
An Architecture for Supporting Information in
Dynamically Assembled Semantic Grids

Mehmet S. Aktas1, 2, Geoffrey C. Fox1, 2, 3, Marlon Pierce1

1 Community Grids Laboratory, Indiana University
501 N. Morton Suite 224, Bloomington, IN 47404
{maktas, gcf, mpierce}@cs.indiana.edu

http://www.communitygrids.iu.edu/index.html
2 Computer Science Department, School of Informatics, Indiana University

3 Physics Department, College of Arts and Sciences, Indiana University

Abstract. Many large semantic systems can be described as Semantic Grids of
Semantic Grids with large amounts of relatively static services and associated
semantic information combined with multiple dynamic regions (sessions or
subgrids) where the semantic information is changing rapidly. We design a hy-
brid Information Service supporting both the scalability of large amounts of
relatively slowly varying data and a high performance rapidly updated Informa-
tion Service for dynamic regions. We use the two web service standards UDDI
and WS-Context in our system. We report initial results from a prototype that is
applied to sensor and collaboration grids.

1 Introduction

Semantic Grid [1-2] is an approach to Grid where computing resources, services and
data can be expressed in standardized ways which can be understood and processed
by Grid applications. This way, resources and services can be discovered, linked
together and plug into appropriate data sources in an automatic fashion. Major Grid
Web Service families are identified as Data, Execution, Desktop, Information and
Collaboration Grids in [3]. Each and every style of Grid Web Service family can also
be identified as Semantic Grid if they built on the important W3C Semantic Web [4-
5] initiative. By analogy with categorization described in [3], we can identify Seman-
tic Grids as Semantic Data, Semantic Execution, Semantic Desktop, Semantic Infor-
mation and Semantic Collaboration Grids. From all of these parts of identified Se-
mantic Grid Web Service families, comprehensive science applications can be built.
Members of these different types of Semantic Grids may be united into a collection of
Semantic Grid services that are needed to build application Grid systems such as
myGrid [6], the Collaboratory for Multi-scale Chemical Science (CMCS) [7], Scien-
tific Annotation Middleware (SAM) [8] and Tupelo [9]. This unification can be called
as “Semantic Grid of Semantic Grids”.

E-Science Semantic Grids can often be thought of as dynamic collection of semantic
subgrids where each subgrid is a collection of modest number of services that assem-
bled for specific tasks such as forecasting an earthquake [10]. We term an actively
interacting (collaborating) set of managed services as a Gaggle where services are put
together for particular functionality. Semantic Grid may consist of several gaggles
each featuring intense local activity with less intense inter-gaggle interactions. Each
Gaggle maintains most dynamic information which is the session related metadata
generated as result of interactions among Web/Grid Services.

Handling and discovery of dynamic information requires high performance, fault
tolerant information systems. These information systems better be decentralized,
relocate metadata to nearby locations of interested entities and provide efficient ac-
cess, storage of the information, as the dynamic metadata needs to be delivered on
tight time constraints within a Gaggle. Information Services (IS) support discovery
and handling of services through metadata and are vital components of Grids [11].

We identify following problems in Information Services supporting both Classical
and Semantic Grids. First, Grid Information Services need to be able to support dy-
namically assembled services. Classic Grid Information Services [12-13] however are
not built along this model. Second, Information Services should scale in numbers and
geographical area and be tolerant to failures while providing high performance in
serving the requests. Most existing solutions [16] however have centralized compo-
nents and do not address scalability, fault tolerance and performance issues. Third,
Information Services need to be able to take into account user demand changes when
making decisions on metadata access and storage. Classical Grid Information Ser-
vices [16] however store the metadata on pre-defined locations and ignore changing
user demands. We therefore see this as an important area of investigation. This paper
presents our design of an architecture and prototype to address the identified prob-
lems above. We describe a novel architecture for fault tolerant and high performance
Information Services in order to manage distributed, dynamic session related meta-
data while providing consistent, uniform interface to both static and dynamic meta-
data.

Our architecture intends to meet the following requirements: a) Providing a hybrid
Information Service supporting both static, relatively slowly varying information and
dynamic, rapidly updated information. b) Providing a dynamic metadata hosting envi-
ronment where metadata can be relocated based on changing user demands. c) Main-
taining information regarding sessions and also state of entities in these sessions d)
Enabling discovery of participant entities within a session. e) Enabling dynamic dis-
covery of data-systems hosting the metadata in consideration. f) Enabling discovery,
retrieval and reconstruction of any state that might need to be associated with a failed
entity in a session.

This paper is organized as follows. Section 2 reviews the state of art in existing in-
formation services and replica hosting environments. Section 3 reviews our design for
information systems to support Gaggles paying particular attention to distributed data

management aspects of the system. We discuss the status and the evaluation of our
prototype in Section 4. In Section 5, we summarize and discuss future work.

2 Background

Most existing decentralized solutions to Information Services can be broadly catego-
rized by the manner of in which decentralization is realized such as a) hierarchical,
structured and b) unstructured, peer-to-peer (ad-hoc). a) In structured architectures,
components of the system are strictly controlled and may depend on each other for
publishing and discovery of information. For an example, Globus Monitoring and
Discovery System (MDS4) [12] has a hierarchical architecture where there is a single
top-level Information Service that presents a uniform interface to clients to access
data, while the data is collected by lower-level information providers. Another exam-
ple is the structured P2P systems where the nodes in the systems are equally enabled
and controlled and service information is disseminated to all nodes [14-15]. b) Un-
structured P2P architectures can be characterized as systems where there is lack of
control on the capabilities of the system nodes and where there is no organizational
structure. For an example, Relational Grid Monitoring Architecture (R-GMA) [13]
presents a P2P architecture where consumers directly connect to information provid-
ers to retrieve the data without intermediary nodes. An extensive survey on Grid
Information Services can be found at [16]. Architectures with pure decentralized
storage models have focused on the concept of distributed hash tables (DHT) [14-15].
DHT approach assumes possession of an identifier such as hash table that identifies
the service that need to be discovered. Each node forwards the incoming query to a
neighbor based on the calculations made on DHT. Although, DHT approach provides
good performance on routing messages to corresponding nodes, it has various limita-
tions such as primitive query capabilities. Here, we focus on management of dynami-
cally generated and widely-scattered metadata. We design an architecture which can
be defined as an unstructured P2P approach to P2P/Grid environment. We use multi-
publisher message broadcasting through a topic-based publish/subscribe messaging
system, which support access and storage decisions among distributed nodes. Unlike
DHT approach, our architecture takes into account user demand changes when pro-
viding metadata access and storage.

Well-defined descriptions of resources, services and data constitute metadata. Meta-
data can be represented using varying metadata models such as XML Schemas or
Semantic Web [4] languages (RDF, OWL, etc.). Here, we are mainly concerned with
managing the metadata and delivering to clients, not with knowledge processing. We
presume the metadata models to be application-specific and not defined by us. To this
end, we are concentrating on the distributed computing problems of managing meta-
data in the Semantic Grid, not the “semantic” part.

We use replication, a well-known and commonly used technique to improve the qual-
ity of metadata hosting environment of our architecture. Sivasubramanian et al. [17]
gives an extensive survey on research efforts on designing and developing World

Wide Web replica hosting environments, so does Robinovich in [18] paying particu-
lar attention to dynamic replication. As the nature of our target data is dynamic, we
focus on data hosting systems that are handling with dynamic data. These systems
can be discussed under following important design issues: a) distribution of client
requests among data replicas b) selection of hosting environments for replica place-
ment c) consistency enforcement. a) Distribution of client requests is the problem of
redirecting a client to the most appropriate replica server. Most existing solutions to
this problem are based on DNS-Server such as in [19-20]. These solutions utilize a
redirector/proxy server that obtains physical location of collection of data-systems
hosting a replica of the requested data, and choose one to redirect client’s request. b)
Replica placement is another issue that deals with selecting data hosting environ-
ments for replica placement and deciding how many replicas to have in the system.
Existing solutions, that apply dynamic replication, monitor various properties of the
system when making replica placement decisions [20-21]. For instance, Radar [20]
replicates/migrates dynamic content based on changing client demands. Spread [21]
considers the path between the data-system and client and makes decisions to repli-
cate dynamic content on that path. c) Consistency enforcement issue has to do with
ensuring all replicas of the same data to be the same. Various techniques have been
introduced in consistency management. For instance, Akamai project [19] introduces
versioning where a version number is encoded to document identifier, so that client
would only fetch the updated data from the corresponding data hosting system. Radar
[20] applies primary-copy approach where an update can be done only on the pri-
mary-copy of the data. Our architecture mainly differs from these systems in the fol-
lowing points. First, the intended use of our architecture is not to be a web-scale host-
ing environment. The scale of the system that we are looking at is in the order of
thousand entities participating in a session in which these entities dynamically gener-
ate metadata. Second, existing solutions to dynamic replication assume all data-
hosting servers to be ready and available for replica placement and ignore “dyna-
mism” in the network topology. In reality, data-systems can fail anytime and may
present volatile behavior. We use a pure Peer-to-Peer approach, which is based on
multi-publisher multicast mechanism, when distributing access and storage requests
to data-systems.

3 Information Services

We designed a novel architecture of an Information Service presenting a uniform
interface to support handling and discovery of not only quasi-static, stateless meta-
data, but also session related metadata. In order to be compatible with existing
Web/Grid Service standards, we based the interface of our system on the WS-Context
[22] and Universal Description, Discovery and Integration (UDDI) Specifications
[23] from OASIS (http://www.oasis-open.org). We extend both specifications to
provide advanced capabilities and fulfill aforementioned requirements of our system.

Our approach is to utilize the existing state-of-art systems for handling and discover-
ing static metadata and address the problems of distributed management of dynamic

http://www.oasis-open.org/

metadata. The intended use of our approach is to support information in dynamically
assembled Semantic Grids where “real-time” decisions are being made on which
services to tie together in a dynamic workflow to solve a particular problem. The
intended scale for our design is in the order of thousand entities that are participating
in a session in e-Science Classical or Semantic Grids. We discuss various issues in
building a dynamic metadata hosting environment in the following section.

3.1. Fault Tolerant High Performance Information Services

There are various issues in a data hosting environment that need to be answered. One,
for instance, is fault tolerance and another is high performance. We use replication
technique to provide fault tolerance and high performance which improves the quality
of our data hosting environment. As the data-systems in a data hosting environment
can fail, replication technique can provide the corrupted data by switching into one of
the remaining replicas which in turn provides fault tolerance. Replication technique
can also lead into high performance by reducing the time between a client issuing a
request and receiving the corresponding response. As the nature of our data is very
dynamic, we use dynamic data replication technique, where data replicas may be
created, deleted, or migrated among hosting data-systems based on changing user
demands [18]. We address two important issues of dynamic replication such as re-
quest distribution and replica placement in the following sections.

3.2. Access Algorithm

Access algorithm distributes client requests to appropriate replica hosting data-
systems. Our model is based on pure Peer-to-Peer approach where each node can
probe all other nodes in the network to look up metadata. A primary role of access
algorithm is the discovery of one or more data-systems hosting the requested meta-
data. This discovery process consists of two steps: data-system discovery and access.
The first step concerns with selection of data-systems that can answer the client re-
quests. The second step is to inform the data-system that is most appropriate for han-
dling the request. In the first step, to find a metadata, a node sends a probe message to
all other nodes through a software multicast mechanism; target data-systems that host
the metadata matching the probe send a response directly to requestor node. Here,
response message consists of information regarding how well the data-system can
handle this query. For instance, such information may include proximity information
between the client and the data-system. On receiving response messages, requestor
node chooses the most appropriate data-system that can handle the request. In the
second step, the requestor node sends the client request to the chosen data-system
particularly asking to handle the request.

3.3. Storage Algorithm

Storage algorithm selects data-systems for replica placement and decides how many
replicas to have in the system. In our design, storage decisions are made autono-
mously at each node without any knowledge of other replicas of the same metadata.
The storage decision is made based on the client requests served by that node. Storage
process consists of two separate steps such as metadata placement and metadata crea-
tion. The first step has to do with selection of data-systems that should hold the rep-
lica and the second step has to do with metadata replica creation. In the first step,
each node (data-system) runs the storage algorithm which defines client request
thresholds for replica creation and deletion. If a metadata is in high demand which is
above a pre-defined threshold, then the metadata is replicated. If a metadata is in low
demand which is below a pre-defined threshold, it will be deleted. To replicate a
metadata, a node sends a “storage” message to all other nodes through a software
multicast mechanism; target data-systems, that have available space, send a respond
to directly requestor node. Here, response message consists of various decision met-
rics such as client proximity information. On receiving the response messages, replica
placement algorithm chooses the most appropriate data-system to replicate the meta-
data. In the second step, the requestor node sends a replica creation message directly
to the chosen data-system asking to store a replica of metadata in consideration. This
process creates a dynamic metadata storage in which metadata is stored based on
changing client demands.

3.4. Multi-publisher Multicasting Communication Middleware

An importing aspect of our system is that we utilize software multicasting capability
which is an important communication medium supporting the ability to send out ac-
cess and storage requests to the all nodes of the system. Any node can publish and
subscribe to topics which in turn create a multi-publisher multicast broker network as
communication middleware. Here, the publisher does not even know the location and
identities of receivers. It publishes a message to a topic to which all nodes subscribe.
We use NaradaBrokering (NB) [25] publish/subscribe mechanism as a communica-
tion middleware for message exchanges between peers. NB is a free, open source,
software which may be thought of a as topic-based publish/subscribe messaging sys-
tem: interested entities can register to a NB node to send and receive messages on
particular topics.

3.5. System Components

Our proposed architecture consists of various modules such as Query and Publishing,
Expeditor, Access, Storage and Sequencer Modules. Architectural design of our sys-
tem is illustrated in Figure 1.

3.5.1. Context Query and Publishing Modules: These modules present a uniform
Web/Grid Service interface for publishing/discovering both static and dynamic meta-

data. We use two Web Service standards UDDI and WS-Context to be compatible
with existing service standards. When a client posts a query, the query is processed
and separated into two as dynamic and static queries. The dynamic query is passed to
Expediter Module, where the cache is queried for requested metadata. The static
query however is posed on the external UDDI Service. On receiving the results from
both ends, the Query Module forwards the combined results to the client.

Fig.1. Architecture of an Information Service running on each peer

3.5.2. Expediter Module: This is a generalized caching mechanism. Each node has a
particular expediter. One consults the expediter to find how to get (or set) information
about a dataset in an optimal fashion. The Expeditor forms a built-in memory and it
maintains metadata objects in Context Spaces. We term our implementation of Tuple
Spaces concept [26] as Context Spaces. Context Spaces allow us to apply space
based programming to provide mutual exclusive access and associative lookup.

3.5.3. Access Module: This module runs the aforementioned access algorithm. It
supports request distribution by publishing messages to topics in NB. It also receives
messages (in respond to client request) coming from other peers and forward these
query messages to Expediter Module.

3.5.4. Storage Module: This module runs the storage algorithm. It interacts with
Expediter Module and applies the storage algorithm to local metadata. If the metadata
is decided to be replicated, then Storage Module advertises this replication by multi-
casting it to available peers through NB publish/subscribe mechanism. Storage mod-
ule also interacts with Sequencer module in order to label each incoming metadata
with a time stamp.

3.5.5. Sequencer Module: This module ensures that an order is imposed on ac-
tions/events that take place in a session. The Sequencer Module interacts with Storage
Module and labels each metadata. This module interacts with Network Time Protocol
(NTP) clients to achieve synchronized timestamps among the distributed nodes. This
is to ensure that the replicated datasets are consistent with each other, while ensuring
that the ACID properties are satisfied. We discuss an example scenario on how these
components interact with each other in the following section.

3.6. Example Scenario

When receiving a query, Query Module first processes the query and extracts the
dynamic metadata portion of the query. Then, the Query Module forwards the query
to Expediter, where the Expeditor Module checks whether the requested data is in
Context Spaces. If the Expeditor Module can not find the result in Context Space or if
the requested metadata is expired, then the query is forwarded to JDBC Handler to
query the data in local database. If the query asks for external metadata, then the
Expediter will forward the query to Access Module, where the Access Module multi-
cast a probe message to available Information Services through NB and communi-
cates with those Information Services that are the original data sources for this query.
The query is responded by an Information Service which may be the best qualified
Information Service is to handle this query.

4 System Status and Evaluation

We implemented Information/UDDI Services handling and discovery of static meta-
data based on the WS-I standard UDDI Service Specifications [24]. Our implementa-
tion is a general purpose extension to the UDDI information model that allows us to
insert both user-defined and arbitrary XML metadata into the repository. Here, XML
metadata may be searched using XPATH queries, a standard way for searching XML
documents (http://www.w3.org/TR/xpath).

We also implemented a centralized version of Information/WS-Context Services
handling and discovery of dynamic, session related metadata. Here, session related
metadata is short-lived and dependent on the client. We extended existing WS-
Context Specifications to provide advanced capabilities to manage session metadata
between multiple participants in Web Service interactions. Both UDDI and WS-
Context implementation of Information Services have been successfully applied to
sensor and collaboration grids applications.

We have done preliminary testing on the centralized version of the Information Ser-
vice’s primary operations which are GetContext and SetContext [10]. Three meas-
urement sets were made using a 50 byte string for GetContext. Each of the three sets
consisted of 100 individual measurements. We also performed 3 sets of 100 meas-

urements on the SetContext method. In average, we measure ~116 ms for GetContext
and ~125 ms for SetContext functions to be performed. Both of these measurements
are internal timings to process requests. We note that these were subject to very large
variations. We conclude from this that the actual internal processing time for small
metadata pieces is typically smaller than the network invocation time and does not
create an actual overhead.

5 Conclusions and Future Work

In this paper, we identified an important gap in Information Services that is lack of
support for dynamic information in dynamically assembled Semantic Grids. We have
presented an architecture that addresses key issues of managing distributed dynamic
metadata such as a) providing an efficient metadata access and storage methodology
by taking into account changes in user demands and b) providing a P2P approach for
access/storage request distribution among the peers of the system to capture the dy-
namic behavior both in metadata and the network topology. We discussed status of
our implementation and report initial performance results from a prototype that is
applied to sensor and collaboration grids.

Work remains to further develop a distributed metadata hosting environment by em-
ploying novel dynamic replication techniques and to evaluate the system as whole
through extensive performance tests.

Acknowledgement: This work is supported by the Advanced Information Systems
Technology Program of NASA's Earth-Sun System Technology Office.

References

1. Semantic Grid Community Portal, http://www.semanticgrid.org
2. David De Roure, Nicholas Jennings and Nigel Shadbolt, The Semantic Grid: A Future e-

Science Infrastructure, Chapter 17 of Grid Computing: Making the Global Infrastructure a
Reality edited by Fran Berman, Geoffrey Fox and Tony Hey, Jon Wiley & Sons, Chiches-
ter, England, ISBN 04-470-85319-0, March 2003. http://www.grid2002.org

3. Geoffrey Fox, Shrideep Pallickara, and Marlon Pierce, Building a Grid of Grids: Messag-
ing Substrates and Information Management to appear as chapter in book "Grid Computa-
tional Methods" Edited by M.P. Bekakos, G.A. Gravvanis and H.R. Arabnia

4. W3C Semantic Web Site, http://www.w3.org/2001/sw/
5. IEEE Intelligent Systems March/April 2001 pages 24-79, Semantic Web Issue
6. R. Stevens, A. Robinson, and C.A. Goble, myGrid: Personalised Bioinformatics on the

Information Grid, in Proceedings of 11th International Conference on Intelligent Systems
in Molecular Biology, 29th June–3rd July 2003, Brisbane, Australia, published Bioinfor-
matics Vol. 19 Suppl. 1 2003, i302-i304, web site: http://www.mygrid.org.uk

http://www.semanticgrid.org/
http://www.grid2002.org/
http://www.w3.org/2001/sw/
http://www.mygrid.org.uk/

7. James D. Myers, et al, A Collaborative Informatics Infrastructure for Multi-scale Science,
Proceedings of the Challenges of Large Applications in Distributed Environments
(CLADE) Workshop, June 7, 2004, Honolulu, HI, p 24-33.

8. Scientific Annotation Middleware (SAM) Project, available from,
http://collaboratory.emsl.pnl.gov/docs/collab/sam/

9. Tupelo Project, available from http://dlt.ncsa.uiuc.edu/wiki/index.php
10. Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,

Ahmet Sayar, SERVOGrid Complexity Computational Environments(CCE) Integrated
Performance Analysis, Accepted as poster and short paper in Grid2005, Seattle, USA

11. B. Plale, P. Dinda, and G. Von Laszewski., Key Concepts and Services of a Grid Informa-
tion Service. In Proceedings of the 15th International Conference on Parallel and Distrib-
uted Computing Systems (PDCS 2002), 2002

12. Globus Toolkit 4 - Information Services: Monitoring & Discovery System (MDS4),
available from http://www.globus.org/toolkit/mds/

13. A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks,
and J. Leake, R-GMA: An Information Integration System for Grid Monitoring, Proceed-
ings of the 11th International Conference on Cooperative Information Systems, 2003.

14. Ratnasamy, Sylvia et al., A Scalable Content-Addressable Network, Proc. ACM
SIGCOMM, pp 161-172, August 2001

15. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan, Chord:
A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE/ACM Trans. on
Networking, 11 (1): 17-32, February 2003

16. Serafeim Zanikolas and Rizos Sakellariou., A Taxonomy of Grid Monitoring Systems.,
Future Generation Computer Systems, 21(1), January 2005, pp. 163--188.

17. Sivansubramanian S., Szymaniak M., Pierre G., Steen M.V., Replication for Web Hosting
Systems, ACM Computing Surveys, Vol. 6, No. 3, September 2004, pp. 291-334.

18. M. Rabinovich, Issues in Web Content Replication, Bulleting of the IEEE Computer
Society Technical Committee on Data Engineering, 1998

19. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B., Globally dis-
tributed content delivery. IEEE Internet Computing 6, 5 (Sept.), 50-58

20. M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal, A Dynamic Object Repli-
cation and Migration Protocol for an Internet Hosting Service, Proc. 19th Int'l Conf. Dis-
tributed Computing Systems, pp. 101-113, June 1999.

21. P. Rodriguez, and S. Sibal, SPREAD: Scalable Platform for Reliable and Efficient Auto-
mated Distribution Computer Networks, vol. 33, nos. 1-6, pp. 33-49, June 2000.

22. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E., Web-
ber, J., and Swenson, K., Web Services Context (WS-Context), available from
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf

23. Bellwood, T., Clement, L., and von Riegen, C. (eds) (2003), UDDI Version 3.0.1: UDDI
Spec Technical Committee Specification., available from http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm.

24. Mehmet S. Aktas, Galip Aydin, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,
Ahmet Sayar, Information Services for Grid/Web Service Oriented Architecture (SOA)
Based Geospatial Applications, Technical Report, June, 2005 available from
http://grids.ucs.indiana.edu/ptliupages/publications/UDDI_Aktas_Final_Fix.pdf

25. Shrideep Pallickara and Geoffrey Fox, NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer Grids in Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio Janeiro,
Brazil June 2003. See also the NaradaBrokering Web Site:
http://www.naradabrokering.org

26. N. Carriero and D. Gelernter., Linda in Context. Commun. ACM, 32(4): 444-458, 1989.

http://collaboratory.emsl.pnl.gov/docs/collab/sam/
http://dlt.ncsa.uiuc.edu/wiki/index.php
http://www.globus.org/toolkit/mds/
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm
http://grids.ucs.indiana.edu/ptliupages/publications/UDDI_Aktas_Final_Fix.pdf
http://www.naradabrokering.org/

	Acknowledgement: This work is supported by the Advanced Information Systems Technology Program of NASA's Earth-Sun System Technology Office.

