have recently gained great importance [1] to

manage data in such data-intensive application environments.

Independent projects have developed their own customized

implementations of information service specifications to

manage information in SOA-based applications. These

solutions are not interoperable with each other, target vastly

different systems and address diverse sets of requirements [2].

They require greater interoperability to enable communication

between different grid projects, so that they can share and

utilize each other’s resources. Furthermore, they do not

provide uniform interfaces for publishing and discovery of

information. In turn, this creates a limitation on the client-end,

as the users have to interact with more than one service.

Zhuge identifies the two mainstream research in the next-

generation of Web in [3]: a) Web’s challenges in supporting

intelligent services, b) computational science problems to

utilize the idle resources of large numbers of distributed

computers. To overcome the two aforementioned mainstream

research themes, much work is needed to improve the existing

Web including the Web Services, Semantic Web and Web

Intelligence [4].

This research addresses the challenges encountered in Web

Services area and proposes a solution to a fundamental

problem, which is to locate services of interest in different

SOA-based, independent and distributed Grid application

domains. It introduces novel ideas on how to integrate

information coming from different Grids at application-level.

It describes a system, which is highly applicable in semantic

computing, knowledge networking, and grid computing

application use domains.

To present the applicability of this investigation, we identify

metadata management requirements of two application use

domains: Global Multimedia Collaboration System

(GlobalMMCS [5]) and Pattern Informatics Geographical

Information System Grid (PI GIS-Grid [6]). GlobalMMCS is

a peer to peer collaboration environment, where

videoconferencing sessions, with any number of widely

distributed services, can take place. GlobalMMCS requires

persistent archival of session metadata to provide

replay/playback and session failure recovery capabilities. The

PI GIS-Grid is a workflow-style Grid application, which

requires storage of transitory metadata needed to correlate

activities of participant entities. Both application domains

require a unified information service, which can support large-

scale, read-mostly, quasi-static and small-scale, highly-

updated, dynamic information. Although much work has been

done on information management in Grid Information

Services, to our best knowledge, none of the previous work

addresses a hybrid approach, which integrates different

information services.

We propose a Grid Information Service Architecture called

Hybrid Grid Information Service (Hybrid Service) to cope

with these challenges. The Hybrid Service unifies one-to-

many information services and their communication protocols.

It federates information coming from different information

services under a unified architecture.

Section 2 reviews the literature. Section 3 presents the

architectural design. Section 4 explains how to use the

proposed system. Section 5 discusses the prototype

implementation. Section 6 analyses the prototype evaluation.

Section 7 concludes the paper with future research directions.

II. LITERATURE REVIEW

Information integration is the process of unifying information

residing at multiple sources with a unified access interface [7].

Unifying heterogeneous data sources under a single

architecture has been target of many investigations [8].

Previous work on such merger between the heterogeneous

information systems can be broadly categorized as global-as-

view and local-as-view integration. In former category, data

from several sources are transformed into a global schema and

can be queried with a uniform query interface. In the latter

category, queries are transformed into specialized queries over

the local databases. Although the global schema approach

captures expressiveness capabilities of customized local

schemas, it does not scale up to high number of data sources.

In the local-as-view approach, each local-system’s schema

needs to be mapped against each other to transform the

queries. In turn, this leads to large number of mappings that

need to be created and managed.

The proposed system differs from local-as-view approaches,

as its query transformation happens between a unified schema

and local schemas. It utilizes and leverages previous work on

global-as-view approach for integrating heterogeneous local

data services. The previous work mainly focuses on solutions

that automate the information federation process at semantics

level. Different from the previous work, the proposed

approach presents a system architecture that enables

information integration at application level. To our best

knowledge, the proposed system is a pioneer work in Grids, as

it describes a Grid Information Service architecture that

enables unification and federation of information coming from

different metadata systems.

An effort towards interoperability in Grid Community has

been promoted by the Open Grid Forum (OGF). The OGF has

started a research activity called GIN (Grid Interoperation

Now) to manage interoperation among major grid projects

such as EGEE [9] and UK National Grid Service [10]. The

OGF suggests guidelines for interoperability in such a way

that each grid's internal information system will enable

accessing information from other information services. The

GIN working group utilizes Grid Laboratory Uniform

Environment (Glue) Information Service Schema, which is an

effort to support interoperability between US and Europe Grid

systems. In this research, we introduce a system architecture

that meets the interoperability guidelines suggested by OGF

GIN work group. To facilitate testing of the proposed system,

we experimented the integration of the Glue Schema with the

Hybrid Services and showed that it worked in [27].

The interoperability aspect of the system requires addressing

wide range of Web Service applications and providing an

interoperation-bridge across the existing implementations of

information services. In this research, to achieve

interoperability, along with the Hybrid Service, we also

provided implementations (Extended UDDI XML Metadata

Service and WS-Context XML Metadata Service) for two

widely used and WS-I compatible information service

specifications: Universal Description, Discovery, and

Integration (UDDI) [11] and Web Services Context (WS-

Context) [12]. The UDDI Specification is a widely used

standard that enables services advertise themselves and

discover other services. The WS-Context Specification

defines a simple mechanism to share and keep track of

common information shared between multiple participants in

Web Service interactions. The extended UDDI XML

Metadata Service [13], [25] implements an extended version

of existing out-of-box UDDI Specification. The WS-Context

XML Metadata Service [14], [26] implements existing out-of-

box Web-Service Context Specification.

Information security is a fundamental issue in Grid

Information Services, as the Grid/Web Service metadata may

not be open to anyone. Although, we are aware of its

necessity, as it is not the main focus of this particular study,

we leave out the investigating and leveraging of research in

the information security area as future work. We concentrate

on the unification, federation and interoperability aspects of

the system.

Managing interactions of different processes through an

associated memory is a well studied area in distributed

systems [15]. A pioneer work in this research field,

TupleSpaces, was first introduced by Gelernter and Carriero at

Yale University [16] as a part of Linda programming

language. It forms an associated shared memory through

which two or more processes can exchange/share data. It

provides mutual exclusive access, associative lookup and

persistence for a repository of tuples that can be accessed

concurrently. Sun Microsystems introduced a java based

specification (the JavaSpaces Specification [17]) for Linda

and provided its implementation. MicroSpaces [18], an open-

source java implementation of the JavaSpaces Specificion,

introduces an alternative collection of java libraries and

provide API semantics identical with Sun’s implementation.

IBM has a tuplespaces implementation called TSpaces [19].

Linda has been extended to support different types of

communication and coordination between systems and has

increased some interest in diverse communities such as the

ubiquitous computing (sTuples [20]) and Semantic Web

(Triple Spaces [21], Semantic Web Spaces [22]). Despite of

their important features, previous java implementations of

TupleSpaces, such as Sun’s implementations, have high

complexity and require a number of daemon services to run

including naming services and restart services. MicroSpaces

implements a multi-threaded application, free of daemon

services, however it is still dependent on RMI to regulate

interactions of entities.

The proposed system employs an associated memory

paradigm, TupleSpaces, to support mutually exclusive access,

which in turn enables data sharing between processes. It

presents similarities and differences with previous java

implementations of TupleSpaces paradigm. Similar to Java-

based implementations, it implements the JavaSpaces

Specification that was also introduced by Sun Microsystems.

Different from Sun’s implementation, it introduces a light-

weight version of JavaSpaces that does not rely on existence

of daemon services such as naming services. Different from

MicroSpaces, it does not depend on RMI technology to

regulate interactions of communicating parties.

III. HYBRID GRID INFORMATION SERVICE

The proposed information service is an add-on system that

interacts with local information services and unifies them in a

higher-level architecture. It is named as Hybrid Grid

Information Service (Hybrid Service). It provides unification,

federation and interoperability of Grid Information Services. It

assembles metadata instances coming from different local

information systems. It is able to interact with clients, which

may be supporting different communication protocols. It also

provides a uniform access interface and manages one-to-many

local information services.

Figure 1 illustrates a detailed view of the abstraction layers.

(1) The Uniform Access Interface layer provides uniform

access interface. It consists of multiple XML APIs for varying

schemas such as Extended UDDI and WS-Context. It allows

clients with different communication protocols interact with

the system. (2) The Request-processor layer extracts incoming

requests. It supports access control and notification

capabilities. The access control capability is responsible for

enforcing controlled access to the Hybrid Service. The

notification capability enables the interested clients to be

notified of the state changes in metadata. (3) TupleSpaces

Access API and Tuple Pool layers are for in-memory storage.

The TupleSpaces Access API supports all query/publish

operations that can take place in memory. The Tuple Pool is a

generalized in-memory storage mechanism, which provides

mutually exclusive access and associative lookup capabilities.

Client

TUPLE SPACE API

TUPLE POOL

Extended UDDI

WS API

TUPLE processor

Lifetime

Management

Persistency

Management

Fault Tolerance

Management

WS-Context

WS API
….

Request processor

Access Control Notification

Extended UDDI WS-Context ….

Information Resource Manager
PUB-SUB Network Manager

Unified

Schema API

Dynamic Caching

Management

Filter

ClientClient Client

Glue

Uniform Access

Layer

In-memory

storage

Information

Resource Manager

Figure 1 The abstraction layers of the Hybrid Service from top-to-bottom.

(4) The Tuple-processor layer processes metadata stored in

the Tuple Pool and provides following capabilities: LifeTime

Management, Persistency Management, Dynamic Caching

Management and Fault Tolerance Management. The LifeTime

Management is about evicting tuples with expired leases. The

Persistency Management deals with backing-up newly-stored /

updated metadata into the information service back-ends with

pre-defined backup-interval times. The Fault Tolerance

Management has to do with creating replicas of the newly

added metadata. The Dynamic Caching Management is about

replicating/migrating metadata, under high demand, onto

replica servers, where the demand originated. (5) The Filter

layer is for information integration. It provides decoupling

between the Hybrid Service and sub-systems. It does filtering

and transformations based on the user-defined rules and

provides mapping between a unified schema and local

schemas. (6) The Information Resource Manager layer

manages low-level information service implementations. It

handles the management of local information service

implementations and provides a uniform, single interface to

sub-information systems. (7) The Pub-Sub Network Manager

layer manages communication between Hybrid Service

instances. It handles communication between the distributed

Hybrid Service nodes to support access-request distribution,

replica-content placement and consistency enforcement.

IV. USING THE HYBRID GRID INFORMATION SERVICE

On receiving the client request, the Request-processor extracts

the incoming request. The Request-processor processes the

incoming request with an appropriate XML API. It knows

which XML API to use, simply by checking with the

specification-mapping metadata file. (Note that, for each

supported schema, there is a user-provided specification

metadata file, which defines all necessary information for the

functions that can be executed on the instances of the schema

under consideration.) Then, the Request-processor extracts the

inquiry/publish request from the incoming message and

executes these requests on the Tuple Pool.

Once the request is extracted and processed, the system

executes its access control and notification capabilities. With

these capabilities, the system ensures controlled access and

informs interested parties of the state changes happening in

the metadata. This way, the clients can keep track of

information regarding a particular metadata instance.

On receipt of a request, the system first checks, if the

metadata is available in the memory by checking with the

metadata-key table. (Note that, the system keeps all locally

available metadata keys in a table in the memory.) If the

requested metadata is not available in the local system, then

the request is forwarded to the Pub-Sub Network Manager to

probe other Hybrid Services for the requested metadata. If the

metadata is in the in-memory storage, then the Request-

processor utilizes the Tuple Space Access API and executes

the query in the Tuple Pool.

Once the metadata instances are stored in the Tuple Pool as

tuple objects, the Tuple-processor is being used to check with

the Tuple Pool every so often for newly-added / updated

tuples. If the metadata is to be stored to the information

service backend (for persistency reasons), the Information

Resource Manager is used to provide connection with the

back-end resource. If the metadata is to be replicated/stored

into other Hybrid Service instances (for fault-tolerance

reasons), the Pub-Sub Network Manager is used for managing

interactions with the rest of the Hybrid Services.

V. PROTOTYPE IMPLEMENTATION

The Hybrid Service prototype implementation [23] consists of

various modules such as Query-Publish, Expeditor, Filter,

Resource Manager, Sequencer, Access-Storage.

The Query-Publish module implements the Uniform Access

Interface and the Request-processor abstraction layers. It is

responsible for processing the incoming requests issued by

end-users. It provides a uniform access interface with two

capabilities: Access control and Notification. Access control:

We implemented a simple access control mechanism, which

requires an authentication token to restrict who can perform

inquiry/publish operation. The authorization token is obtained

from the system at the beginning of client-server interaction

and enables authorized access to the system. Notification: We

also implemented a notification scheme, which is achieved by

utilizing publish-subscribe based messaging scheme. This

enables users of Hybrid Service to utilize a push-based

information retrieval capability, where the interested parties

are notified of the state changes. We use NaradaBrokering

software [24] as the messaging infrastructure and its libraries

to implement subscriber and publisher components.

The Expeditor module implements the TupleSpaces Access

API, Tuple Pool and Tuple-processor abstraction layers. The

Tuple Spaces Access API provides an access interface on the

Tuple Pool, which is a generalized in-memory storage

mechanism. We implemented a lightweight version of the

JavaSpaces Specification [17], an implementation

specification of TupleSpaces paradigm [16], for in-memory

storage. The Tuple-processor handles with metadata stored in

Tuple Pool and provides various capabilities. The first

capability is the LifeTime Management. Each metadata

instance may have a lifetime defined by the user. If the

metadata lifetime is exceeded, then it is evicted from the

TupleSpace. The second capability is the Persistency

Management. The system checks with the tuple space every so

often for newly added /updated tuples and stores them into the

database for persistency of information. The third capability is

the Fault Tolerance Management. The system checks with the

tuple space every so often for newly-added/updated tuples and

replicates them in other Hybrid Service instances using the

publish-subscribe (pub-sub) messaging system. This

capability also provides consistency among the replicated

datasets. The fourth capability is the Dynamic Caching

Management. With this capability, the system keeps track of

the requests coming from the pub-sub system and

replicates/migrates tuples to other information services where

the high demand is originated.

The Filter module implements the Filter abstraction layer and

provides decoupling between the Hybrid Information Service

and the sub-systems. The Hybrid Service supports a federation

capability to address the problem of providing integrated

access to heterogeneous metadata. To facilitate the testing of

this capability, a Unified Schema is introduced by integrating

different information service schemas at semantic-level. If the

metadata is an instance of the Unified Schema, such metadata

needs to be mapped into the appropriate local information

service back-end. To achieve this, the Filter module provides

a mapping capability based on the user-defined mapping rules.

The Filter module obtains the mapping rule information from

the user-provided mapping rule files. As the mapping rule file,

we use the XSL (style-sheet language for XML)

Transformation (XSLT) file. The XSLT provides a general

purpose XML transformation. If the metadata is an instance of

the unified schema, then the system maps this metadata to the

default local information service backend. Here, the mapping

happens between the Unified Schema and the local

information service schemas (such as WS-Context or

extended UDDI schemas). If the metadata is an instance of a

local schema, then the system does not apply any filtering, and

backs-up this metadata to the corresponding local information

service back-end.

The Information Resource Manager module, illustrated in

Figure 2, implements the Information Resource Manager

abstraction-layer and manages local information services. The

Resource Manager module separates the Hybrid System from

its sub-systems. It knows which sub-system classes are

responsible for a request and what method needs to be

executed by processing the specification-mapping metadata

file that belong the local information service under

consideration. On receipt of a request, the Information

Resource Manager checks with the corresponding mapping

file and obtain information about the specification-

implementation. Such information could be about a class

(which needs to be executed), it’s function (which needs to be

invoked), and function’s input and output types, so that the

Information Resource Manager can delegate the handling of

incoming request to appropriate sub-system. By using this

approach, the Hybrid Service can support one-to-many

information services as long as the sub-system

implementation classes and the specification-mapping

metadata (SpecMetadata) files are provided. The Resource

Handler is an external component to the Hybrid Service. It is

used to interact with sub-information systems. Each

specification has a Resource Handler, which allows

interaction with the database. The Hybrid System classes

communicate with the sub-information systems by sending

requests to the Information Resource Manager, which

forwards the requests to the appropriate sub-system

implementation. Although the sub-system object (from the

corresponding Resource Handler) performs the actual work,

the Information Resource Manager seems as if it is doing the

work from the perspective of the Hybrid Service inner-classes.

This approach separates the Hybrid Service implementation

from the local schema-specific implementations. The

Resource Manager module is also used for recovery purposes.

We have provided a recovery process to support persistent in-

memory storage capability. This type of failure may occur if

the physical memory is wiped out, when power fails or

machine crashes. This recovery process converts the database

data to in-memory storage data (from the last backup). It runs

at the bootstrap of the Hybrid Service. This process utilizes

user-provided “find_schemaEntity” XML documents to

retrieve instances of schema entities from the information

service backend. Each “find_schemaEntity” XML document

is a wrapper for schema specific “find” operations. At the

bootstrap of the system, firstly, the recovery process applies

the schema-specific find functions on the information service

backend and retrieves metadata instances of schema entities.

Then, the recovery process stores these metadata instances

into the in-memory storage to achieve persistency.

The Sequencer module implements the synchronization to

impose an order on the actions that take place in the system.

The responsibility of the Sequencer module is to assign a

timestamp to each metadata, which will be stored into the

Hybrid Service. To do this, the Sequencer module interacts

with Network Time Protocol (NTP)-based time service

implemented by NaradaBrokering software. This service

achieves synchronized timestamps by synchronizing the

machine clocks with atomic timeservers available across the

globe.

Information Resource

Manager

Resource

Handler

DB1

Resource

Handler

DB2

……

…

Extended UDDI
WS-

Context

…..

Hybrid

Service Class

Hybrid

Service Class

Hybrid

Service Class

…..

Figure 2 The Information Resource Manager separates the Hybrid Service

implementation from the implementations of local metadata-systems.

The Access-Storage module implements the Pub-Sub Network

Manager abstraction layer. It is responsible for

communication between the distributed Hybrid Service nodes

to support the functionalities of a replica hosting system.

These functionalities include access-request distribution,

replica-content placement and consistency enforcement. It

utilizes publisher and subscriber sub-components to provide

communication among the instances of Hybrid Services. On

receiving the access/storage/update requests from the

Expeditor module, it publishes the request to the

corresponding topics. On receiving the access/storage/update

requests from the Network, it carries out the operation on the

Tuple Pool by utilizing TupleSpace Access API.

VI. PROTOTYPE EVALUATION

A prototype evaluation is conducted to explore performance

and scalability research issues for Unified Schema XML API

standard operations. In this investigation, the following

research questions are addressed:

a) What is the performance of the Hybrid Service for the

Unified Schema XML API standard operations?

b) How do Unified Schema XML API functions compare

against other supported Schema XML APIs such as WS-

Context XML API?

c) What is the scalability of Hybrid Service prototype for

Unified Schema XML API standard operations?

For this evaluation, we used eight nodes of a Linux cluster

located at the Community Grids Laboratory of Indiana

University. The configuration of the cluster nodes and the

software environment for the experiments is listed in Table 1.

In the experiments, the performance is evaluated with respect

to response time at client applications. The response time is

the average time from the point a client sends off a query until

the point the client receives a complete response. The

performance of the system is tested with a multithreaded

client program that takes the following arguments: a) the

number of threads (N) and b) number of messages (T) to be

fired by each thread. We illustrate our timing methodology in

the pseudo code below.

SET the number of threads to N

SET the number of transaction to be executed to T

 CREATE N number of threats

 STOP the threads until N threads are created and ready

ThreadSleep(random(1000))

 FOR X = 1 to T

 SET start to 0, stop to 0

 START time

 Hybrid_Service_API(..)

 STOP time

 PRINT (elapse time)

 END FOR

We conducted two experiments to understand the behavior of

the system with respect to information federation. These are

performance and scalability experiments.

Program Testing Setup

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB total

Network Bandwidth 100 Ambits/sec. (among the cluster nodes)

OS GNU/Linux (kernel release 2.4.22)

Compiler

Java 2 Standard Edition v.1.5 with maximum

heap size of 1024 MB using the –Xmx1024m

option

Servlet container
Tomcat Apache Server v.5.5.8 with max.

multiple thread number of 1000

Web Service container Apache Axis v.2.0

Database MYSQL with v.4.1

Timing function
Java 2 with v.1.5 – timing function

“nanoTime()”

 Table 1 Program testing environment configuration

The performance experiment is conducted to understand the

baseline performance of the Hybrid Service. This evaluation

investigates the performance of system for standard Unified

Schema operations and compares it against the performance of

WS-Context Schema standard operations, when there is no

additional traffic. To do this, following testing cases are

completed: (1) a single client sends publish requests to an

echo service which receives a message and then sends it back

to the client with no processing applied; a single client sends

publish requests to a Hybrid Service, which grants the request

with memory access; (2) a single client sends publish requests

to a Hybrid Service, which grants the request with database

access. In the experiment, both the Hybrid Service and testing

client application were located in two different servers located

in the Linux cluster. This experiment was repeated five times

and we record the average response time. The simulation

parameters are given in Table 2. Note that, the Hybrid Service

backs-up information every so often for persistency reasons.

During the investigation, we observed that if the backup

frequency is every 10 seconds or lower, average execution

time for publish operation stabilized to ~7.5 milliseconds.

Therefore, we chose the value for backup frequency as every

10 sec in the experiments.

Simulation parameters

Metadata size 1.7 KB

Registry size 5000 metadata

Backup interval time Every 10 milliseconds

Observation number 200

Table 2 Simulation parameters. Metadata examples for the experiments are

given in the Appendices A and B.

Analyzing the results depicted in Figure 3, we observe that the

Hybrid Service achieves noticeable performance

improvements in metadata management for standard

operations by simply employing an in-memory storage

mechanism, while preserving a certain persistency level. We

also observe that the Unified Schema operations require more

time (compared to WS-Context Schema operations) for

database accesses, since the system requires additional time to

perform transformation between the Unified Schema and WS-

Context Schema instances.

Figure 3 Average round-trip time chart for metadata inquiry requests for five-

time repeated test cases.

The scalability experiment is conducted to understand how

well the Hybrid Service - Unified Schema XML API performs

under increasing message rates. To answer this question, we

ramped-up the work load (number of messages sent per

second) until the system performance degrades. The results

are depicted in Figure 4. The simulation parameters are the

same as in Table 2.

Analyzing the results, we conclude that Hybrid Service

Unified Schema XML API standard operations performed

well under increasing message rates. For inquiry request

messages, we observe a threshold value after which the

system performance starts decreasing due to high message

rate. This threshold is mainly due to the limitations of Web

Service container, as we observe the similar threshold when

we test the system with an echo service that returns the input

parameter passed to it with no message processing is applied.

0

5

10

15

20

25

1 2 3 4 5

T
im

e
 (

m
ill

is
e

co
n

d
s)

Repeated Test Cases
Unified

database

WS-Context

database

Unified

memory

WS-Context

memory

Echo service

For publish request messages, we observe another threshold

value where the system performance starts dropping down.

Figure 4 Average round trip time chart for metadata inquiry requests under

increasing message rates.

As the publish message-rate is increased, the number of

updated/newly written metadata in the Tuple Pool is also

increased. In turn, the action that writes and transforms the

larger number of updates into the default local information

service back-end affects the system performance and causes

higher fluctuations in the response times (particularly for

increasing number of simultaneous publish requests). We use

water-marking technique to add stability to the system and

overcome this problem. The high-mark reflects the threshold

of a single host. Exceeding the high water-mark is not

desirable, as it degrades the system performance. Thus, to

provide stability, if the workload becomes above the high-

watermark, incoming messages are forwarded to other nodes

that can handle the requests. The discussion on distribution

and load balancing is left out, since it is out of scope. This

paper mainly focuses on application-level information

integration in Grid Information Services.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

We introduced a novel architecture for a Hybrid Grid

Information Service supporting handling and discovery of not

only quasi-static, stateless metadata, but also session related

metadata. The Hybrid Service is an add-on architecture that

runs one layer above existing information service

implementations. It provides unification, federation and

interoperability of Grid Information Services. To achieve

unification, the Hybrid Service is designed as a generic system

with front and back-end abstraction layers supporting one-to-

many local information systems and their communication

protocols. To achieve federation, the Hybrid Service is

designed to support information integration technique in

which metadata from several heterogeneous sources are

transferred into a global schema and queried with a uniform

query interface. To manage both quasi-static and dynamic

metadata and provide interoperability with wide-range of Web

Service applications, the Hybrid Service is integrated with two

widely-used, WS-I compatible Web Service Specifications:

UDDI and WS-Context and their implementations: Extended

UDDI XML Metadata Service [25] and WS-Context XML

Metadata Service [26].

We performed a set of experiments to evaluate the

performance and scalability of the Hybrid Service to

understand whether it can achieve information federation in

Grids with acceptable costs. The evaluation study pointed out

that the Hybrid Service achieves information federation

amongst different Grid systems with negligible processing

overheads. It also pointed out that the Hybrid Service scales to

high number of message rates while supporting integration

and preserving persistency of information. We intend to

further improve the proposed work by investigating an

information security mechanism for the distributed Hybrid

Service network.

ACKNOWLEDGMENT

The Advanced Information Systems Technology Program of

NASA’s Earth-Sun System Technology Office supported this

research.

APPENDIX: XML METADATA EXAMPLES

A. CONTEXT XML METADATA

<?xml version="1.0" encoding="UTF-8"?>

<wscontext:context

 xmlns:wscontext="http://datatype.fthpis.cgl/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <contextKey>ABCCE800-AB35-11DA-A4FC-

C80C5880CB18</contextKey>

 <serviceKey>ABCCE800-AB35-11DA-A4FC-

C80C5880CB19</serviceKey>

 <sessionKey>ABCCE800-AB35-11DA-A4FC-

C80C5880CB20</sessionKey>

 <name>context://GIS/PI/ABCCE544-CX35-11EA-BVFC-

C34C7789CB33</name>

 <value>context:///GIS/VC/3ea29661-2d5e-11db-8c56-

cf37cd202027/3ebd7162-2d5e-11db-8c56-cf37cd202027/cost</value>

 <valueType>String</valueType>

 <lease>

 <timeout>1000</timeout>

 <isInfinite>false</isInfinite>

 </lease>

 <version>1</version>

</wscontext:context>

B. UNIFIED SCHEMA XML METADATA

<?xml version="1.0" encoding="UTF-8"?>

<unified_schema:service

 xmlns:hybrid_schema="http://datatype.generic.fthpis.cgl/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <serviceKey>856679F0-B4B6-11DA-A1DD-

E719F6E12358</serviceKey>

0

10

20

30

40

50

60

0 200 400 600 800 1000

a
v
e

ra
g

e
 r

o
u

n
d

 t
ri

p
 t

im
e

 (
m

se
c)

message rate (message/per second)

inquiry message rate

publish message rate

 <serviceType>Web Feature Service</serviceType>

 <name>Service Name</name>

 <description>

 <value>Service Description</value>

 </description>

 <serviceEndpointAddress>http://gf7.ucs.indiana.edu:8092/wfs-

streaming-service/services/wfs</serviceEndpointAddress>

 <metadata>

 <metadataKey>7115B940-A95E-11DA-B940-

CB4E3E38D98F</metadataKey>

 <serviceKey>856679F0-B4B6-11DA-A1DD-

E719F6E12358</serviceKey>

 <name>session-id</name>

 <value>0001</value>

 <lease><isInfinite>true</isInfinite></lease>

 <version>1</version>

 </metadata>

 <lease><isInfinite>true</isInfinite></lease>

</unified_schema:service>

REFERENCES

[1] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,

Ferris, C., and Orchard, D. W3C Web Service Architecture

Document, available at http://www.w3.org/TR/ws-arch/, 2004.

[2] Zanikolas, S., Sakellariou, R., A Taxonomy of Grid Monitoring

Systems. . Future Generation Computer Systems, 21(1), 2005: p.

pp. 163--188.

[3] Zhuge, H., The Knowledge Grid, World Scientific Publishing Co.

2004.

[4] Zhuge, H., China’s E-Science Knowledge Grid Environment. IEEE

Intelligent Systems, 19 (1) (2004) 13-17, 2004.

[5] Wu, W., et al., Grid Service Architecture for Videoconferencing, in

"Grid Computational Methods" Edited by M.P. Bekakos, G.A.

Gravvanis and H.R. Arabnia.

[6] Aydin, G., Aktas, M. S., et al., SERVOGrid Complexity

Computational Environments (CCE) Integrated Performance

Analysis. GRID' 05: Proceedings of the 6th IEEE/ACM

International Workshop on Grid Computing, November 2005.

[7] Lenzerini, M., Data Integration: A Theoretical Perspective, in

PODS: 243-246. 2002.

[8] Ziegler, P., Dittrich, K., Three Decades of Data Integration - All

Problems Solved?, in WCC: 3-12. 2004.

[9] EGEE, The Enabling Grids for E-science (EGEE) project - Web

site is available at http://www.eu-egee.org/ Access date: October,

2007.

[10] NGS, The National Grid Service (NGS) - Web site available is at

http://www.grid-support.ac.uk/, Access date: 9/08.

[11] Bellwood, T., Clement, L., and von Riegen, C., UDDI Version

3.0.1: UDDI Spec Technical Committee Specification, available at

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm. Access date: 9/08.

[12] Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J.,

Newcomer, E., Webber, J., and Swenson, K. , Web Services

Context (WS-Context) ver 1.0, Access Date: Sept 7, 08, available

at http://www.arjuna.com/-library/specs/ws_caf_1-0/WS-CTX.pdf.

[13] Aktas, M. S., Extended UDDI XML Metadata Service web site,

available at http://www.opengrids.org/extendeduddi, Access Date:

Sept 7, 2008

[14] Aktas, M. S., Fault Tolerant High Performance Information

Service - FTHPIS - Hybrid WS-Context Service web site, available

at http://www.opengrids.org/wscontext, Access date: 9/2008.

[15] Tanenbaum, A., Van Steen, M., Distributed Systems Principles and

Paradigms. 2002. Cited in page 326.

[16] Carriero, N., Gelernter, D., Linda in Context. Commun. ACM,

32(4): 444-458, 1989.

[17] Sun_Microsystems, JavaSpaces Specification Revision 1.0, 1999

available at http://www.sun.com/jini/specs/js.ps.

[18] Coleman, r., Bhardwaj, A., Dellucca, A., Finke, G., Sofia, A., Jutt,

M., Batra, S., MicroSpaces software with version 1.5.2 available

at http://microspaces.sourceforge.net/. 2004.

[19] Wyckoff, P., Lehman, T. J., McLaughry, S., T Spaces. IBM

Systems Journal, 1998. 37(3): p. 454-474.

[20] Khushraj, D., Lassila, O., Finin, T. sTuples:Semantic Tuple Spaces.

in IEEE Proceedings of the First Annual International Conference

on Mobile and Ubiquitous Systems:Networking and Services

(MobiQuitous'04). 2004.

[21] Krummenacher, R., Strang, T., Fensel, D. Triple Spaces for and

Ubiquitous Web of Services. in W3C Workshop on the Ubiquitous

Web. March 2005. Tokyo, Japan.

[22] Tolksdorf, R., Nixon, L., Liebsch, F., Nguyen, M.D., Bontas, P.E.,

Semantic Web Spaces, in Technical Report B-04-11. July 2004,

Freie Univesitat Berlin, Institut fur Informatik: Berlin, Germany.

[23] Aktas, M. S., Hybrid Grid Informatin Service web site, available at

http://www.opengrids.org/hybrid. Access date: 9/2008.

[24] Pallickara, S. and G. Fox. NaradaBrokering: A Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer

Grids. in Lecture Notes in Computer Science. 2003: Springer-

Verlag.

[25] Aktas, M. S., XML Metadata Services, Concurrency and

Computation: Practice & Experience, Volume 20, Issue 7, May

2008.

[26] Aktas, M. S., Information Services for Dynamically Assembled

Semantic Grids, SKG’ 05: Proceedings of the First International

Conference on Semantics, Knowledge and Grid, November 2005.

[27] Aktas, M. S., Information Federation in Grid Information Services,

Doctoral Thesis, Indiana University, 2007.

