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1.0 Introduction 
Security is an important element of any system design. Entities supported by a system need to securely interact with 
each other. The problem gets even more complex in the context of a distributed system, where the underling 
infrastructure of messaging nodes, which we call “brokers,” needs to carry these interactions securely.  Furthermore, 
it is entirely possible that some brokers communicate with each other over communication channels that do not 
encrypt network traffic. Thus, even if two entities are connected to brokers, and they have secure communications 
channels with their brokers, when their communications traverse over insecure channels, the security of their 
interactions is compromised. 
 
In [1] we presented a security framework that is appropriate for distributed brokering systems. The framework 
provided for secure communications over insecure links, and ensured that only authorized entities are allowed to 
view entity interactions.  In this paper, we present our prototype implementation of this framework. The paper 
presents implementation details of key components within the system. We have also performed a series of 
experiments that would affect the design of components within the system, as well as the encryption strategies 
chosen by entities within the system.  
 
This paper is organized as follows. In section 2.0 we present an overview of the related work in this area. Section 3.0 
presents an overview of NaradaBrokering [2-10] and the security framework. Section 4.0 outlines the functions and 
issues that may affect the design of various building blocks in the system. Section 5.0 presents results pertaining to 
aspects of end-to-end secure interactions within the system. These results are then used to formulate a set of 
recommendations for secure interactions for different applications. Finally we outline our proposed future work in 
this area and set of conclusions, based on the work outlined in this paper. 
 
2.0 Related Work 
Peer-to-peer (P2P) [11] systems incorporate several strategies that address secure interchange while incorporating 
strategies to incorporate trust and reputations. The Project JXTA [12] security model is similar to the PGP “Web of 
trust” [13].  Current implementations provide TLS (Transport Level Security) for p2p interactions. The default 
cipher suite used in JXTA is RSA [14] 1024-bit for asymmetric keys, 3DES [15] for symmetric keys and SHA-1 for 
computing message digests. By localizing p2p interactions during search/discovery, JXTA attempts to limit bad 
behavior from other peers. Groove [16] provides excellent P2P security by securing shared spaces, which comprise 
documents, messages, etc. Incremental changes to a shared space object are transmitted to authorized peers in a 
secure way. In Groove the default asymmetric algorithm (modulus) for authentication and keys exchanges is 
ElGamal [17] (1536-bit modulus), while the default symmetric algorithm (key size) used for encryptions and 
decryptions is MARC4 [18] (192-bit key). Systems such as http://www.advagato.org  incorporate trust metrics to 
support reputations while defeating scenarios where users band together to boost reputation scores.  The Free Haven 
system [19] provides strategies for incorporating accountability while maintaining peer anonymity. Each server in 
Free Haven maintains values pertaining to reputation and credibility, while broadcasting referrals in some cases. 
Legion (http://www.cs.virginia.edu/~legion/) is a long-standing research project for building a “virtual computer” 
out of distributed objects running on various computing resources.  Legion objects communicate within a secure 
messaging framework [20] with an abstract authentication/identity system that may use either PKI [21] or Kerberos 
[22].  Legion also defines an access control policy on objects.   
 
There are many emerging issues pertaining to security in XML-based Web Services. Although normally presented 
as a client-server style system, Web Services may be equivalently viewed as an XML message-based 
communication framework.  We may exchange Web Service messages in a distributed system just as easily as 
between clients and servers.  WS-Security [23] from IBM and Microsoft outlines a proposed architecture to address 
the gaps between existing security standards and Web Services such as SOAP [24]. By abstracting security services, 
the WS-security model also serves to unify security technologies such as PKI and Kerberos.  Security specifications 
for Web Services are just starting to emerge, but generally follow the same approach: the message creator adds a 
signed XML message containing security statements to the SOAP envelope.  The message consumer must be able to 
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check these statements and the associated signature before deciding if it can execute the request.  The Security 
Assertion Markup Language (SAML) [25] from OASIS deals with the standard representation of security data – 
authentication, authorization and attribute –   which would be recognized by different application security services 
irrespective of the security technology or policy that is deployed.  SAML is designed to work with W3C 
specifications such as XML Signature [26], XKMS (XML Key Management Specification) [27] and SOAP. 
 
GKMP [28] outlines an architecture for the management of cryptographic keys for multicast communications. 
Brokering systems also may be used to implement network multicasting. Ref [29] discusses strategies for reducing 
the number of encryptions required to preserve confidentiality, between an end-point broker and its subscribing 
entities, in the context of Content based publish-subscribe systems. 
 
The Grid Security Infrastructure (GSI) [30] approach treats secure end-to-end connections as a sequence of secure 
point-to-point connections.  The problem GSI addresses is where a user may need to invoke a particular service 
through one or more proxy servers.  GSI breaks this request into a chain of point-to-point invocations, with the 
user’s initial (proxy) credential used to create a sequence of proxy key pairs, with each key pair being delegated 
limited authority to invoke a remote service.  The Akenti system [31] addresses the important problem of 
authorization of resources in a distributed system with multiple stakeholders.  Akenti provides an XML access 
policy language that is transmitted using X.509 policy certificates.  Ref [39] outlines strategies for securing 
computational portals. 
 
3.0 NaradaBrokering and Security Framework Overview 
NaradaBrokering is a distributed brokering system, which provides support for centralized, P2P and distributed 
interactions. The smallest unit of the messaging infrastructure, which can run on a network of cooperating nodes, is 
the broker. Each broker is responsible for processing events (specialized messages with additional headers), 
computing destinations and making decisions to facilitate efficient routing.  
 
In NaradaBrokering the broker nodes are organized in a cluster-based architecture. The cluster based architecture 
allows the system, to scale, to support clients of arbitrary size, while allowing individual broker nodes to compute 
alternate routes in response to node failures. NaradaBrokering provides intelligent routing of events within the 
system by selectively deploying brokers and communication links to aid disseminations.  
 
In NaradaBrokering we rely on message level security. To review NaradaBrokering’s security strategy briefly, all 
messages (or events, which are specialized messages) have a topic associated with them. Messages are encrypted 
with a topic-key, which is different for different topics. The system ensures that only authorized entities hold that 
topic-key, which will be used to decrypt encrypted messages. The framework allows strategies where the keys used 
for encrypting/decrypting messages could be based on symmetric or asymmetric keys. In addition to topic keys, 
each entity also contains a public/private personal-key pair. These are used to sign messages that allow 
entities/brokers to verify the source and integrity of the message. 
 
Of course possession of a valid topic key is necessary to decrypt the messages. The framework also deals with a 
variety of attack scenarios such as man-in-the-middle, denial of service attacks and replay attacks. The framework 
also incorporates strategies to detect security compromises and deals with issues pertaining to key invalidations and 
generations, based on personal-key and topic-key compromises within the system. 
 
The framework provides for end-to-end security and ensures that the only place where the messages are seen, in 
plain text, are at the originator of the content and authorized entities, who posses valid keys, to decrypt the encrypted 
content. The scheme allows interactions to traverse over insecure links and also deals with the presence of rouge 
brokers within the system. 
 
4.0 Implementing components of the Security Framework 
In this section, we discuss implementation and design issues pertaining to implementing the key components of the 
security framework. First, there is the Key Management Center (KMC) which is responsible for key management 
functions within the system. Then there is also the Access Control List (ACL) module, which is responsible for 
maintaining information pertaining to authorizations within the system. This is depicted in Figure 1. We now discuss 
these components in detail.  
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Figure 1: KMC, ACL and interactions 

4.1 Key Management Center (KMC) 
The KMC is responsible for functions pertaining to key management. This includes creating, storing and retrieving 
topic keys. Though in most practical situations entities would use symmetric keys for securing messages, the KMC 
also accommodates situations where the entities might use asymmetric keys for secure interactions. 
Brokers and entities alike can contact the KMC to verify the signature and authorizations of message originators. All 
interactions that entities and brokers have with the KMC are SSL based. SSL not only secures exchanges, which 
include key distributions to requesting entities, but also defeats man-in-the-middle attacks during key exchanges and 
replay attacks on the KMC.  NaradaBrokering’s transport framework [32] includes support for SSL. These SSL 
links posses the ability to communicate over firewall, authenticating proxy and NAT boundaries. We now proceed 
to outline the major functions provided by the KMC 
 
Creation of topic keys – The topic-keys generated could be either symmetric or asymmetric keys. The keys are 
created only after it is determined that the entity is authorized to create the topic. In the case of asymmetric keys 
associated with a topic, the appropriate public/private topic-keys are routed to entities depending on whether they 
have publish or subscribe permissions.  
 
In their interactions with the KMC, entities can specify the type (symmetric/asymmetric) of key, the algorithm used 
to generate the key and the provider of the cryptographic packages. This feature is supported in our implementation 
for two reasons. First, supporting a large number of cryptographic package providers will allow entities to leverage 
implementations of cryptographic packages across providers. For example Sun’s JCE [33] extension does not 
include an implementation of AES [35], while IAIK [34] JCE extension provides that implementation. Similarly, 
performance of the same cryptographic algorithm may vary across different providers.  
 

IAIK’s JCE Extensions Sun’s JCE and JSSE Extensions 
Symmetric Keys Asymmetric Keys Symmetric Keys Asymmetric Keys 

Algorithm Key Sizes Algorithm Key Sizes Algorithm Key Sizes Algorithm Key Sizes 
DES 64 DES 56 
3DES 192 3DES 112, 168 
AES 128,192,256 AES NA 
RC2 40, 128 

RSA 512, 1024, 
2048, 4096 

RC2 NA 

RSA 512, 1024, 
2048 

Table 1: Summary of different crytpgraphic providers/ functionalities supported by KMC prototype 

Second, different entities and applications may sustain/accept different security/performance tradeoffs. While 4096-
bit asymmetric key encryptions may be appropriate for some transactions, the performance degradations associated 
with supporting secure audio/video conferencing may render such a scheme unusable. Such systems may use a 
symmetric key algorithm such as AES (with 128-bit secret key) or DES [36] (56-bit secret key) to support encrypted 
communications.  
 
Table 1 provides a list of providers, symmetric/asymmetric algorithms and corresponding key sizes supported by the 
KMC’s prototype implementation. 

 

 2



Regeneration of topic keys – In response either to the detection of a security compromise or preemptive strategies 
mandated by the QoS associated with a given topic or entity, topic keys need to be regenerated. Of course the 
properties associated with the topic-key such as type, algorithm and provider would remain the same unless 
specified otherwise. The algorithms, key-size and provider may change due to performance or cryptographic 
(sometimes vulnerabilities in some algorithms might be revealed) reasons. 
 
Verifications – Entities and brokers will interact with the KMC from time to time to confirm the veracity of a signed 
message’s signature. This interaction is also used to verify if the entity in question is indeed authorized to issue 
messages to the topic contained in the message.  
 
Key Stores and Retrievals – The KMC is also responsible for storing the generated topic keys securely onto storage 
and retrieving relevant keys from storage when a need arises to do so. Depending on the number of keys managed 
by a KMC it would not be feasible to maintain keys in memory, storage and retrieval times thus become important 
factors under these conditions. There are a variety of keystore implementations that we could use. For our 
investigations we evaluate two such keystores – one is Sun’s JSK keystore, while the other is the IAIK keystore. 
Section 4.3 provides performance results pertaining to keystore performance, under different scenarios, which form 
the basis of certain design decisions pertaining to the keystore. 
 
4.2 Access Control List (ACL) module  
The KMC interacts with the ACL module to confirm permissions associated with an entity. The ACL module and 
the KMC reside in the same process. Associated with every entity, the ACL module keep track of the topic’s the 
entity has subscribed to, along with the permissions it has associated with each topic, such as publish, subscribe and 
create. The ACL also maintains another view, where the KMC can query the ACL module to retrieve the list of 
valid entities authorized to retrieve the associated topic key (s). 
 
These functionalities are implemented using Hashtables. The implementation included with JDK provides 
synchronized accesses to all functions supported by the Hashtable. This feature is useful especially when multiple 
read/writes are occurring concurrently. 
 
The ACL module also needs to ensure that this information pertaining to entities, topics and accompanying access 
permissions, are stored securely. Only the process running the ACL module should be able to view the contents of 
this stored data. While storing to file, the various Hashtable contents need to be serialized and then encrypted 
prior to storage. During initializations, the serialized representations can then be used to construct the object. 
 
The authorization and access control schemes can get arbitrarily complex when issues such as trust propagation and 
reputations are incorporated into the scheme for access controls. This feature has not yet been built into the system. 
 
4.3 Some performance measurements from the KMC prototype 
The KMC is responsible for storing symmetric/asymmetric keys. Public personal-keys reported by entities are stored 
by the KMC in the Certificate format. Keystores are a popular format to store both symmetric and asymmetric keys. 
The keystore file and every key maintained by the keystore are password protected. Keys have an alias associated 
with them which is used to retrieve the corresponding keys. 
 
We compared the performance of different kinds of keystores based on different criteria such as affect on file sizes, 
storage time and retrieval times associated with individual keys. We compared two keystores – one was the JSK 
keystore from SUN JCE and the other was the IAIK keystore from IAIK. The symmetric key formats we used in our 
experiments included – 3DES (192 bits), AES (128 bits, 192 bits and 256 bits) and RC2 (40 bits and 128 bit). The 
asymmetric keys format we used were – RSA 512 bits, 1024 bits and 2048 bits. All reported results were based on 
an average of operations that were performed 100 times. The experiments were conducted on Pentium-4 2.4GHz 
CPU, 512 MB RAM machine. The OS on this machine is Windows XP. The runtime JVM for the processes 
involved was JRE 1.4.1. 
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Figure 2: Storage/retrieve for symmetric keys Figure 3: Storage/retrieve for asymmetric keys 
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Figures 2 and 3 depict the storage/retrieval times associated with symmetric and asymmetric keys, with different key 
sizes and different providers, respectively. Table 2 summaries the results depicted in Figures 2 and 3. We also 
performed similar measurements for RSA (512-bit, 1024-bit), AES (128-bit, 192-bit), 3DES (192-bit) and RC2 (40-
bit, 128-bit) based keystores for each (whenever possible) of the two providers. The results followed similar 
patterns, and the storage/retrieval times would have made discernment of trends difficult to observe if there were to 
be plotted on the same graph. Table 2 summarizes the results of our benchmarks pertaining to keystores. 
 
Key Type File size Retrieval Storage 
Symmetric IAIK is better 

(about 5 times smaller) 
IAIK is better 

(about 2 times faster) 
SUN is better for key numbers<1000, 
IAIK is better for key numbers>1000 

 
Asymmetric IAIK & SUN provide 

similar Performance 
SUN is better 

(about 2 times faster) 
SUN is better (about 2 times faster) 

Table 2: Summary of results from keystore measurements 

Based on the results, outlined in Table 2, we can see that SUN JCE’s JSK keystore has better performance with 
asymmetric keys. The IAIK keystore has better performance with symmetric keys. In our final implementation we 
plan to separate the storage of topic keys and personal public keys into two different keystores, using the SUN JCE’s 
JSK keystore to save the asymmetric keys and the IAIK keystore to store symmetric keys. 
 
5.0 Performance results for End-to-End Security 
End to end security is achieved in the system by ensuring that only authorized entities can issue messages while at 
the same time ensuring that only similarly authorized entities can view the contents of the message. Every entity can 
of course confirm whether the message in question has been tampered with or has been issued by an authorized 
entity. In this section we introduce results pertaining to the times it takes to encrypt messages, compute message 
digests and sign them, and finally verify the message signature and decrypt contents of encrypted message.  
 
The experiments were performed on a Windows 2000 machine (Pentium-3, 1.5 GHz, 512 MB RAM). The runtime 
environment for all processes involved is JRE 1.4.1. We also used a high resolution timer for measuring certain 
operations. The cryptographic provider which we used in these experiments is IAIK. Figures 4 and 5 present the 
encryption times associated with different message sizes for different cryptographic algorithms (64 bit DES, 192 bit 
3DES, and 128 bit AES). The points in the graphs represent the average value of the operation being performed 
1000 times.  Figure 4 outlines results that are memory optimized as a result of the key being resident in memory 
during computations. Figure 5 presents the similar case, when the key used for encryptions are not memory resident. 
In the optimized case the encryption time varies between 50-1650 microseconds, while in the un-optimized case the 
numbers vary between 1-17 milliseconds for the cases measured. We also measured the decryption time under 
identical scenarios for both the normal and memory optimized cases. For all algorithms the decryption times were 
almost similar to the corresponding encryption times.   
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Figure 4: Encryption times for different message 
sizes  (Memory Optimized) 

Figure 5:  Encryption times for different message 
sizes 

Figure 6 depicts the time associated with computing message digests using the MD5 [37] and SHA-1 [38] hash 
functions. MD5 generates a 128-bit message digest, while SHA-1 generates a 160-bit value. Figure 7 outlines the 
time associated with signing (encrypting message digest with personal private key) a message and verifying the 
message’s signature. We performed the signing/verification process for 4 different RSA key sizes viz. 512-bit, 1024-
bit, 2048-bit and 4096-bit. Though in the figure we report values based on signing SHA-1 hash values, we have also 
computed numbers for MD5 based hash values. The signing/verification times associated with MD5 based message 
digests are similar to those of SHA-1 based signature/verification times. 
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6.0 Conclusions and Future Work 
In this paper we outlined a prototype implementation of the security framework outlined in our earlier work. We 
believe the results of the experiments from our prototype can be used by other researchers in the development of 
similar prototypes. The results also provide a precursor to testing secure communications, using various applications 
under different scenarios, which would help us at arriving at better heuristics as far the performance/security 
tradeoffs are concerned. 
 
We have not yet implemented the Distributed KMC architecture outlined in [1]. Implementing this distributed KMC 
and the accompanying distributed ACL is the next implementation effort. Also under implementation are the 
strategies to detect a security compromise by issuing random authentication challenges or queries, and matching 
entity responses to stored ones.  
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