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Abstract—    Many scientific fields routinely generate huge datasets.  In many cases, these datasets are not static but rapidly grow in 

size.  Handling these types of datasets, as well as allowing sophisticated queries necessitates efficient distributed database systems.  

In this paper we present the architecture, implementation and performance analysis of a scalable, distributed database system built 

on software based virtualization environments.  The system architecture makes use of a software partitioning of the database based 

on data clustering, SQMD (Single Query Multiple Database) mechanism, a web service interface, and virtualization software 

technologies.  The system allows uniform access to concurrently distributed databases, using the SQMD mechanism based on the 

publish/subscribe paradigm.  We highlight the scalability of our architecture by applying it to a database of 17 million chemical 

structures.  In addition to simple identifier based retrieval, we will present performance results for shape similarity queries, which is 

extremely, time intensive with traditional architectures.    

1. INTRODUCTION 

In the last few years, we have witnessed a huge increase in the size of datasets in a variety of fields (scientific observations 

for e-Science, local (video, environmental) sensors, data fetched from Internet defining users interests, and so on [23, 28]).  

This trend is expected to continue and future datasets will only become larger.  Given this deluge of data, there is an urgent 

need for technologies that will allow efficient and effective processing of huge datasets. With the maturation of a variety of 

computing paradigms such as grid computing, mobile computing, and pervasive computing, and with the resurgence of a 

variety of virtualization technologies such as OpenVZ [21], we can now start addressing the problem of allowing 

geographically dispersed users to access resources in efficient manner and to simultaneously use applications running on 

heterogeneous virtual platforms on a machine in anytime and anywhere. 

The problems of effectively partitioning a huge dataset and of efficiently alleviating too much computing for the processing 

of the partitioned data have been critical factor for scalability and performance.  In today’s data deluge the problems are 

becoming common and will become more common in near future.  The principle “Make common case fast” [19] (or 

“Amdahl’s law” which is the quantification of the principle) can be applied to make the common case faster since the impact on 

making the common case faster may be higher, while the principle generally applies for the design of computer architecture.  

Our scalable, distributed database system architecture is composed of three tiers – a web service client (front-end), a web 

service and message service system (middleware), and finally agents and a collection of databases (back-end).  To achieve 

scalability and maintain high performance, we have developed a distributed database system on virtual private servers.  The 

databases are distributed over multiple virtual private servers by fragmenting the data using two different methods: data 

clustering and horizontal partitioning to increase the molecule shape similarity and to decrease the query processing time.  The 

distributed nature of the databases is transparent to end-users and thus the end-users are unaware of data fragmentation and 

distribution.  The middleware hides the details about the data distribution.  To support efficient queries, we used a Single 

Query Multiple Database (SQMD) mechanism which transmits a single query that simultaneously operates on multiple 

databases, using a publish/subscribe paradigm.  A single query request from end-user is disseminated to all the databases via 

middleware and agents, and the same query is executed simultaneously by all the databases.  The web service component of 

the middleware carries out a serial aggregation of the responses from the individual databases.  Fundamentally, our goal is to 

allow high performance interaction between users and huge datasets by building a scalable, distributed database system using 

virtualization technology.  In this paper we focus on the issue of data scalability with our software architecture and 

virtualization technology while leaving the rest for future work – query optimization, localization, SQSD (Single Query 

Specific Databases), and so on.   

This paper is organized as follows.  Section 2 presents the problem and our general approach to a solution.  We discuss 

related work in Section 3.  Section 4 presents the architecture of our scalable, distributed database system built on virtual 

private servers.  Section 5 briefly describes the properties of the Pub3D, a database of 3D chemical structures, which we use as 
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a case study for our architecture.  Section 6 presents experimental results to demonstrate the viability of our distributed 

database system.  Finally we conclude with a brief discussion of future work and summarize our findings.  

2. PROBLEM STATEMENT 

With the advances in a variety of software/hardware technologies and wire/wireless networking, coupled with large end-user 

populations, traditionally tightly-coupled client-server systems have evolved to loosely-coupled three-tier systems as a solution 

for scalability and performance.  The workload of the server in two-tier system has been offloaded into the middleware in 

three-tier system in considering bottlenecks incurred from: increased number of service requests/responses, increased size of 

service payload, and so on.  Also with the explosion of information and data, and the rapid evolution of Internet, centralized 

data have been distributed into locally or geographically dispersed sites in considering such bottleneck as increased workload of 

database servers.  But in today’s data deluge, too much computing for the processing of too much data leads to the necessity of 

effective data fragmentation and efficient service processing task.  For instance, as the size of data increases, the response time 

of database server will increase by its increasing workload.  One solution to the problem is to effectively partition large 

databases into smaller databases.  The individual databases can then be distributed over a network of virtual private servers 

which is a method of partitioning a physical server on a machine into multiple servers [30].  The partitioning of the database 

over virtual private servers can be a critical factor for scalability and performance.  The purpose of the virtual private servers’ 

use is to facilitate concurrent access to individual applications (databases) residing on multiple virtual platforms on a single or 

multiple physical machines with effective resources’ use and management, as compared to an application (database) on a 

physical machine.  We have already encountered the scalability problems with a single huge dataset – a collection of 3D 

chemical structures [7] during our research work.  We believe that the architecture described in Section 4 will allow for 

effective data fragmentation and efficient service processing resulting in a scalable solution. 

3. RELATED WORK 

The middleware in a three-tier distributed database system also has a number of bottlenecks with respect to scalability.  We 

do not address the scalability issues for middleware in this paper since our system can be scaled well in size by a cluster (or 

network) of cooperating brokers [1, 15].  In this paper we focus on the issue related on data scalability.  For data scalability, 

other researchers showed a database can be scaled across locally or geographically dispersed sites by using such fragmentation 

methods as vertical partitioning, horizontal partitioning, heuristic GFF (Greedy with First-Fit) [11], hash partitioning [6], 

range/list/hash partitioning [16], and so on.  On the other hand, we address the problem of partitioning a database over virtual 

private servers, based on data clustering such that intra-cluster similarity (using the Euclidean metric) is greater than inter-

cluster similarity.  The use of data clustering in general has been explored in the field of data mining.  We performed the 

clustering using algorithms developed by the SALSA project [23] at the CGL [9].  The details of the clustering method are 

described in [33].  Also in our work we utilized virtual private servers into which a physical server on a machine is partitioned 

such that each has the capabilities of running on its own dedicated machine, with OpenVZ software based virtualization 

technology [21].  The utilization of the virtualization technology to aid data scalability was not addressed yet.  A necessity for 

building new large-scale distributed database system through hardware or architectural design has resurged from scalability and 

performance concerns against coming data deluge – Google’s BigTable [12], Facebook’s Cassandra [5] and so on.  Our 

architecture is similar in concept to that of SIMD (Single Instruction stream, Multiple Data stream) [29], in that a single unit 

dispatches instructions to each processing unit.  The SMMV (Single Model Multiple Views) collaboration model (to build 

applications as web services in M-MVC (Message-based Model-View-Controller) architecture) which generalizes the concept 

of SIMD is used for collaborative applications such as shared display [13].  The difference between SQMD and SMMV is 

direct communication between front-end (or view) and back-end (or model).  In the SQMD architecture, the front-end always 

communicates with back-end through middleware (or controller), where the view in the SMMV architecture can communicate 

directly with the model.  Therefore the back-ends (or distributed databases) are transparent to the front-ends (or end-users) in 

SQMD.  The SQMD uses the data parallelism in a manner similar to that of SIMD, via a publish/subscribe mechanism.  In 

this paper we discuss data scalability in the distributed database system with the software architecture and virtualization 

technology, using a collection of more 17 million 3D chemical structures. 

4. ARCHITECTURE FOR SCALABLE DISTRIBUTED DATABASE SYSTEM BUILT ON VIRTUAL PRIVATE SERVERS 

Figure 1 shows a broad 3-tier architecture view for our scalable distributed database system.  The scalable, distributed 

database system architecture is composed of three tiers – the web service client (front-end), a web service and message service 

system (middleware), agents and a collection of databases (back-end).  The virtualization environments based on OpenVZ [21] 

and software (with web service, SQMD using publish/subscribe mechanism, and data clustering program) architecture 

concentrate on increasing scalability with increased size of distributed data, providing high performance service with the 

enhancement of query/response interaction time, and improving data locality.   

Our message and service system, which represents a middleware component, provides a mechanism for simultaneously 

disseminating (publishing) queries to and retrieving (subscribing) the results of the queries from distributed databases.  The 
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message and service system interacts with a web service which is another service component of the middleware, and database 

agents.  The web service acts as query service manager and result aggregating service manager for heterogeneous web service 

clients.  The database agent acts as a proxy for database server. We describe them in each aspect in the following subsections. 
 

 
Figure 1: Scalable, distributed database system architecture is composed of three tiers: web service client (front-end), 

web service and broker (middleware), and agents and a collection of databases (back-end). 
 

4.1. Web Service 

A web service is a software platform to build applications running on a variety of platforms as services [31].  The 

communication interface for web service is described by XML that follows SOAP (Simple Object Access Protocol) standard 

[24].  Other heterogeneous systems can interact with the web service through a set of descriptive operations using SOAP.  

For web services we used the open-source Apache Axis [2] library which is an implementation of the SOAP specification.  

Also we used WSDL (Web Service Description Language) [32] to describe our web service operations.  A web service client 

reads WSDL to determine what functions are available for database service: one service is query request service and the other is 

reliable service which detects whether database servers fail. 

4.2. Web Service Client (front-end) 

Web service clients can simultaneously access (or query) the data in several databases in a distributed environment.  Query 

requests from clients are transmitted to the web service, disseminated through the message and service system to database 

servers via database agents.  The well known benefits of the three-tier architecture results in the web service clients do not 

need to know about the individual distributed database servers, but rather, send query requests to a single web service that 

handles query transfer and response.     

4.3. Message and service middleware system 

For communication service between the web service and middleware, and the middleware and database agents, we have used 

NaradaBrokering [20, 25] for message and service middleware system as overlay built over heterogeneous networks to support 

group communications among heterogeneous communities and collaborative applications.  The NaradaBrokering from 

Community Grids Lab (CGL) [9] is adapted as a general event brokering middleware, which supports publish/subscribe 

messaging model with a dynamic collection of brokers and provides services for TCP, UDP, Multicast, SSL, and raw RTP 

clients.  The NaradaBrokering also provides the capability of the communication through firewalls and proxies.  It is an open 

source and can operate either in a client-server mode like JMS [17] or in a completely distributed peer-to-peer mode [27].  In 

this paper we use the terms “message and service middleware (or system)” and “broker” interchangeably. 
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4.4. Database Agent 

In Figure 1, the database agent (DBA) is used as a proxy for database server (PostgreSQL).  The DBA accepts query 

requests from front-end users via middleware, translates the requests to be understood by database server and retrieves the 

results from the database server.  The retrieved results are presented (published) to the requesting front-end user via message / 

service system (broker) and web service.  Web service clients interact with the DBA via middleware, and then the agent 

communicates with PostgreSQL database server.  The agent has responsibility for getting responses from the database server 

and performs any necessary concatenations of responses occurred from database for the aggregating operation of the web 

service.  As an intermediary between middleware and back-end (database server), the agent retains communication interfaces 

(publish/subscribe) and thus can offload some computational needs. 

4.5. Database Server 

A number of data partitions split by data clustering or horizontal partitioning method are distributed into PostgreSQL 

database servers.  Another benefit of database servers based on the three-tier architecture is that they do not concern about a 

large number of heterogeneous web service clients but need to only process queries and return results of the queries.  We used 

the open source database management system PostgreSQL [22].  With such an approach using open management system, we 

can build a sustainable high functionality system taking advantage of the latest system technologies with appropriate interface 

between layers (agents and database host servers) in a modular fashion. 

5. PUBCHEM  

PubChem is a public repository of chemical information including connection tables, properties and biological assay results.  

The repository can be accessed in a variety of ways including property-based searches and substructure searches.  However, 

one aspect of chemical structure that is not currently addressed by PubChem is the issue of 3D structures.  Given a set of 3D 

structures one would then like to be able to search these structures for molecules whose 3D shape is similar to that of a query. 

To address the lack of 3D information in PubChem and to provide 3D shape searching capabilities we created the Pub3D 

database. 

5.1. Pub3D Database 

Creating a 3D structure version of the PubChem repository requires a number of components.  First, one must have an 

algorithm to generate 3D structures from the 2D connection table.  We developed an in-house tool to perform this conversion 

and have made the program freely available [26].  Second, one must have an efficient way to store the 3D coordinates and 

associated information.  For this purpose, we employ a PostgreSQL database.  Third, one must be able to perform 3D 

searches that retrieve molecules whose shape is similar to that of a query molecule.  This is dependent on the nature of shape 

representation as well as the type of index employed to allow efficient queries.  We employ a 12-D shape representation 

coupled with an R-tree [14] spatial index to allow efficient queries.  The current version of Pub3D stores a single 3D structure 

for a given compound. 

5.2. Storing 3D Structure 

Each 3D structure is stored in the SD file format [10], which lists the 3D coordinates as well as bonding information.  We 

then store the 3D structure files in a PostgreSQL database as a text field.  We store the 3D structure file simply for retrieval 

purposes and do not perform any calculations on the contents of the file within the database.  In addition to storing the 3D 

coordinates, we store the PubChem compound ID (cid), which is a unique numeric identifier provided by PubChem, which we 

use as a primary key.  The remaining field (momsim) is a 12-D CUBE field.  The CUBE data type provided by PostgreSQL 

is used to represent n-D hypercubes.  We use this data type to store a reduced description of the shape of the molecule.  More 

specifically, we employ the distance moment method [4] which characterizes the molecular shape by evaluating the first three 

statistical moments of the distribution of distances between atomic coordinates and four specified points, resulting in 12 

descriptors characterizing a molecules shape.  Thus, each molecule can be considered as a point in a 12-D shape space. 

5.3. Searching the 3D Database 

Given the 3D structures, the next step is to be able to efficiently retrieve the structures using different criterion.  The 

simplest way to retrieve one or more structures is by specifying their compound ID (cid).  Since the cid column has a hash 

index on it, such retrieval is extremely rapid.  The second and more useful way, to retrieve structures is based on shape 

similarity to a query.  We perform the retrieval based on Euclidean distance to the query molecule (in terms of their 12-D 

shape descriptor vectors).  More formally, given a 12-D point representation of a query molecular shape, we want to retrieve 

those points from the database whose distance to the query point is less than some distance cutoff, R.   
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6. PERFORMANCE ANALYSIS  

In Section 4 we showed the architecture of our distributed database system.  In this section we show experimental results to 

demonstrate the viability of our virtualization/software architectural approach with a variety of performance measurements.  

First, we show the latency incurred from query/response interaction between a web service client and a centralized Pub3D 

database via a middleware and an agent.  Then we show the viability of our architectural approach to support efficient query 

processing in time among distributed databases into which the Pub3D database is split, with horizontal partitioning method and 

data clustering method respectively.  The horizontal partitioning method in our experiments was chosen due to such 

convenience factors as easy-to-split and easy-to-use.  In our experiments we used the example query shown in Figure 2 as a 

function of the distance R from 0.3 to 0.7.  The choice of the distance R between 0.3 and 0.7 was due to excessively small size 

of the result sets (0 hits for R=0.1 and 2 hits for R=0.2) for small values of R and the very large result sets, which exceeded the 

memory capacity (for the aggregation web service running on Windows XP platform with 2 GB RAM) caused by the large 

numbers of responses in the values bigger than 0.7.  Table 1 shows the total number of hits for varying R, using the query of 

Figure 2.  In Section 6.1 we show overhead timing considerations incurred from processing a query in our distributed database 

system.  In Section 6.2 we show the performance results for query processing task in a centralized (not fragmented) database.  

In Section 6.3 we show the performance of a query/response interaction mechanism between a client and distributed databases.  

The query/response interaction mechanism is based on SQMD using publish/subscribe mechanism.  A web service client’s 

single query request is disseminated to all the databases via a broker and agents.  The same query is executed simultaneously 

by all the distributed databases.  An operation for serially aggregating responses from all the databases is performed in web 

service component of middleware.  The aggregated result is transmitted to the request client. 

 

 

 

 

 

Figure 2: An example query used in our experiment, varying R from 0.3 to 0.7, where the R means some distance cutoff 

to retrieve those points from the database whose distance to the query point. 

 
R 0.3 0.4 0.5 0.6 0.7 

N 495 6,870 37,049 113,123 247,171 

Size in bytes 80,837 1,121,181 6,043,337 18,447,438 40,302,297 

Table 1: The total number of response data (N) occurred with varying the distance R in the query of Figure 2. 

6.1. Overhead timing considerations 

Figure 3 shows a breakdown of the latency for processing SQMD operation between a client and databases in our distributed 

database system which is a network of eight PostgreSQL database servers that reside on eight physical machines or eight virtual 

private servers on a machine.  The cost in time to access data from the distributed databases has four primary overheads.  The 

total latency is the sum of transit cost and web service cost. 

• Transit cost (Tclient2ws) – The time to transmit a query (Tquery) to and receive a response (Tresponse) from the web service 

running on web server. 

• Web service cost (Tws2db) – The time between transmitting a query from a web service component to all the databases 

through a broker and agents and retrieving the query responses from all the databases including the corresponding 

execution times of the middleware and agents. 

• Aggregation (Taggregation) cost – The time spent in the web service for serially aggregating responses from databases.  

• Database agent service cost (Tagent2db) – The time between submitting a query from an agent to and retrieving the responses 

of the query from a database server including the  

6.2. Performance for query processing task in a centralized (not fragmented) database 

In this section we show the performance results of latency incurred from processing a query between a web service client and 

a centralized (not fragmented) database.  Note that the results are not to show better performance enhancement but to quantify 

the performance for a variety of latencies induced with the centralized database.  The quantified results will be used as a 

reference of the experimental results of the performance measurements used in the following section.  In our experiments, we 

measured the round trip time in latency involved in performing queries (accessing data) between a web service client and 

database host servers via middleware (web service and broker) and database agents.  The experiment results were measured 

from executing a web service client running on Windows XP platform with 3.40 GHz Intel Pentium and 1 GB RAM connected 

to Ethernet network, and executing a web service and a broker running on Windows XP platform with 3.40 GHz Intel Pentium 

and 2 GB RAM connected to Ethernet network.  In case of using eight machines, agents and database servers ran on each of 

eight 2.33 GHz Linux with 8 core / 8 GB RAM connected to Ethernet network.  In case of using eight virtual private servers, 

agents and database servers ran on each of eight virtual private servers on a 2.33 GHz Linux with 8 core / 8 GB RAM connected 

select * from (select cid, momsim, 1.0 / (1.0 + cube_distance  ( ('3.0532197952271,  1.0399824380875, -0.092431426048279, 3.0814106464386, 

1.0752420425415, -0.49167355895042, 5.3552670478821, 5.1984167098999,  -0.41230815649033,  4.9449820518494, 4.9576578140259, -

0.093842931091785') ::cube, momsim)) as sim from pubchem_3d where cube_enlarge (('3.0532197952271, 1.0399824380875, -0.092431426048279, 
3.0814106464386, 1.0752420425415, -0.49167355895042, 5.3552670478821, 5.1984167098999, -0.41230815649033, 4.9449820518494, 4.9576578140259, -

0.093842931091785'),  R,  12) @> momsim order by sim desc ) as foo where foo.sim != 1.0; 
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to Ethernet network as well.  The client, middleware, agents, and database servers are located in Community Grids Lab at 

Indiana University.  Figure 4 show the mean completion time to transmit a query and to receive a response between a web 

service client and a database host server including the corresponding execution time of a middleware (web service and broker) 

and an agent, varying the distance R described in section 5.3.  As the distance R increases, the size of result set also increases, 

as shown in Table 1.  Therefore as the distance R increases, the time needed to perform a query in the database increases as 

well, which is shown in the figure and thus the query processing cost clearly becomes the biggest portion of the total cost.  We 

can reduce the total cost by making the primary performance degrading factor (query processing cost (Tagent2db)) faster.  To 

make the primary degrading factor (or frequent case in today’s data deluge) faster, the result which motivated our research work 

will be used as a baseline for the speedup measurement of the experiments performed in the following section.  

 

 
 

Figure 3: Total latency (Ttotal) = Transit cost (Tclient2ws) + 

Web service cost (Tws2db) 
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Figure 4: Mean query response time between a web 

service client and a centralized database host server 

including the corresponding execution time of a 

middleware and an agent, varying the distance R. 

6.3. Performance for query processing task in distributed databases (Data clustering vs. Horizontal partitioning) over 

database servers (on 8 physical machines vs. on 8 virtual private servers on a machine) 

The Pub3D database is split into eight separate partitions by horizontal partitioning method and data clustering method 

respectively.  Each of partitions is distributed across eight physical machines.  The partitions are also distributed across eight 

virtual private servers on a machine.  Table 2 shows the partitioned data size in number by data clustering method.  Note that 

the data partitioned by horizontal partitioning method have almost the same size (about 2,154,000) in number. 

Examining overhead costs and total cost, we measured the mean overhead cost for 100 query requests in our distributed 

database system.  For measuring the overhead costs, we tested four different cases with two different partitioning methods: 

data clustering vs. horizontal partitioning and with two different environments: eight physical machines vs. eight virtual private 

servers on a machine, varying the distance R in the example query which is shown in Figure 2.  The results are shown in 

Figure 7, 8, 9, and 10 with the mean completion time of a query request in the considerations of overhead timings between a 

client and databases.  By comparing the total costs for the four different cases with the total cost incurred from a centralized 

database system, we computed the speedup (similar to Amdahl’s Law) gained by the distribution of data in our distributed 

database system:  Speedup = Ttotal (1db) / Ttotal (8db) = (Tclient2ws (1db) + Tws2db (1db)) / (Tclient2ws (8db) + Tws2db (8db))               -- (1) 

                     = 1 / ((1 – (Tagent2db (1db) / Ttotal (1db))) + ((Tagent2db (1db) / Ttotal (1db)) / (Tagent2db (1db) / Tagent2db (8db))))  -- (2) 

             where (1db) means a centralized database and (8db) means a distributed database. 

(1) means the value of speedup is the mean query response time in a centralized database system over the mean query response 

time in a distributed database system.  (2) means the speedup gained by incorporating the un-enhanced and enhanced portions 

respectively.  Figure 5 shows the overall speedup obtained by applying (1) to the test cases respectively.  For brevity we 

explain the overall speedup with the distance 0.5 as an example.  In case of using horizontal partitioning over virtual private 

servers, the overall speedup by (1) is 1.91.  The speedup by (2) is 1.96.  This means some additional overheads were incurred 

during the query/response.  We measured the duration between first and last response messages from agents, and that between 

first and last response messages arriving into web service component in middleware for global aggregation of responses.  As 

expected, there was a difference between the durations.  The difference is due to network overhead between web service 
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component and agents, and the global aggregation operation overhead in web service that degrades the performance of the 

system since the web service has to wait, blocking the return of the response to a query request client until all database servers 

send the response messages.  From the results with the example query in our distributed database system, using horizontal 

partitioning is faster than using data clustering since fragments partitioned by the data clustering method can be different in the 

number of dataset as shown in Table 2.  Then obviously as the responses occurred in performing a query in a large size of 

cluster increase, the time needed to perform the query in the cluster increases as well, which is shown in Table 3 and the graph 

in Figure 6.  In other words the total active (hash) index set for the query increases as the distance R increase.  To avoid as 

much disk access as possible and thus to improve the query processing performance, the total index set is needed to fit in main 

memory.  In our experiment with virtual private servers, in case of using data clustering method, we allocated the memory into 

each virtual server in proportion to the size of each cluster, while in case of using horizontal partitioning method we allocated 

the memory into each server in same size.  With such a memory resource configuration in OpenVZ virtualization environment, 

our experiments indicate more memory has to be allocated into each virtual private server to easily fit more index set in main 

memory when the distance R increases as shown in Figure 5.  The results of experiments with our distributed system indicate 

the performance in using virtual private servers on a machine is comparable to that in using eight physical machines.  The 

purpose of data clustering’s use is to increase shape similarity and thus to speed the query processing up by fitting active 

indexes into memory.  In our system the purpose of the virtual private servers’ use is to efficiently facilitate concurrent access 

to individual databases residing on multiple virtual platforms on a single or multiple physical machines with effective resources’ 

use and management, as compared to a database on a physical machine.  In future work we should consider how the 

performance overheads are impacted by different configurations for other resources as well as memory for more efficient query 

processing in the virtualization environment.  While the query processing cost increases as the distance R increases, the cost 

becomes a smaller portion of overall cost than the transit cost in the distribution of data as shown in Figure 8 and 10.  This 

result shows our distributed database system is scalable with the partitioning of database over virtual private servers as well as 

physical machines, and thus the system improves overall performance as well as query processing performance.  

 
Segment 

number 

1 2 3 4 5 6 7 8 

Size in number 6,204,776 616,133 507,209 2,018,281 2,302,272 4,634,860 785,232 163,017 

Table 2: The data size (in number) in the fragmentations into which the Pub3D database is split by clustering method. 
 

S 

 R 

1 2 3 4 5 6 7 8 

0.3 1 0 0 0 494 0 0 0 

0.4 87 0 30 0 6,753 0 0 0 

0.5 1,868 0 570 0 34,611 0 0 0 

0.6 12,926 0 2,720 0 97,477 0 0 0 

 

 

D 

0.7 44,388 0 6,571 0 196,212 0 0 0 

0.3 75 82 77 62 45 27 49 78 

0.4 863 1,133 978 893 667 498 780 1,058 

0.5 4,667 5,686 5,279 4,746 3,615 3,031 4,361 5,664 

0.6 14,089 16,749 15,782 14,650 11,369 9,756 13,559 17,169 

 

 

H 

0.7 30,920 35,558 33,862 32,277 25,207 22,268 29,620 37,459 

Table 3: The number of responses in segments occurred with varying the distance R, where S, D, and H mean segment 

number, data clustering, and horizontal partitioning respectively. 
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Figure 5: The value of speedup is the mean query 

response time in a centralized database system over the 

mean query response time in a distributed database 

system. 
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Figure 6: Mean query processing time in each cluster 

(Tagent2db), where vps means virtual private servers. 
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Figure 7: Mean query response time between a web 

service client and databases distributed by data 

clustering. 
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Figure 8: Mean query response time between a web 

service client and databases distributed by horizontal 

partitioning. 
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Figure 9: Mean query response time between a web 

service client and databases distributed by data 

clustering. 
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Figure 10: Mean query response time between a web 

service client and databases distributed by horizontal 

partitioning. 

7. SUMMARY AND FUTURE WORK  

We have developed a scalable, distributed database system that allows uniform access to concurrently distributed databases 

over virtual private servers by the SQMD mechanism, based on a publish/subscribe paradigm.  The SQMD mechanism 

transmits a single query that simultaneously operates on multiple databases, hiding the details about data distribution in 

middleware to provide the transparency of the distributed databases to heterogeneous web service clients.  Also we addressed 

the problem of partitioning the Pub3D database for scalability and performance with our software architectural design.  In our 

experiments with our scalable, distributed database system, we encountered a few problems.  The first problem occurred with 

the global aggregation operation in web service that degrades the performance of the system with an increasing number of 

responses from distributed database servers since the web service performs poorly when the workload for aggregating the 

results of a query in the web service increases, and since the web service has to wait until all database servers send the response 

messages as well.  In future work we will consider the use of Axis2 web service [3] to provide asynchronous invocation web 

service and also redesign our current distributed database system with MapReduce [18] style data processing interaction 

mechanism by moving the computationally bound aggregating operation to a broker since the number of network transactions 

between web service and broker, and the workload for the aggregating operation are able to decrease.  CGL has been 

developing such a data processing interaction mechanism capable of integrating into Naradabrokering.  The second problem 

was found in extra hits that our current approach generates.  We will investigate the use of the M-tree index [8] which has been 

shown to be more efficient for near neighbor queries in high-dimensional spaces such as the ones being considered in this work.  

Furthermore, M-tree indexes allow one to perform queries using hyperspherical regions.  This would allow us to avoid the 

extra hits we currently obtain due to the hypercube representation.  The third problem was found in unnecessary query 

processing with some databases distributed by the data clustering method, using the SQMD mechanism.  To eliminate the 

unnecessary query processing, we should consider the query optimization that allows a query to localize into some specific 

databases in future work – SQSD (Single Query Specific Databases) mechanism.  In future work we will extend this 

evaluation for the (optimized) effective use of other resources as well as memory with our distributed database system.  Also 



 9 

we will extend the Pub3D database to the multi-conformer version.  Inclusion of multiple conformers will increase the row 

count by at least an order of magnitude.  We expect that our architectural design will scale well to such row counts.   
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