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Abstract 

Compute-intensive scientific applications are heavily reliant on the available quantity of computing resources. The 
Grid paradigm provides a large scale computing environment for scientific users. However, conventional Grid job 
submission tools do not provide a high-level job scheduling environment for these users across multiple institutions. 
For extremely large number of jobs, a more scalable job scheduling framework that can leverage highly distributed 
clusters and supercomputers is required. In this paper, we propose a high-level job scheduling Web service 
framework, Swarm. Swarm is developed for scientific applications that must submit massive number of high-
throughput jobs or workflows to highly distributed computing clusters. The Swarm service itself is designed to be 
extensible, lightweight, and easily installable on a desktop or small server. As a Web service, derivative services 
based on Swarm can be straightforwardly integrated with Web portals and science gateways.  This paper provides 
the motivation for this research, the architecture of the Swarm framework, and a performance evaluation of the 
system prototype. 

1. Introduction 
In response to the growing need for high-performance computing resources and data storage, several 

research centers have contributed to projects based on the Grid computing paradigm such as the TeraGrid project [1] 
and the Open Grid Science project [2]. The NSF funded TeraGrid project provides access to high performance 
computing (HPC) resources hosted by 11 institutions in the US. Cumulatively, the Teragrid project provides access 
to more than 110,000 CPUs that can deliver a peak computing throughput of 900 Teraflops.   The size of the 
TeraGrid resources should increase dramatically over the next several years as large new resources (Big Blue at 
NCSA and Kraken at the University of Tennessee/Oak Ridge National Lab) come on line.  Scientific users have 
obviously benefitted from this dramatic enhancement in the available computing resources. However, seamlessly 
adapting remote HPC resources continues to be a challenge. This is especially true for the Cyberinfrastructure or 
Gateway user community, where Grids resources need to be integrated within a larger group of users and research 
projects.  
 
               Although the Grid paradigm provides an excellent model for accessing remote resources, emerging 
scientific problems in high throughput workflows pose a challenge. We have encountered these computational 
challenges in our work on research projects in the bioinformatics and biochemistry domains. The PlantGDB project 
[3], in the bioinformatics domain, assembles unique transcripts from plant mRNA (messenger RNA) sequences. 
Here, mRNA is a copy of the information carried by a gene on the DNA. Records downloaded from GenBank are 
processed through a data processing pipeline. This pipeline involves clustering and assembly sequences, which are 
highly compute intensive. The overlapping sequences among the parts of gene sequences are grouped by software, 
PaCE [4] that is often run in parallel. The results of this clustering process are then fed to the assembly process to 
generate contigs, which are the consensus sequences derived from multiple mRNA sequences. Depending on the 
species, the number of the clustered sequences varies from a few to several millions, in which case a large number 
of assembly processes are required. 

 
                To benefit from powerful computing resources, users login to remote machines or submit jobs through 
Grid toolkits such as the Globus Toolkits [5]. However, the sheer number of jobs easily exceeds one’s ability to 
manage them manually. Finding the most efficient resource to submit, and monitoring such submitted jobs, is not 
feasible without intelligent support from the middleware.  Furthermore, the Gateway-style applications also require 
interfaces to distributed resources on behalf of the users.  

 



To cope with issues related to scale and management in such large-scale settings we have developed a high-
level job scheduling framework, Swarm which provides the following features: 

• Scheduling millions of jobs over distributed clusters 
• A monitoring framework for  large scale jobs 
• User based job scheduling  
• Ranking resources based on predicted wait times 
• Standard Web Service interface for web applications 
 
In grid environment, it has been realized that job scheduling is a fundamental issue to improve resource 

utilization and performance. GridWay[6], and PanDa[7] project provide job submission environment over the multi-
site resources. On top of the scheduling functionality, Swarm provides the resource prioritizing feature which 
searches the batch queue system with the minimum wait time. Falkon[8], and myCluster[9] enable user to access 
provisioned resources to submit large-scale scientific jobs. Instead of provisioning resources, Swarm provides user-
based resource pool which limits maximum number submissions to the batch queue system. It enables Swarm to 
incorporate with the policies from each batch queue systems more flexibly. In addition, the highly extensible design 
for the domain specific applications and lightweight software distinguish Swarm from other approaches. 

 
The aims of this paper are threefold: first, to present the architecture of the Swarm job scheduling 

framework; second, to describe the scheme that prioritizes resources and distributes a massive number of jobs over 
distributed clusters; and finally, to evaluate performance at the client level of the standard Web Service. 
  
                The rest of the paper is organized as follows: Section 2 describes some of the scientific research projects 
that motivated our research. Related work is discussed in the section 3. In the section 4, we describe the architecture 
of Swarm. Performance evaluation of the Swarm system is presented in section 5. Conclusions and future work are 
discussed in section 6. 

 
2. Motivations and Computational Challenges 

For compute-intensive scientific applications, Grid enabled resources opened up the possibility of an on-
demand experimental environment. Here we describe the computational challenges that we faced that in turn 
motivated us to develop the Swarm framework. 

 
Challenge 1: Executing millions of jobs. 

 
The PlantGDB project [3], in the bioinformatics domain, clusters and assembles mRNA sequences. To 

assemble the clustered sequences, the data processing pipeline runs from a few to millions of sequence assembling 
jobs, which are independent of each other. Similarly, the Meroueh’s research [10, 11] in the biochemistry domain 
has similar issues in their scheme for drug discovery. Here, the compound discovery process launches millions of 
jobs identifying the low-energy binding modes of a small molecule within the active site of a receptor, whose 
structure is known. In both these projects, the number of jobs submitted by a single experiment could vary from a 
handful to several millions. Currently, job submission mechanism provided by Globus Toolkit which is de facto 
software in grid community does not allow the users to submit 1000s of jobs concurrently to the PBS like batch 
queue systems [12, 13].   

 
Challenge 2: In different clusters, the same job can have different wait times in the batch queue. 

 
Users also have to deal with the policies at these remote sites. These policies are applied to the batch 

system to which the jobs are submitted. Based on information provided by the users a given batch system prioritizes 
jobs within its queue. Queue wait-times typically have a significant effect on the total computing time for a given 
scientific experiment. Two other factors also play a very important role: the WallClockTime, which is the duration 
of the execution, and the number of available nodes for parallel jobs. To optimize the job execution times, users 
need to take into account the queue waits, the WallClockTime, and the number of available nodes. 
 
Challenge 3: What if some of the jobs are incomplete or failed?    
          



Fault handling is another critical challenge. There are potential failures in the resource side such as 
hardware failure or system shutdown. Some of the errors are program specific. For example, WallClockTime is 
specified based on the user’s estimation. Therefore, there is a possibility to have incomplete executions due to 
WallClockTime violation. Fault detection and more intelligent reaction to the execution fault are required for the 
convenience. 

 
Challenge 4: Monitoring millions of jobs running over several clusters. 

 
After submitting millions of jobs, monitoring each of these jobs − based on their individual job IDs − is not 

practically feasible. Compounding these tracking problems is the fact that these jobs might be submitted to several 
different clusters. Traditional monitoring will not suffice: a more statistical approach is needed.  

3. Related Work 
 
There have been several approaches in the HPC community and the Grid community. Condor [14] is a 

well-known high-throughput resource management system that has been widely adopted in the scientific computing 
community. The Condor system provides advanced features including fault tolerance. The CondorG [15] release of 
Condor interoperates with other Grid computing resource management services such as the Globus toolkit. CondorG 
does not provide direct support for a scheduling policy for jobs submitted to Grid resources. However, it does supply 
mechanisms that may be useful for meta-schedulersat higher-levels in the stack; examples of such meta-schedulers 
include systems like ClassAd [16] and DAGMan [17].ClassAd allows users to specify the remote resources for jobs 
within the matchmaking process. DAGMan is a workflow manager where interdependencies between jobs or data 
can be specified. Swarm utilizes CondorG as the basic job submitter. 

 
GridWay [6]is another metascheduling framework for grid resources. Besides the scheduling capability, 

GridWay provides other advanced features − such as fault tolerance, checkpoints, and process migration − that are 
not available to users who access Grid resources directly. Similarly, PanDa[7] provides large-scale job scheduling 
and analysis framework. PanDa is originally developed for a particle physics experiment at the Large Hadron 
Collider. For their large size datasets, PanDa interacts with own data management service to pre-place the dataset. 
CondorG, GridWay, and PanDa harness the Globus toolkit to cope with security and policy issues in Grid settings.   

 
To utilize remote clusters managed by different institutions the glide-in style approach is useful. Glide-in 

style tools utilize computing nodes in the user’s personal resource pool by submitting parallel jobs on these pools. 
CondorG provides a condor glide-in server [14], where users can submit jobs to these provisioned clusters as if they 
were the condor computing nodes.  

 
myCluster [9]  and Falkon[8] are built on top of the glide-in approach. myCluster provides the capability of 

provisioning a large number of distributed resources across the TeraGrid into personal clusters created on-demand. 
Falkon provides support for provisioning a large number of distributed resources and allows user groups access to 
resources via a Web service interface. It also factors in data management techniques to improve the performance. 
Glide-in style approach provides transparent access to remote resources.   

 
At its lowest level of job management, Swarm also utilizes Globus technology along with the Grid’s 

security scheme. As described in Section 5, we utilize Condor-G and BirdBath [18], Condor’s Web Service 
interface. Unlike the glide-in style approaches, Swarm does not provide provisioning of resources. Swarm’s resource 
pool is a set of tokens that can limit the utilization of resources. These tokens are not shared by users. Resources are 
allocated by the matchmaking process based on the predicted queue wait times. Large number of users can thus 
utilize Swarm for submitting jobs to the most efficient resources available in different grid clusters. 

 
4. Managing Many Jobs with Swarm 

4.1. Submitting Jobs 
Users access the Swarm framework through a simple Web service client. This is useful for desktop users 

and Gateway style applications that need lightweight clients. This ease-of-use feature is also applied to file 
management. Swarm provides support for third party job submissions. Users or applications do not have to maintain 
input files allowing them to be lightweight: valid URLs to these input files can be specified instead. Similarly, the 



generated output files are also provided as URLs. Swarm can thus satisfy requirements of high-throughput 
computing users who also prefer thin clients.    

 
The need for launching millions of jobs is often associated with a single scientific experiment. To track 

large scale experiments, Swarm requires users to get a ticket before submitting millions of jobs. This ticket is 
randomly generated by Swarm and the user must provide this ticket for subsequent accesses related to submitting 
jobs, checking status, getting outputs, and canceling jobs. 

 
Jobs are managed on a per user (user’s account) basis. Since most supercomputing clusters manage their 

batch queue systems based on the users’ accounts, Swarm provides queuing and submission mechanisms based on 
such individual accounts. Individual users have their own resource pool to track the usage of the resources. The 
tokens in the resource pool control the maximum number of jobs in the batch system. 

4.2 Tracking the Status 

Once the user submits a large group of jobs, tracking the status of these jobs is critical. Checking each of 
the jobs with millions of ids in several or more computing sites manually is not practical. Therefore, Swarm 
provides statistical status reports to the users. Each of the jobs maintains the status of: 

• Requested: For jobs that stay in the backend Database 
• Queued: For jobs in the Swarm user queue 
• Submitted: For the jobs with available resources 
• Idle: For the jobs waiting in batch queue system in the cluster 
• Completed: For jobs that have completed 
• Held: For jobs that been held 
• Running: For the jobs being executed in the cluster 

A status check provides the summary of the job status. 

4.3 Flexible Resource Allocation 

Although Swarm is client-side job submission middleware, Swarm is designed to work with a wide scale of 
computing resources. Unlike glide-in style solutions, Swarm does not require large time slot of a given computing 
resource. Instead of waiting for longer time in the queue to get a bigger chunk of the time slot from the batch queue 
system, Swarm targets any of the available resources for running the jobs. The scheduler evaluates the resources 
within the list of resources that the user has provided. This evaluation is based on the wait-time prediction by means 
of adapting the QBETS service [19]. This scheme provides better flexibility to utilize different clusters and their 
batch queue systems. 

  
5. Architecture 

Swarm is a set of Web services and local servers. Figure 1 depicts the architecture of the Swarm 
framework. From top to bottom, Swarm provides a standard set of Web service interfaces. Desktop users and 
gateway style applications can easily access Swarm via standard Web service interfaces. Each of the operations and 
parameters are defined in WSDL.  

 
The requests from the user are delivered to the Request Manager. The Request Manager creates a 

ticket for the series of jobs, which is a 128 bit universally unique identifier. To provide the capability to track a large 
number of jobs, Swarm provides a simple structure to the submitted jobs. Jobs are identified with their ticket and 
internal ID. Here, internal ID is the identity of the job which is unique within the job group. This structure 
is especially useful for the web application, which deals with multiple experiments launched by multiple users.  
 

As seen on the right hand side of the Request Manager in Figure 1, the Job submission process interacts 
with the Resource Ranking Manager, which prioritizes the resources over which the job is submitted to optimize 
the job execution process. This will be discussed in detail in the subsection 4.1. 

 
Under the Request Manager and Resource Ranking Manager, there is a group of software 

components; referred to as Job Board. Swarm maintains a Job Board for each user. Each of the Job Board 



contains a Job Queue, Job Distributor, and Resource Pool. Users do not share any of these components. 
Matchmaking between the jobs and the resources are done in the user’s Job Board. Subsection 5.2 will describe this 
in more detail. 

 

 

Figure 1. Swarm architecture.  Client applications interact with the Swarm WSDL using standard Web service tools. In 
practice, we extend Swarm to make problem‐specific services that inherit Swarm capabilities but provide a code‐specific 
WSDL. 

When the Job Distributor finds the available match of the remote resource, the Job Execution Manager 
will submit the job through CondorG’s Web service APIs. The user’s certificate (based on the X.509) is retrieved by 
means of interacting with MyProxy service and used to access to the Globus GRAM job manager. In addition, users 

are allowed to submit jobs to the ordinary Condor computing nodes through Swarm.  

 

Figure 2. Interation between Swarm and QBETS webs services.  Swarm uses QBETS information for resource matching. 

 

 



5.1. Ranking the Resources for the Requested Job 
In a lot of cases, a scientist has an account that is valid for multiple computing clusters. Popular scientific 

software is typically available from multiple clusters without the need to do any additional installations. Some 
scientists install their own software at multiple computing sites to achieve better performance. Swarm provides 
automated prioritizing process for each of the jobs. 

   
Well-grouped and site-prioritized jobs are in the user’s individual job queue awaiting available resources. 

Swarm provides matchmaking between the jobs in the queue and resources in the pool by using the following 
criteria: 

• “First In First Out” internal queue for the jobs, and 
• Available resources with the smallest wait-time first 
 
If the user specifies priority or preference for the resources, Swarm utilizes that during the matchmaking 

process. 
 

Users are allowed to specify multiple resources to submit a job. To prioritize the resources listed in the user's job 
description, Swarm interacts with the QBETS batch queue prediction service. Figure 2 depicts the interaction 
between Swarm and QBETS service. The QBETS service provides queue delay predictions. The WallClockTime 
and number of nodes are key factors to get the predicted delay. Here the WallClockTime is duration of the execution 
of the job and the number-of-nodes is number of the computing nodes for the parallel jobs. The WallClockTime and 
number of nodes are specified in the job description and Resource Ranking Manager passes that information to 
the QBETS Web service and gets the result of predicted wait time in the batch queue. 

 
The wait time does not change gradually; it is also not very time sensitive. Therefore, we sample the range 

of key parameters and the predicted delay. The Resource Ranking Manager keeps a table, which is a set of 
combinations of {batch queue, range of the number of node, range of the WallClockTime, predicted 
delay} and refers to it when the resource list is required to be prioritized. 

 
5.2. Matchmaking  

 
The Job Distributor is the core component of the matchmaking between jobs and resources. As depicted in 

the Figure 1, each of the users has their own instance of the Job Board containing the Job Distributor. The Job 
Distributor scans the user’s job queue in a FIFO fashion. For the each of the jobs, Job Distributor evaluates the 
resource pool to determine whether there is a token which is not taken. As soon as the Job Distributor finds an 
available resource, the Job Execution Manager submits the job to the relevant resource. 

 
If the number of jobs exceeds 1000s, keeping all of the information about jobs in the memory and scanning 

the queue every time is not very efficient. Therefore, individual users keep a few hundred jobs in their queues and 
keep the rest in the backend database. Job updates are also synchronized between Swarm and the database. Keeping 
backend database provides fault tolerance by coping with hardware failures or a system shutdown.   

 
The Job Board maintains a resource pool which is a set of tokens for the individual resources. The number of 
tokens is the maximum number of the jobs that can stay in the specific batch queue system concurrently.  
 

Finally, if the Job Distributor finds the resource available for the job, the job is submitted to the remote 
resource. Each of the matchmaking process is based on the user’s account that is often valid over multiple 
supercomputing clusters. Therefore, if an individual scientist has multiple accounts, the job submission will process 
jobs independently for each of these accounts.  Similarly, in the case of educational software, if there is a need to 
provide the computing resource with a community-shared account, the matchmaking process will serve those users 
as single account. 

 
6. Performance Evaluation 

We have implemented a prototype of the Swarm framework, in Java, based on Apache Axis2[20].  The 
server was hosted on a machine with 3.40GHz Intel Pentium 4 CPUs and 1GB RAM. The client software was 



hosted on a machine with a 2.33 GHz Intel Xeon CPU and 8GB RAM. The machines involved in the benchmark 
were hosted on 1 Gbps network. 

   

Table 1. Total turnaround time for the job submission and status check with various job sizes in the single user environment 

Type of 
Operation 

Total 
turnaround time 
for 100 jobs 

Total 
turnaround time 
for  1000 jobs 

Total 
turnaround time 
for 10,000 jobs 

Total 
turnaround time 
for 100,000 jobs 

Total 
turnaround time 
for 1,000,000 
jobs 

Job Submission 184 msec 1,590 msec 15,993 msec 157,183 msec 1,581,947 msec 
Status Query   19 msec      53 msec      375 msec         796 msec         7,878 msec 
 

Table 2. Test scenario for the multi‐users environment 

Size of the Job Group Job submission 
(creating group, 
submitting jobs) 

Job management 
(status, get output, etc) 

Distribution 

Small group (<1,000 jobs) 30 % of total duration 70 % of total duration 40 % of total groups 
Medium group (1,000~100,000jobs) 20 % of total duration 80 % of total duration 50 % of total groups 
Large group (> 100,000 jobs) 10%  of total duration 90%  of total duration 10% of total groups 

 
Our first benchmark measured the total turnaround time for operations in a single user environment. Table 

1 depicts turnaround times for two operations: job submissions and status check. We compared the average 
turnaround time as we increased the number of jobs. This job submission time includes operations related to creating 
a group job and submitting jobs. For a given web service request, we batched 100 jobs for measurement.  

 
We then setup N clients, in a different JVM, that send requests actively. The behavior of the N clients 

mirrors that of a scientist who submits large-scale jobs and subsequently checks the status of these jobs periodically 
(we set this to one-per-minute). The size of the jobs submitted by the N clients and the distribution of the various job 
sizes for the clients are specified in the Table 2.   

 
The total turnaround times from the Swarm client to the Swarm service for the job submission request are 

shown in Figure 3. As can be observed, the total turnaround time for the job group grows directly proportional to the 
number of jobs. Similarly the turnaround time to create a job group increased in proportion to the number of users 
who access the server concurrently. For N users, the Swarm service maintains N Job Boards.  

 
Here the user is identified by the user account used for the remote HPC clusters. Therefore, this user is not 

necessarily one-to-one matched to the portal users for the gateway application.   For the administrative convenience, 
gateway applications often map a group of portal identifications to a single community style account for the HPC 
clusters.   

 
Figure 4 provides the average turnaround time for the different operations. The job group creation 

operation registers information about the job group and creates the ticket identifier for the associated jobs. The 
average turnaround time for the job submission increased as the number of concurrent users increased. Meanwhile, 
the average turnaround time for the job status query was not significantly affected by the number of concurrent users 
unless it was a single-user environment. 

 
7. Conclusions and Future Work 

In this paper, we have introduced a high-level job scheduling framework, Swarm. The Swarm service is 
designed to be extensible and lightweight so that users working on desktops or small servers can easily install and 
host it. Since it is Web service based, derivative services based on Swarm can be integrated in Web portals and 
science gateways. In this paper, we have discussed the motivation for this research, the architecture of the Swarm 
framework, and a performance evaluation of the system prototype.  



We have implemented a prototype of the Swarm framework. As shown in section 6, we could submit 1 
million jobs to Swarm service within 25 minutes. We also demonstrated the performance for the multiple concurrent 
users. Considering that the users of the gateway application often share the community style account of the HPC 
clusters, Swarm achieved acceptable performance to support gateway application as a standalone service.  

 

Figure 3. Average turnaround time for the various job size with various number of concurrent users 

 

Figure 4. Average turnaround time per operations with various number of concurrent users 

As part of our future work, we plan to enhance our service with an intelligent error-handling scheme. On 
top of the potential system failure, current job submission mechanisms are often prone to have the task specific 
errors. The job scheduler should provide the scheme to cope with various task specific errors. We also plan to 
implement a batch job submission that can optimize the possible overhead of the batch queuing process in the 
remote cluster. We expect that proactive batch job mechanism can offer significant performance improvements for 
applications that submit a large number of small-scale jobs.  

Currently, Swarm service identifies users with the user’s ID and passphrase that are used later to retrieve 
the X.509 based credential from MyProxy server. The universally unique identification generated by Swarm service 
limits each of the users to access only to the group job that they created. However, we realize potential privacy 
issues between the users sharing the community style credential. We assume that each of the gateway application 
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should provide infrastructure to share their community credential with reasonable privacy. To provide service level 
security, we plan to enhance our security scheme to use standard WS-Security and SSL. In addition, for certain key 
operations such as creating group jobs, we consider the mutual authentication.  
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