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Abstract 
 

Integrating sensors and grid computing provides a 
way to gather, process and model real-time 
information from the physical world for right, timely 
decisions and actions to be taken in responding to 
events over a large scale. We create a sensor grid 
including various types of sensors, use a grid builder 
tool for discovering and managing remote, distributed 
sensors, and provide a unified interface for displaying 
real-time data from those sensors. Also, we used 
advanced collaborative technology (i.e., Impromptu 
software) to enable distributed users to have a 
consistent view of the displayed information.    
 
1. Introduction 
 

Increased use of sensors in commercial and military 
environments is being driven by the need for better 
intelligence data and by advancement in technology, 
which provides smaller, less costly and more capable 
sensors. It is, however, not sufficient and in many 
situations not productive to just provide lots of sensor 
data to decision-makers at all levels for their missions 
on hand.  It is valuable to have a framework that 
supports seamless integration of loosely-coupled and 
custom-developed sensor data management, 
visualization and presentation tools, and real-time 
collaboration capability for sharing situational 
awareness. Thus, real-time information about the 
physical world can be gathered, processed, correlated 
and shared to facilitate quick, reliable decision making 
on a large scale.  

This framework directly integrates sensors with grid 
computing, which is essentially the federation of large-
scale, heterogeneous computational servers on top of 
high-speed network connections. Middleware 
technologies such as Globus and Gridbus [1] enable 

secure and convenient sharing of resources (e.g., CPU, 
memory, storage, content and databases) by distributed 
users and applications. There has been an increasing 
demand for applying grid computing in the fields of 
bioinformatics, drug design, engineering design, 
business, manufacturing and logistics. 

Our research is motivated to design and develop an 
enabling framework to support the development, 
deployment, management and real- time visualization 
and presentation of collaborative, geo-coded sensor 
grid applications with flexibility, extensibility and 
scalability. The Collaborative Sensor Grids (CSG) 
framework underlying technology is based on an 
event-driven (publish/subscribe) model that utilizes a 
“publish and subscribe” communication paradigm over 
a distributed NaradaBrokering (NB) message-based 
transport network. A key capability component is the 
Grid Builder sharedlet which supports the assemblage 
of grid of grids - a compositional model of assembling 
a multitude of subgrids into a mission-specific grid 
application.  For the CSG framework, the Grid Builder 
sharedlet facilitates the assemblage of two important 
subgrids, namely a real-time multimedia collaboration 
grid and hierarchical, executable sensor grid.   

In the next section, we describe some physical 
sensors, our system architecture and how it was 
implemented. Then, section 3 explains how the Grid 
Builder tool facilitates the discovery and management 
of distributed sensors. Visualization and presentation 
for displaying sensor data in the collaboration grid are 
illustrated in section 4. Finally, section 5 summarizes 
the paper with conclusions and future work. 
 
2. Collaborative Sensor Grids 
 
2.1. Sensors 
 



Sensor grids are a combination of sensor networks 
and grid computing.  As a result of recent advances in 
electronic circuit miniaturization and micro-
electromechanical systems (MEMS), small sensor nods 
that integrate several kinds of sensors, a Real Time 
Data (RTD) server and a wireless transceiver can be 
created to form the sensor network. Basically, a sensor 
is a type of transducer which uses one type of energy, a 
signal of some sort, and converts it into a reading for 
the purpose of information transfer. We used a small-
sized tablet computer (i.e., Nokia N800) as the RTD 
server, which has considerable computing power with 
supports for both Wi-Fi and Bluetooth connections. 
Different types of sensors have been provided in 
sensor grids. They provide various sources of real-time 
information as follows: 

1) GPS sensor: It is a portable GPS receiver, which 
receives geospatial location information (e.g., latitude, 
longitude, etc) from satellites and transfers such 
information to the RTD server via Bluetooth 
connection. 

2) Video/Audio: Those sensors, which are actually 
the built-in webcam and microphone in the Nokia 
N800 tablet, provide video/audio streams that can be 
broadcasted over the Internet.   

3) RFID sensor: This sensor includes both RFID 
tags and a reader.  The reader senses information about 
RFID tags such as the signal strength, motion, temper 
and panic and encapsulates the information in tag 
event messages. The RTD server gets and processes 
those messages via Bluetooth 

4) Lego Robot: There are four sensors equipped in 
the Lego Robot, which are sound, light, touch and 
ultrasonic sensors. Their detected information is sent to 
the RTD server via the Bluetooth module in the robot. 
The robot can also act as instructed by taking 
programmable commands from a computer (e.g., the 
RTD server).   

 
Table 1. Sensor Types and Attributes 

 
Sensor Type Attributes 

GPS - Time 
- Latitude 
- Longitude 
- ID 

Video/Audi
o 

- Video stream 
- Audio stream 

RFID - Tag ID 
- Group code 
- Motion or stationary 
- Signal strength 

Lego Robot - Sound 
- Light 
- Touch 
- Ultrasonic 

 
2.2. System Architecture 
 

Our approach uses a scalable, hierarchical and 
collaborative architecture. Hybrid, large-scale 
distributed sensor nodes are loosely coupled by a 
message-oriented middleware system called 
NaradaBrokering (NB) [2], which is a content 
distribution infrastructure based on the 
publish/subscribe paradigm. 

The NaradaBrokering substrate itself comprises a 
distributed network of cooperating broker nodes. One 
reason for choosing NaradaBrokering as the 
middleware fabric for Sensor Grids is that it places no 
restrictions on the type of the content: it has been 
deployed in systems where the content has been GIS 
data, multimedia codecs, images, text, bit maps and 
objects among others. The substrate places no 
constraints on the size, rate and scope of the 
interactions encapsulated within the streams, or on the 
number of entities within the system. Also, 
NaradaBrokering has other useful features such as: 
secure end-to-end delivery of streams, robust stream 
disseminations, efficient ordering and synchronization 
of streams, support for rich Quality of Services, 
support for multiple transport protocols and support for 
Web Services, etc. 
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Figure 1. Collaborative Sensor Grids system 

architecture 
 

The system architecture of Collaborative Sensor 
Grids is depicted in Figure 1. There are different types 
of sensors distributed globally. Each sensor (GPS, 
Video/Audio, RFID, etc) keeps gathering real-time 
information that it is sensitive to from the environment. 
A RTD server being connected with the sensor 
processes the incoming raw data and publishes refined 
information encoded in certain message format to a 
NaradaBrokering server. Messages are transported 
among brokers in NaradaBrokering. Running on a 
computer for presenting such information, a simple 
client program can subscribe to a specific topic of 
NaradaBrokering in order to receive relevant 
messages. Different information from different types 
of sensors will be presented to users through Anabas 
collaboration software Impromptu. In Section 4, we 
will describe the Impromptu User Interface that 
includes multiple Sharedlets and explain how to use it 
to share such information among remote, distributed 
users. 

High-speed, reliable physical network is always a 
key requirement for this system. There are two types of 
network connections in the architecture: Bluetooth and 
WiFi. Bluetooth is used for the connection between a 
sensor and a RTD server since most sensors are 
Bluetooth enabled. It is efficient and reliable for 
transporting data in a short range. For the connection 
between RTD servers and NaradaBrokering, WiFi is 
desired because a RTD server usually needs to be 
portable with sensors and its distance to a 
NaradaBrokering server may be varying and long.   

The overall Sensor Grid system consists of sensor 
units arranged hierarchically. The sensed information 
of each sensor is processed by one RTD server. Also, 

there are sensor grid servers which take the role of 
brokers. It communicates with a collaboration grid 
server where meeting sessions reside as well as 
sensors. Primary functions of a sensor grid server are 
to manage and broker sensor message flows. It 
optimizes bandwidth usage that by forwarding 
messages should only be forwarded to necessary nodes 
that needed them only. This server is stateful and has 
memory of connections of sensor and meeting 
sessions. An overview of the sensor data flow 
architecture is shown in Figure 2. This structure makes 
the system scalable in a wide-area deployment. It can 
be scaled to manipulate hundreds or thousands of 
sensors in real time, no matter where their physical 
locations are.  With the integration of collaboration 
grid, users also have a consistent view of extracted, 
processed and organized information from all those 
sensors. 

 

 
Figure 2. Overview of the sensor data flow 

 
2.3. Implementation of Sensor Grids 
 

We adopted a general process to implement Sensor 
Grids based on the architecture described before. The 
major steps include: 

1) Establishing the Bluetooth connection between 
a sensor and a RTD server; 

2) On the RTD server, a filter service extracts 
useful information from raw data through the 
established connection; 

3) Refined data is encoded in messages and 
published to an NB topic; 

4) On a computer for presentation, a client 
program subscribes to the specific NB topic to 
receive relevant messages; 

5) Retrieved messages are parsed to get 
information that users are interested; 



6) The information is presented in a defined 
collaborative sharedlet.  

 We take implementing the GPS sensor grid as a 
concrete example here: 

First, we use a portable tablet Nokia N800 as the 
RTD server, which connects a GPS receiver device (I-
Blue) via Bluetooth. A client program extracts useful 
information such as latitude, longitude and time from 
incoming raw data. Then it publishes encoded 
messages to a NB topic (Streams/GPS/Location1) with 
a certain frequency (e.g. every 3 seconds). 

Next, on the computer for presenting GPS 
information to users, a NB client subscribes to the 
same topic (Streams/GPS/Location1) to retrieve real-
time data of the GPS location. We use the Google 
Maps API to show the GPS current location on the 
map based on its geospatial location information 
(latitude and longitude). Also, the GPS ID is marked 
on the map to distinguish it from other GPS sensors.  

Finally, the map is integrated with Impromptu as a 
sharedlet. A user can have a global view of all GPS 
sensors or select a single GPS location to view its 
details. The sharedlet also provides functions specific 
to geographic information such as zoom in, zoom out, 
and panning the map to different directions. 

For other sensors like Video/Audio, RFID and Lego 
Robot, they are implemented following the same 
pattern. Major differences between implementing 
different types of sensors lie in the filter for extracting 
sensed information from raw data and the presentation 
interface for such information. 

One issue worthwhile to mention is that several 
filters may process sensed information collaboratively 
as a workflow. For example, after the RTD server 
receives raw data from the stations it generates and 
broadcasts messages through a port in a binary format 
called RYO. One filter on the client side can decode 
captured RYO messages into text format. Another 
filter can convert text format to Geography Markup 
Language (GML) format, since different users may be 
interested in geographic information in different 
formats. Further research is ongoing to study the issue 
of workflow in Sensor Grids. 
 
3. Sensor Grid Management 

 
Sensors services need to be managed over the 

network so that the user can find out new sensors 
monitor the status of existing sensors and recover from 
failure by replacing malfunctioning sensors. We 
extended a generic management framework that is 
capable of managing any type of service with modest 
external state [3] for Sensor Grids. Web service based 

protocols are implemented in the framework to provide 
interoperable management. Existing management 
systems can be effectively integrated. A hierarchical 
bootstrapping mechanism is deployed to scale the 
management framework over a wide-area. The 
framework is tolerant to failures within the framework 
itself while service failure is handled by executing 
user-defined failure handling policies. The unit of 
management framework consists of a set of 
manageable services, their associated service mangers, 
message nodes (to provide a scalable messaging 
substrate) and a scalable, fault-tolerant data structure 
called registry. 

In order to make a sensor service manageable by the 
management tool, we implemented a specific sensor 
service adapter and a sensor manager following WS 
Management. The interface of the Grid Builder tool 
that implements the management framework is shown 
in Figure 3. The user can easily view a list of 
discovered sensor services in the left panel and select 
one to get more detailed information about it such as 
its location, the host address and its UUID, etc. The 
user can also deploy a sensor service on a remote 
sensor node through the application. Thus, in case one 
necessary sensor service becomes unavailable due to 
some reasons, it is still possible to find an alternative 
sensor to start the same service. 
 

 
 

Figure 3. Grid Builder tool interface 
 

The process of finding new sensors is based on 
WS_Discovery specification, in which the message 
exchanging between a sensor service adapter and a 
sensor manager is described as below: 

1) Initially a sensor sends a multicast Hello message 
when it joins a network; 

2) The sensor manager multicasts a Probe message 
with Type and/or Scope to discover existing sensors; 



3) A sensor may receive a multicast Probe message 
and send a unicast Probe Match (PM) if it matches that 
Probe; 

4) The sensor manager multicasts a Resolve 
message with Name to discover existing sensors; 

5) A sensor may receive a multicast Resolve 
message and send a unicast Resolve Match (RM) if it 
matches that Resolve; 

6) When a sensor leaves a network, it sends a 
multicast Bye message 

7) The sensor manager will add/remove a sensor 
when it receives a multicast Hello/Bye message. 

The Grid Builder tool follows the idea of 
constructing grid of grids, which assembles a multitude 
of subgrids into a mission-specific grid application.  In 
the CSG framework, the Grid Builder tool facilitates 
the assemblage of two important subgrids, namely a 
real-time multimedia collaboration grid and 
hierarchical, executable sensor grid. For example, 
many types of sensors have controls for changing their 
respective behavior and to perform actions. However, 
the specific action and its corresponding control 
operation vary from sensors to sensors. To facilitate 
the control of sensors in an end-user application, the 
CSG client will support sets of customable controls to 
be defined by users with Grid Builder. This 
information will be transmitted to the respective sensor 
sharedlets in order to construct appropriate buttons for 
sensor control. We provided some initial sensor 
sharedlet controls for certain generic sensor types, 
which will be shown in the next section. 
 
4. Visualization and Presentation 
 

A particular design objective for the CSG client is 
to provide an intuitive user interface for enabling 
UDOP (User Defined Operation Picture) and COP 
(Common Operation Picture) capabilities, which are 
essential for agile formulation and sharing of visual, 
situational awareness and effective decision-support.  

To have the basic support of sensors, users must be 
able to visualize sensors’ data and to control sensors. 
Some basic principles for visualizing sensor are: 

1) Groups of geo-located sensors can be 
visualized by their geospatial locations; 

2) Each sensor can be visualized particularly 
based on its property; 

3) Sensors can be grouped and visualized on a 
single canvas 

4) Multiple canvas can be viewed concurrently 
5) The state can be captured 
Also, each sensor should accept control which can 

be none. And those control functions should be 

generated according to sensor’s controllable capability. 
Multiple sensors can be controlled simultaneously. 

We used Anabas Impromptu as the collaboration 
solution for sharing information from sensors among 
distributed users. It is a system for real time shared 
display, audio, and chats. Its portal consists of multiple 
sharedlets, each of which can be a standalone, shared 
application. Different sharedlets were developed for 
handling and displaying different types of real time 
information from sensors in Impromptu. 
 

 
 

Figure 4. GPS Sensors sharedlet interface 
 

 
 

Figure 5. Video Sensors sharedlet interface 
 
Figure 4 and Figure 5 show the display for GPS and 

Video sensors, respectively. The GPS sharedlet 
includes a Google Map with four different GPS 
locations marked on. Users can use the supported 
control to zoom in, zoom out, and move the map 
around via the sensor control tool menu. In the Video 



sharedlet, there are four windows streaming real time 
videos from those locations without any user control. 

  
Figure 6 presents a case that a user wants to control a 
Lego Robot and see its sensor information. The sensor 
information includes not only its built-in sensors such 
as light intensity, ultrasonic and voice sensors, but also 
GPS, RFID and video sensors. Thus, it is a composite 
sensor consisting of multiple primitive sensors. 
 

 
 

Figure 6. Lego Robot and RFID sensors 
 

 
 
 
 
 

5. Conclusions and Future Work 
 
We have developed a framework to support the 
development, deployment, management, visualization 
of collaborative, geospatially located sensor grids with 

flexibility, extensibility and scalability. Based on the 
framework, we created sensor grid applications for 
various types of sensors, used a Grid Builder tool for 
discovering and managing those sensors, and provided 
a rich, informative user interface for presenting real-
time sensor data to users. Also, we used advanced 
collaborative technology built on top of message-
oriented middleware to enable distrusted users to have 
a consistent view of such information. 

There are still unfinished issues for future work. 
First, currently the Grid Builder tool is standalone. It is 
expected to be integrated with Impromptu as a 
sharedlet. Not only it will make the interface more 
consistent but also it can link the collaboration grid 
with the sensor grid better. Second, it is expected that a 
user can customize controls for new types of sensors. 
Predefined controls may not be suitable for those. 
More interactions between users and the system can be 
useful. Last, information from different sensors can be 
synthesized through a workflow to make it more 
meaningful to users.  
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