

Abstract— As the Service Oriented Architecture (SOA)
principles have gained importance, an emerging need has
appeared for methodologies to locate desired services that
provide access to their capability descriptions. These services must
typically be assembled into short-term service collections that,
together with code execution services, are combined into a
meta-application to perform a particular task. To address metadata
requirements of these problems, we introduce XML Metadata
Services to manage both stateless and stateful (transient) metadata.
We leverage the two widely used web service standards: Universal
Description, Discovery, and Integration (UDDI) and Web Services
Context (WS-Context) in our design. We describe our approach and
experiences when designing “semantics” for XML Metadata
Services. We report results from a prototype of the system that is
applied to mobile environment for optimizing Web Service
communications.

Index Terms—XML metadata services, Grid/Web services,
Service Oriented Architectures, WS-Context

I. INTRODUCTION
As the Service Oriented Architecture (SOA) principles

have gained importance, an emerging need has appeared
for methodologies to locate desired services that provide
access to their capability descriptions. As these services
interact with each other within a workflow session to
produce a common functionality, another emerging need
has also appeared for storing, querying, and sharing the
resulting metadata needed to describe session state
information.

Zhuge identifies the two mainstream research focuses in
next-generation Web in [1]. The first research theme
investigates how to overcome the existing Web’s limitations
such as difficulties in supporting intelligent services. Some
example areas of investigation of this approach are Semantic
Web and Web Services. The second research theme focuses
on the Grid as an alternative application platform. The Grid
offers a model for solving computational science problems by
utilizing the idle resources of large numbers of distributed
computers. Zhuge also mentions the Semantic Grid research,
as an extension to the Grid, evolved as result of integration of
the two aforementioned mainstream research themes.

Mehmet S. Aktas is with Department of Computer Science and the

Community Grids Laboratory, Indiana University Bloomington, IN 47404.
(Phone: 812-856-0755, email: maktas@cs.indiana.edu).

Sangyoon Oh is with Department of Computer Science and the
Community Grids Laboratory, Indiana University Bloomington, IN 47404.
(email: ohsangy@cs.indiana.edu).

Geoffrey C. Fox is with Indiana University Departments of Computer
Science and Physics and the Community Grids Laboratory, Bloomington, IN
47404. (email: gcf@indiana.edu.)

Marlon E. Pierce is with the Community Grids Laboratory, Indiana
University Bloomington, IN 47404 (email: mpierce@cs.indiana.edu).

As the SOA-oriented architectures gained popularity in
both the traditional and Semantic Grid, metadata management
problems of Grid applications form an important area of
investigation. For an example, Geographical Information
Systems (GIS) provide very useful problems in supporting
“virtual organizations” and their associated information
systems. These systems are comprised of various archival
data services (Web Feature Services), data sources (Web-
enabled sensors), and map generating services. All of these
services are metadata-rich, as each of them must describe
their capabilities (What sorts of features do they provide?
What geographic bounding boxes do they support?).
Organizations like the Open Geospatial Consortium define
these metadata standards.

These services must typically be assembled into short-term,
stateful service collections that, together with code
execution services and filter services (for data
transformations), are combined into a composite application
(e.g. a workflow).

To address metadata requirements of these problems, we
introduce XML Metadata Services to manage both stateless
and stateful (transient) metadata. We use and extend the two
Web Service standards: Universal Description, Discovery, and
Integration (UDDI) [2] and Web Services Context (WS-
Context) [3] in our design. We utilize existing UDDI
Specifications and design an extension to UDDI Data
Structure and UDDI XML API to be able to associate both
prescriptive and descriptive metadata with service entries. We
extend WS-Context specifications to provide
search/access/storage interface to session metadata.

In this paper, we describe the “semantics” of the proposed
XML Metadata Services and give an overview of
implementation details. In addition, we also discuss a
motivating application scenario and the way that the hybrid
XML Metadata Service is being used. We report results from
a prototype that has been applied to mobile environment for
optimizing Web Service communications.

II. BACKGROUND
There have been some approaches introduced to

provide better retrieval mechanism by extending existing
UDDI Specifications. UDDI-M [4] and UDDIe [5] projects
introduce the idea of associating metadata and lifetime with
UDDI Registry service descriptions where retrieval relies
on the matches of attribute name-value pairs between service
description and service requests. In our design, we too extend
UDDI’s Information Model, by providing an extension
where we associate metadata with service descriptions

XML Metadata Services
Mehmet S. Aktas, Sangyoon Oh, Geoffrey C. Fox, and Marlon E. Pierce

similar to existing solutions where we use name-value
pairs to describe characteristics of services. Apart from
the existing methodologies, we provide both general and
domain-specific query capabilities. An example for domain-
specific query capability could be XPATH and RDQL queries
on the auxiliary and domain-specific metadata files stored in
the UDDI Registry.

The primary use of our approach is to support
information in dynamically assembled workflow-style Grid
applications where services are tied together in a dynamic
workflow to solve a particular problem. There are varying
specifications, such as WSRF [6], WS-Context, WS-Transfer
[7], and WS-Metadata Exchange [8], that have been
introduced to define stateful interactions among services.
Among them, we have chosen the WS-Context specifications
to create a metadata catalog system for storing transitory
metadata needed to describe distributed session state
information. Unlike the other specifications defining service
communications, WS-Context models a session
metadata repository as an external entity where more
than two services can easily access/store highly dynamic,
shared metadata.

III. XML METADATA SERVICES: SEMANTICS,
AUTHENTICATION, AND AUTHORIZATION MECHANISMS

We have designed and built a novel architecture [9-10]
for an hybrid WS-Context complaint metadata catalog
service supporting handling and discovery of not only quasi-
static, stateless metadata, but also session related metadata.
We based the information model and programming interface
of our system on two widely used specifications: WS-Context
and Universal Description, Discovery and Integration (UDDI)
as depicted in Figure 1.

HTTP

Extended
UDDI

Service

WSDL

HTTP(S)

WSDL

Client

WSDL

Client

WSDL WSDL

Hybrid
UDDI – WSContext XML

Metadata Service

W
S

D
L

Figure 1. This figure illustrates the two clients interacting with the Hybrid
UDDI – WSContext XML Metadata Service, while the hybrid service is
interacting with an external UDDI Service for handling and discovering of
static metadata.

We have identified following base elements of the

semantics of proposed system: a) data semantics, b) semantics
for publication and inquiry XML API, and c) semantics for
security and access control XML API. These semantics have
been designed under two constraints. First, both UDDI and
WS-Context Specifications should be extended in such a way
that client applications to these specifications can easily be

integrated with the proposed system. Second, the semantics of
the proposed system should be modular enough sot that it can
easily be operated with future releases of these specifications..

A. Extensions to UDDI Data Model
The extended version of UDDI information model consists

of various additional entities to existing UDDI Specifications
(Detailed design documents can be found at
http://www.opengrids.org/-extendeduddi). These entities are
represented in XML. We describe extensions to UDDI
information model as following: serviceAttributeEntity: A
service attribute data structure describes metadata associated
with service entities. Each “serviceAttribute” corresponds to a
piece of metadata and it is simply expressed with (name,
value) pairs. A “serviceAttribute” can be categorized based on
custom classification schemes. A simple classification could
be whether the “serviceAttribute” is prescriptive or
descriptive. A service attribute may also correspond to a
domain-specific metadata and could be directly related with
functionality of the service. leaseEntity: A lease entity
describes the lifetime associated with services or context. This
entity indicates that the service or context will be considered
alive and can be discovered by client applications until the
lease expires.

B. WS-Context Data Model
Although WS-Context Specification presents XML API to

standardize behavior and communication of the service, it
does not define an information model. We introduce an
information model comprised of various entities. Here, entities
are represented in XML and stored by the WS-Context
Service. The proposed information model composed of
instances of the entities as following. sessionEntity: A session
entity describes a period of time devoted to a specific activity,
associated contexts, and services involved in the activity. A
session can be considered as an information holder for the
dynamically generated information. Each session is associated
with its participant web services. Also, each session contains
contexts which might be associated with either services or
session or both. contextEntity: A context entity describes
dynamically generated metadata that is associated either to a
session or a service or both. leaseEntity: A lease entity
describes a period of time during which a service or a context
can be discoverable. A lease entity is associated to both
session and context entities.

C. Extended UDDI and WS-Context Inquiry and
Publication API Sets

We present extensions/modifications to existing WS-
Context and UDDI APIs to standardize the additional
capabilities of our implementation. We then integrate both
extended UDDI and WS-Context API sets within a uniform
programming interface: Hybrid WS-Context XML Metadata
Web Service. The API sets of the hybrid service can be
grouped as following: ExtendedUDDI Inquiry,
ExtendedUDDI Publication, WS-Context Inquiry, WS-
Context Publication, WS-Context Security and Publisher
XML APIs.

1) Extended UDDI Inquiry API: We introduced various

APIs representing inquiries that can be used to retrieve data
from extended UDDI Service as following: find_service: Used
to extend the out-of-box UDDI find service functionality. The
find_service API call locates specific services within the
UDDI Service. It takes additional input parameters such as
serviceAttributeBag, contextBag and Lease to facilitate
additional capabilities of the proposed system.
find_serviceAttribute: Used to find aforementioned
serviceAttribute elements. The find_serviceAttribute API call
returns a list of serviceAttribute structure matching the
conditions specified in the arguments.
get_serviceAttributeDetail: Used to retrieve semi-static
metadata associated to a unique identifier. The
get_serviceAttributeDetail API call returns the
serviceAttribute structure corresponding to each attributeKey
values specified in the arguments.

2) Extended UDDI Publication API: We introduce various
extensions to UDDI Publication API set to publish and update
semi-static metadata associated with service. save_service:
Used to extend the out-of-box UDDI save service
functionality. The save_service API call adds/updates one or
more web services into the UDDI service. Each service entity
may contain one to many serviceAttribute and/or one to many
contextEntity elements and may have a life time (lease).
save_serviceAttribute: Used to register or update one or more
semi-static metadata associated to a web service.
delete_serviceAttribute: Used to delete existing
serviceAttribute element from the UDDI Service.

3) WS-Context Inquiry API: We introduce extensions to
WS-Context Specification for both inquiry and publication
functionalities. The extensions to WS-Context Inquiry API set
are outlined as following: find_session: Used to find
sessionEntity elements. The find_session API call returns a
session list matching the conditions specified in the
arguments.
get_sessionDetail: Used to retrieve sessionEntity data
structure corresponding to each of the session key values
specified in the arguments. find_context: Used to find
contextEntity elements. The find_context API call returns a
context list matching the criteria specified in the arguments.
get_contextDetail: Used to retrieve the context structure
corresponding to the context key values specified.

4) WS-Context Publication API: We outline the extensions
to WS-Context Specification Publication API set to publish
and update dynamic metadata as following: save_session:
Used to add/update one or more session entities into the
service. Each session may contain one to many
serviceAttribute, have a life time (lease) and be associated
with service entries. delete_session: Used to delete one or
more sessionEntity structures. save_context: Used to
add/update on or more context (dynamic metadata) entities
into the service. delete_context: Used to delete one or more
contextEntity structures.

D. Authentication Mechanism
In order to avoid unauthorized access to the system, we

adopted semantics from existing UDDI Security XML API

and implemented a simple authentication mechanism. In this
scenario, each publication/inquiry request is required to
include authentication information (authInfo XML element).
Although this information may enable variety of
authentication mechanisms such as X.509 certificates, for
simplicity, we implemented a username/password based
authentication scheme. A client can only access to the system
if he/she is an authorized user by the system and his/her
credentials match. If the client is authorized, he/she is granted
with an authentication token. An authentication token needs to
be passed in the argument lists of publication and inquiry
functions, so that these operations can take place.

1) WS-Context Security API: We adopt the semantics from
out-of-box UDDI Security API set in our design. The Security
API includes following function calls. get_authToken: Used
to request an authentication token as an “authInfo”
(authentication information) element from the service. The
autInfo element allows the system implement access control.
To this end, both publication and inquiry API set includes
authentication information in their input arguments.
discard_authToken: Used to inform hybrid WSContext
service that an authentication token is no longer required and
should be considered as invalid.

E. Authorization Mechanism
When a context is published to the system, by default an

owner-relationship is established between the publisher and
the context. The owner of the context specify various
permissions such as what access rights a) the owner, b) the
members of the owner’s group, and c) the rest of the users will
have to the context. For each of these categories there exist
read, write and read/write access rights. This basic security
mechanism is also used in UNIX operating system. Upon
receiving a request, the system checks access permission
rights specified in a context, before granting
inquiry/publication request to the context.

1) WSContext Publisher API: We introduce various APIs to
provide find/add/modify/delete on the publisher list, i.e.,
authorized users of the system. These APIs include the
following function calls. find_publisher: Used to find
publishers registered with the system matching the conditions
specified in the arguments. save_publisher: Used to add or
update information about a publisher. delete_publisher: Used
to delete information about a publisher with a given
publisherID from the metadata service. get_publisherDetail:
Used to retrieve detailed information regarding one or more
publishers with given publisherID(s).

Given these capabilities, one can simply populate the hybrid
service with metadata as in the following scenario. Say, a user
publishes a new service into the system. In this case, the user
constructs both “metadataBag” filled with “serviceAttributes”
and “contextBag” filled with “contexts” where each context
describes the sessions that this service will be participating.
As both the “metadataBag” and “contextBag” is constructed,
they can be attached to a new “service” element which can
then be published with extended “save_service” functionality
of the hybrid WS-Context XML Metadata Service. On

receiving publishing service metadata request, the system
applies following steps to process service metadata. First, the
system separates the dynamic and static portions of the
metadata. Then, the system delegates the task of handling
discovery of static portion (“metadataBag”) to extended
UDDI service. Next, the system itself provides handling and
discovery using dynamic portions of the metadata in the
metadata replica hosting environment. Further design
documentation on both hybrid WS-Context and extended
UDDI XML Metadata Services is available at
http://www.opengrids.org.

IV. AN APPLICATION USAGE SCENARIO
In order to present the applicability of our system, we

briefly outline a metadata storage component (the Context-
store) of an application use domain (mobile environment) in
which the proposed hybrid XML Metadata Service is used.

Description: A Context-store component is responsible for
storing redundant/unchanging parts of messages used in
service communication.

Requirements: Let’s consider a user has a cell phone,
which is running a videoconferencing application packaged
as a “lightweight” Web Service. Such service could be a
conferencing, streaming, or instant messaging service. To
optimize service communication, the redundant/unchanging
parts of the messages, exchanged between two services, must
be stored on a third-party repository, i.e., Context-store.

Usage Scenario: The redundant/unchanging parts of a
SOAP message are XML elements which are encoded in
every SOAP message exchanged between two services.
These XML elements can be considered as “context”, i.e.
metadata associated to a conversation. Here, hybrid WS-
Context XML Metadata Service is being used as the Context-
store [11]. Each context is referred with a system defined
URI where the uniqueness of the URI is ensured by the
system. The corresponding URI replaces the redundant
XML elements in the SOAP messages which in turn reduce
the size of the message for faster message transfer. Upon
receiving the SOAP message, the corresponding parties in
service conversation interact with WS-Context Service to
retrieve the context associated with the URIs listed in the
SOAP message.

V. AN OVERVIEW OF THE PROTOTYPE IMPLEMENTATION OF
THE HYBRID XML METADATA SERVICE

We assume a range of applications which may be interested
in integrated results from two different metadata spaces;
UDDI and WS-Context. When combining the functionalities
of these two technologies in one hybrid service, we may
enable uniform query capabilities on context (service
metadata) catalog. To this end, we have implemented a
uniform programming interface, i.e. a hybrid information
service combining both extended UDDI and WS-Context.
(see Session 3 for detailed discussion on Information Model
and XML API Sets of the hybrid service). Here, we give a

brief overview of the system components, their functionalities
and discuss how these components interact with each other.

Our implementation consists of various modules such as
Query and Publishing, Expeditor, Access, Storage and
Sequencer Modules. The Query and Publishing Module is
responsible for performing operations issued by end-users.
The Expeditor Module forms a generalized caching
mechanism. One consults the expediter to find how to get (or
set) information about a dataset in an optimal fashion. The
Access and Storage modules are responsible for actual
communication between the distributed XML Metadata
Services in order to form a distributed replica hosting
environment. In particular, the Access module deals with
client request distributions, while the Storage module deals
with replication. Finally, the Sequencer Module is used to
label each metadata which will be stored in the system.

When receiving a query, the Query and Publishing Module
first processes the query and extracts the dynamic metadata
portion of the query. Then, it forwards the query to Expediter,
where the Expeditor Module checks whether the requested
data is in the cache.

The Expeditor Module implements a generalized caching
mechanism and forms a built-in memory. It utilizes the
TupleSpaces paradigm [12] which is a space based
programming providing mutual exclusive access that in turn
enables data sharing between processes. For the purposes of
this research, a tuple is termed as context and the tuplespaces
as ContextSpaces. The Expeditor Module implementation is
built on MicroSpaces libraries [13]. MicroSpaces is a free,
open-source, and a light-weight implementation of
TupleSpaces paradigm. The MicroSpaces codebase is
expanded in the following ways in order to incorporate with
our implementation. First, a context management scheme is
implemented to manage storage and dynamic replication
decisions for the contexts stored in the ContextSpace. This is
succeeded by implementing a Java Thread which is
responsible for a) checking the ContextSpace for updates with
frequent time intervals, b) storing updated contexts into
MySQL database and c) deciding on dynamic replica
placements. Second, an Expeditor Handler library is
implemented in order to query/publish data in local database.
An Expeditor handler allows processes to do operations on the
ContextSpace as the primary storage. We employ a factory
design pattern in implementing Handlers to communicate with
the ContextSpace. In this design, a data store java class
(ContextSpaceDataStore) is impelemented to enable processes
to interact with the ContextSpace. In order to communicate
with the data store, an instance of the data store has to be
initiated from a factory java class called
WSContextSpaceFactory. The Expeditor Module also
contains an interface java class for a registry which defines all
the primary functionalities that can be done on the data store.
The registry interface is implemented by
ExpeditorRegistryEngine java class which in turn enables
processes to create objects to perform operations (without
specifying the exact class name of the object that will be
created). Once an instance of a given function is created by
the ExpeditorRegistryEngine, the newly created object obtains

an instance of ContextSpaceDataStore from the data store
factory in order to perform requested functionality.
If the Expeditor Module can not find the result, then the query
is performed on the local MySQL database using JDBC
Handlers. If the query asks for external metadata, then the
Query and Publishing Module will forward the query to
Access Module, where the Access Module multicast a probe
message to available services through a messaging
infrastructure which is based on publish/subscribe paradigm.
We use Naradabrokering (NB) [14] software which is an
open-source and distributed messaging infrastructure
implementing publish/subscribe paradigm. This way the
service communicates with the original data sources to satisfy
the query under consideration. The query is responded by
those services that host the matching context. At last, on
receiving the results, the Query and Publishing Module
returns the results to the querying client.

VI. PERFORMANCE EVALUATIONS
We have performed two application-specific experiments to

investigate the performance of aforementioned XML
Metadata Services. (General evaluations are extensively
documented in [9]) First, we investigated the baseline-
performance of both extended UDDI and hybrid WS-Context
Services. Second, we analyzed the scalability of the hybrid
WS-Context XML Metadata Service.

We tested the prototype implementation of the system by
using a linux server (gf6.ucs.indiana.edu) and a desktop
machine (kilimanjaro.ucs.indiana.edu) located at our facilities.
We ran the XML Metadata Services on the linux server. The
client applications for the both experiments were running on
the windows machine. These experiments were performed
separately on different dates. The server was equipped with
Intel® Xeon™ CPU (2.40GHz), 2 GB RAM and ran Linux
kernel 2.4.22. The desktop machine ran Windows XP and was
equipped with Intel Pentium 4 CPU (3.4 GHz) and 1 GB
RAM. We wrote all our code in Java, using the Java 2
Standard Edition. In the experiments, we used Tomcat Apache
Server with version 5.5.8 and Axis software with version
1.2beta3 as a service deployment container.

In the first experiment, we investigated three different
testing cases: a) a single client publishes metadata to a hybrid
WSContext Service, b) a client publishes metadata to an
extended UDDI Service, and c) a client publishes metadata to
a dummy service where the round trip message is extracted to
and from container but no processing is applied. At each
testing case the client sends 100 sequential publication
requests and average response time was recorded. We
repeated these tests in five different test sets. We used
~1.1KByte-size metadata in the test cases. The result of this
experiment is depicted in Figure-2.

STD: 4.18STD: 4.14STD: 3.75STD: 3.89
STD: 3.009

STD: 2.7STD: 2.68STD: 2.79STD: 2.79STD: 3.09

STD: 15.28STD:17.16
STD:15.25

STD:17.87

STD: 16.309

10

15

20

25

30

35

40

45

50

55

set1 set2 set3 set4 set5

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 re
qu

es
t WS-Context

publication

Dummy Service
publication

UDDI publication

Figure 2. Average Response Time Graph for Publication Requests.

In the second experiment, we investigated the scalability of

the system as a Context-store. As mentioned earlier, a
Context-store is used for optimizing Web Service
communication performance in mobile environment. In this
experiment, a single client sends 100 sequential publication
requests with varying message sizes to a hybrid WS-Context
Service. We measured the time to finish a Context-store
request message processing (i.e. Taxis + Twsctx) and a time to
process setContext() operation (i.e. Twsctx). The result of this
experiment is depicted in Figure-3.

Based on the results from first experiment (see Figure-2),
we observe that hybrid WS-Context Service publication
function performed with 30% performance increase compared
to UDDI-publication function. The hybrid WS-Context
Service employs a built-in cache mechanism for primary
storage which in turn improves the performance. We also
observe that the network latency is considerably high,
although the context data size is very small and the
performance measurements were taken on a tight cluster.
However, in a wide area network, one could expect the
network latency to be a bottleneck for system performance.

Figure-3 shows the Taxis + Twsctx time compared with Twsctx
time. We observe that Taxis + Twsctx increase linearly while
Twsctx does not change as the size of context increases (This
is of course for the context size ranging from 1.2 to 2.2
KByte). The overhead of the Axis container includes the time
spent for sending and receiving a SOAP message as well as
the time for XML processing. Based on the results, we
observe that as the context size gets increased, the container
overhead is also increased. Thus we think that if the time
consumed for container processing (i.e. Taxis) was reduced, the
throughput would increase. Let’s consider a mobile-
environment scenario in which the two web services are
communicating via SOAP message exchanges (within a
session) and utilizing a Context-store for optimization.

• Let N to be number of simultaneous sessions
• Let Twsctx to be the time to process setContext() operation
• Let Taxis to be the time spent by Axis container
• Let Tsession to be the length of a given session

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

50

100

150

200

250

300

350

400

Ti
m

e
(m

se
c)

Size of Context (KB)

Taxis + Twsctx
Twsctx

Figure 3. Comparison between (Taxis + Twsctx) and Twsctx

Based on the optimized communication model discussed in
[11], each participant Web Service makes one access to the
Context-store at the beginning of a session. Once the session
is completed, another access is made by one of the participants
to finalize the session. (There are two services exchanging
messages. Thus we have three Context-store accesses per
session.) Let’s consider N simultaneous sessions happening
during the time period of Tsession. One can conclude that, per
second, there exist

sessionT
N3 times Context-store accesses for N

simultaneous sessions. A publication access to the Context-
store takes (Taxis + Twsctx) execution time. Thus we can
formulize the calculation of maximum number of supported
simultaneous sessions as following:

 () sessionaxiswsctx TTTN ≤+×3
()axiswsctx

session

TT
TN

+×
≤

3
 (1)

Provided with the formula at (1) and our measurements from
second experiment (see Figure-3), we can calculate the
maximum number of simultaneous sessions supported by the
Context-store. Let’s say we have a session with a length of 10
minutes i.e. Tsession = 600 seconds. Then, using the formula
and Taxis + Twsctx time (from Figure-3) for a 1.2 KByte-size
context, we can calculate the number of maximum
simultaneous sessions as following.

()sec079.03

sec600
×

≤N 2532≤N

Thus if we have 1.2 KByte-size contexts, the Context-store
can support maximum 2532 sessions in mobile-environment
optimized service communication. Please note that this
illustration only indicates the optimal upper-bound (not the
practical case) for a small XML message. Furthermore, this is
based on the assumption that Tomcat server and the Context-
store can handle this many simultaneous connections.

VII. CONCLUSION AND FUTURE WORK
We examined XML Metadata Services as an important tool

to knowledge and information grids. We focused on the

semantics and identified the base elements of the architecture:
data semantics and semantics for XML API sets such as
publication, inquiry, security and access control. With this
identification made, we discussed our approach and
experiences in designing “semantics” for XML Metadata
Services. Also, we outlined a real-life application use
scenarios to identify a way and reason of using XML
Metadata Services in Grids.

We implemented centralized versions of both extended
UDDI and hybrid WS-Context XML Metadata Services as
open-source software which have been used successfully in
varying types of Grids: collaboration, earth science and so
forth. We briefly discussed the prototype implementation of
the proposed approach. We are currently working on
implementing fault tolerance by using replication as a
technique. We plan on investigating scalability and
performance limitations of the system when it is decentralized
and comprised of widely distributed nodes.

Acknowledgement: This work was supported in part by the

U.S. National Aeronautical and Space Administration’s
Advanced Information Systems Technology program. The
authors would like to thank Prof. Gordon Erlebacher for his
critique on the WS-Context project and Community Grids
Laboratory graduate research assistants who have been using
XML Metadata Services in their applications.

REFERENCES
[1] Zhuge, H., China's E-Science Knowledge Grid Environment, IEEE

Intelligent Systems, 19 (1), (2004) 13-17
[2] Bellwood, T., et al. UDDI Version 3.0.1: UDDI Spec Technical

Committee Specification. Available from http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm.

[3] Bunting, B., et al. K. Web Services Context (WS-Context), available
from http://www.arjuna.com/library/-specs/ws_caf_1-0/WS-CTX.pdf

[4] V. Dialani. UDDI-M Version 1.0 API Specification. University of
Southampton – UK. 02.

[5] Ali ShaikhAli, el al. UDDIe: An Extended Registry for Web Services.
Proc. of the Service Oriented Computing: Models, Architectures and
Applications, SAINT-2003 IEEE Comp. Society Press., USA

[6] Czajkowski, K., et al. 2004. The WS-Resource Framework.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

[7] Alexander, J., et al. 2004 The Web Service Transfer (WS-Transfer)
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wstransfer.pdf

[8] Ballinger, K., et al. 2004 The Web Services Metadata Exchange
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

[9] Aktas, M. S., Fox, G. C., Pierce, M. Fault Tolerant High Performance
Information Services for Dynamic Collections of Grid and Web Services
FGCS Special issue from SKG2005 Beijing China November, 2005.

[10] Aktas, M. S., Fox, G. C., Pierce, M., Managing Dynamic Metadata as
Context. The 2005 Istanbul International Computational Science and
Engineering Conference (ICCSE2005), Istanbul, Turkey.

[11] Oh, S., Aktas, M. S., Pierce, M., Fox, G. C., Optimizing Web Service
Messaging Performance Using a Context Store for Static Data, 5th
WSEAS Int. Conf. on Telecommunications and Informatics, Turkey, 05

[12] Gelernter, N. C. a. D. (1989). "Linda in Context." Commun. ACM,
32(4): 444-458.

[13] Coleman, R., et al., MicroSpaces software with version 1.5.2 available at
http://microspaces.sourceforge.net/. May 2004.

[14] Fox, S. P. a. G. (2003). NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer Grids.
Proceedings of ACM/IFIP/USENIX International Middleware
Conference Middleware-2003, Rio Janeiro, Brazil.

