
A Collaborative Sensor Grids Framework

Rui Wang, Geoffrey Fox, and Alex Ho
Anabas, Inc

Suite 106C, 501 North Morton Street
Bloomington, IN 47404

812-856-1212
rui.wang@anabas.com, gcf@indiana.edu, alexho@anabas.edu

Abstract

Integrating sensors and grid computing provides a
way to gather, process and model real-time
information from the physical world for right, timely
decisions and actions to be taken in responding to
events over a large scale. We create a sensor grid
including various types of sensors, use a grid builder
tool for discovering and managing remote, distributed
sensors, and provide a unified interface for displaying
real-time data from those sensors. Also, we used
advanced collaborative technology (i.e., Impromptu
software) to enable distributed users to have a
consistent view of the displayed information.

1. Introduction

Increased use of sensors in commercial and military
environments is being driven by the need for better
intelligence data and by advancement in technology,
which provides smaller, less costly and more capable
sensors. It is, however, not sufficient and in many
situations not productive to just provide lots of sensor
data to decision-makers at all levels for their missions
on hand. It is valuable to have a framework that
supports seamless integration of loosely-coupled and
custom-developed sensor data management,
visualization and presentation tools, and real-time
collaboration capability for sharing situational
awareness. Thus, real-time information about the
physical world can be gathered, processed, correlated
and shared to facilitate quick, reliable decision making
on a large scale.

This framework directly integrates sensors with grid
computing, which is essentially the federation of large-
scale, heterogeneous computational servers on top of
high-speed network connections. Middleware
technologies such as Globus and Gridbus [1] enable

secure and convenient sharing of resources (e.g., CPU,
memory, storage, content and databases) by distributed
users and applications. There has been an increasing
demand for applying grid computing in the fields of
bioinformatics, drug design, engineering design,
business, manufacturing and logistics.

Our research is motivated to design and develop an
enabling framework to support the development,
deployment, management and real- time visualization
and presentation of collaborative, geo-coded sensor
grid applications with flexibility, extensibility and
scalability. The Collaborative Sensor Grids (CSG)
framework underlying technology is based on an
event-driven (publish/subscribe) model that utilizes a
“publish and subscribe” communication paradigm over
a distributed NaradaBrokering (NB) message-based
transport network. A key capability component is the
Grid Builder sharedlet which supports the assemblage
of grid of grids - a compositional model of assembling
a multitude of subgrids into a mission-specific grid
application. For the CSG framework, the Grid Builder
sharedlet facilitates the assemblage of two important
subgrids, namely a real-time multimedia collaboration
grid and hierarchical, executable sensor grid.

In the next section, we describe some physical
sensors, our system architecture and how it was
implemented. Then, section 3 explains how the Grid
Builder tool facilitates the discovery and management
of distributed sensors. Visualization and presentation
for displaying sensor data in the collaboration grid are
illustrated in section 4. Finally, section 5 summarizes
the paper with conclusions and future work.

2. Collaborative Sensor Grids

2.1. Sensors

Sensor grids are a combination of sensor networks
and grid computing. As a result of recent advances in
electronic circuit miniaturization and micro-
electromechanical systems (MEMS), small sensor nods
that integrate several kinds of sensors, a Real Time
Data (RTD) server and a wireless transceiver can be
created to form the sensor network. Basically, a sensor
is a type of transducer which uses one type of energy, a
signal of some sort, and converts it into a reading for
the purpose of information transfer. We used a small-
sized tablet computer (i.e., Nokia N800) as the RTD
server, which has considerable computing power with
supports for both Wi-Fi and Bluetooth connections.
Different types of sensors have been provided in
sensor grids. They provide various sources of real-time
information as follows:

1) GPS sensor: It is a portable GPS receiver, which
receives geospatial location information (e.g., latitude,
longitude, etc) from satellites and transfers such
information to the RTD server via Bluetooth
connection.

2) Video/Audio: Those sensors, which are actually
the built-in webcam and microphone in the Nokia
N800 tablet, provide video/audio streams that can be
broadcasted over the Internet.

3) RFID sensor: This sensor includes both RFID
tags and a reader. The reader senses information about
RFID tags such as the signal strength, motion, temper
and panic and encapsulates the information in tag
event messages. The RTD server gets and processes
those messages via Bluetooth

4) Lego Robot: There are four sensors equipped in
the Lego Robot, which are sound, light, touch and
ultrasonic sensors. Their detected information is sent to
the RTD server via the Bluetooth module in the robot.
The robot can also act as instructed by taking
programmable commands from a computer (e.g., the
RTD server).

Table 1. Sensor Types and Attributes

Sensor Type Attributes

GPS - Time
- Latitude
- Longitude
- ID

Video/Audi
o

- Video stream
- Audio stream

RFID - Tag ID
- Group code
- Motion or stationary
- Signal strength

Lego Robot - Sound
- Light
- Touch
- Ultrasonic

2.2. System Architecture

Our approach uses a scalable, hierarchical and
collaborative architecture. Hybrid, large-scale
distributed sensor nodes are loosely coupled by a
message-oriented middleware system called
NaradaBrokering (NB) [2], which is a content
distribution infrastructure based on the
publish/subscribe paradigm.

The NaradaBrokering substrate itself comprises a
distributed network of cooperating broker nodes. One
reason for choosing NaradaBrokering as the
middleware fabric for Sensor Grids is that it places no
restrictions on the type of the content: it has been
deployed in systems where the content has been GIS
data, multimedia codecs, images, text, bit maps and
objects among others. The substrate places no
constraints on the size, rate and scope of the
interactions encapsulated within the streams, or on the
number of entities within the system. Also,
NaradaBrokering has other useful features such as:
secure end-to-end delivery of streams, robust stream
disseminations, efficient ordering and synchronization
of streams, support for rich Quality of Services,
support for multiple transport protocols and support for
Web Services, etc.

NaradaBrokering

Server

NaradaBrokering

Server

NaradaBrokering

Server

Ultrasonic
Sensor

Sound Sensor

Light
Sensor

RFID
reader

GPS receiver Tablet PC

Robot
Alpha
Rex

Robot
Tribot

Figure 1. Collaborative Sensor Grids system

architecture

The system architecture of Collaborative Sensor
Grids is depicted in Figure 1. There are different types
of sensors distributed globally. Each sensor (GPS,
Video/Audio, RFID, etc) keeps gathering real-time
information that it is sensitive to from the environment.
A RTD server being connected with the sensor
processes the incoming raw data and publishes refined
information encoded in certain message format to a
NaradaBrokering server. Messages are transported
among brokers in NaradaBrokering. Running on a
computer for presenting such information, a simple
client program can subscribe to a specific topic of
NaradaBrokering in order to receive relevant
messages. Different information from different types
of sensors will be presented to users through Anabas
collaboration software Impromptu. In Section 4, we
will describe the Impromptu User Interface that
includes multiple Sharedlets and explain how to use it
to share such information among remote, distributed
users.

High-speed, reliable physical network is always a
key requirement for this system. There are two types of
network connections in the architecture: Bluetooth and
WiFi. Bluetooth is used for the connection between a
sensor and a RTD server since most sensors are
Bluetooth enabled. It is efficient and reliable for
transporting data in a short range. For the connection
between RTD servers and NaradaBrokering, WiFi is
desired because a RTD server usually needs to be
portable with sensors and its distance to a
NaradaBrokering server may be varying and long.

The overall Sensor Grid system consists of sensor
units arranged hierarchically. The sensed information
of each sensor is processed by one RTD server. Also,

there are sensor grid servers which take the role of
brokers. It communicates with a collaboration grid
server where meeting sessions reside as well as
sensors. Primary functions of a sensor grid server are
to manage and broker sensor message flows. It
optimizes bandwidth usage that by forwarding
messages should only be forwarded to necessary nodes
that needed them only. This server is stateful and has
memory of connections of sensor and meeting
sessions. An overview of the sensor data flow
architecture is shown in Figure 2. This structure makes
the system scalable in a wide-area deployment. It can
be scaled to manipulate hundreds or thousands of
sensors in real time, no matter where their physical
locations are. With the integration of collaboration
grid, users also have a consistent view of extracted,
processed and organized information from all those
sensors.

Figure 2. Overview of the sensor data flow

2.3. Implementation of Sensor Grids

We adopted a general process to implement Sensor
Grids based on the architecture described before. The
major steps include:

1) Establishing the Bluetooth connection between
a sensor and a RTD server;

2) On the RTD server, a filter service extracts
useful information from raw data through the
established connection;

3) Refined data is encoded in messages and
published to an NB topic;

4) On a computer for presentation, a client
program subscribes to the specific NB topic to
receive relevant messages;

5) Retrieved messages are parsed to get
information that users are interested;

6) The information is presented in a defined
collaborative sharedlet.

 We take implementing the GPS sensor grid as a
concrete example here:

First, we use a portable tablet Nokia N800 as the
RTD server, which connects a GPS receiver device (I-
Blue) via Bluetooth. A client program extracts useful
information such as latitude, longitude and time from
incoming raw data. Then it publishes encoded
messages to a NB topic (Streams/GPS/Location1) with
a certain frequency (e.g. every 3 seconds).

Next, on the computer for presenting GPS
information to users, a NB client subscribes to the
same topic (Streams/GPS/Location1) to retrieve real-
time data of the GPS location. We use the Google
Maps API to show the GPS current location on the
map based on its geospatial location information
(latitude and longitude). Also, the GPS ID is marked
on the map to distinguish it from other GPS sensors.

Finally, the map is integrated with Impromptu as a
sharedlet. A user can have a global view of all GPS
sensors or select a single GPS location to view its
details. The sharedlet also provides functions specific
to geographic information such as zoom in, zoom out,
and panning the map to different directions.

For other sensors like Video/Audio, RFID and Lego
Robot, they are implemented following the same
pattern. Major differences between implementing
different types of sensors lie in the filter for extracting
sensed information from raw data and the presentation
interface for such information.

One issue worthwhile to mention is that several
filters may process sensed information collaboratively
as a workflow. For example, after the RTD server
receives raw data from the stations it generates and
broadcasts messages through a port in a binary format
called RYO. One filter on the client side can decode
captured RYO messages into text format. Another
filter can convert text format to Geography Markup
Language (GML) format, since different users may be
interested in geographic information in different
formats. Further research is ongoing to study the issue
of workflow in Sensor Grids.

3. Sensor Grid Management

Sensors services need to be managed over the

network so that the user can find out new sensors
monitor the status of existing sensors and recover from
failure by replacing malfunctioning sensors. We
extended a generic management framework that is
capable of managing any type of service with modest
external state [3] for Sensor Grids. Web service based

protocols are implemented in the framework to provide
interoperable management. Existing management
systems can be effectively integrated. A hierarchical
bootstrapping mechanism is deployed to scale the
management framework over a wide-area. The
framework is tolerant to failures within the framework
itself while service failure is handled by executing
user-defined failure handling policies. The unit of
management framework consists of a set of
manageable services, their associated service mangers,
message nodes (to provide a scalable messaging
substrate) and a scalable, fault-tolerant data structure
called registry.

In order to make a sensor service manageable by the
management tool, we implemented a specific sensor
service adapter and a sensor manager following WS
Management. The interface of the Grid Builder tool
that implements the management framework is shown
in Figure 3. The user can easily view a list of
discovered sensor services in the left panel and select
one to get more detailed information about it such as
its location, the host address and its UUID, etc. The
user can also deploy a sensor service on a remote
sensor node through the application. Thus, in case one
necessary sensor service becomes unavailable due to
some reasons, it is still possible to find an alternative
sensor to start the same service.

Figure 3. Grid Builder tool interface

The process of finding new sensors is based on
WS_Discovery specification, in which the message
exchanging between a sensor service adapter and a
sensor manager is described as below:

1) Initially a sensor sends a multicast Hello message
when it joins a network;

2) The sensor manager multicasts a Probe message
with Type and/or Scope to discover existing sensors;

3) A sensor may receive a multicast Probe message
and send a unicast Probe Match (PM) if it matches that
Probe;

4) The sensor manager multicasts a Resolve
message with Name to discover existing sensors;

5) A sensor may receive a multicast Resolve
message and send a unicast Resolve Match (RM) if it
matches that Resolve;

6) When a sensor leaves a network, it sends a
multicast Bye message

7) The sensor manager will add/remove a sensor
when it receives a multicast Hello/Bye message.

The Grid Builder tool follows the idea of
constructing grid of grids, which assembles a multitude
of subgrids into a mission-specific grid application. In
the CSG framework, the Grid Builder tool facilitates
the assemblage of two important subgrids, namely a
real-time multimedia collaboration grid and
hierarchical, executable sensor grid. For example,
many types of sensors have controls for changing their
respective behavior and to perform actions. However,
the specific action and its corresponding control
operation vary from sensors to sensors. To facilitate
the control of sensors in an end-user application, the
CSG client will support sets of customable controls to
be defined by users with Grid Builder. This
information will be transmitted to the respective sensor
sharedlets in order to construct appropriate buttons for
sensor control. We provided some initial sensor
sharedlet controls for certain generic sensor types,
which will be shown in the next section.

4. Visualization and Presentation

A particular design objective for the CSG client is
to provide an intuitive user interface for enabling
UDOP (User Defined Operation Picture) and COP
(Common Operation Picture) capabilities, which are
essential for agile formulation and sharing of visual,
situational awareness and effective decision-support.

To have the basic support of sensors, users must be
able to visualize sensors’ data and to control sensors.
Some basic principles for visualizing sensor are:

1) Groups of geo-located sensors can be
visualized by their geospatial locations;

2) Each sensor can be visualized particularly
based on its property;

3) Sensors can be grouped and visualized on a
single canvas

4) Multiple canvas can be viewed concurrently
5) The state can be captured
Also, each sensor should accept control which can

be none. And those control functions should be

generated according to sensor’s controllable capability.
Multiple sensors can be controlled simultaneously.

We used Anabas Impromptu as the collaboration
solution for sharing information from sensors among
distributed users. It is a system for real time shared
display, audio, and chats. Its portal consists of multiple
sharedlets, each of which can be a standalone, shared
application. Different sharedlets were developed for
handling and displaying different types of real time
information from sensors in Impromptu.

Figure 4. GPS Sensors sharedlet interface

Figure 5. Video Sensors sharedlet interface

Figure 4 and Figure 5 show the display for GPS and

Video sensors, respectively. The GPS sharedlet
includes a Google Map with four different GPS
locations marked on. Users can use the supported
control to zoom in, zoom out, and move the map
around via the sensor control tool menu. In the Video

sharedlet, there are four windows streaming real time
videos from those locations without any user control.

Figure 6 presents a case that a user wants to control a
Lego Robot and see its sensor information. The sensor
information includes not only its built-in sensors such
as light intensity, ultrasonic and voice sensors, but also
GPS, RFID and video sensors. Thus, it is a composite
sensor consisting of multiple primitive sensors.

Figure 6. Lego Robot and RFID sensors

5. Conclusions and Future Work

We have developed a framework to support the
development, deployment, management, visualization
of collaborative, geospatially located sensor grids with

flexibility, extensibility and scalability. Based on the
framework, we created sensor grid applications for
various types of sensors, used a Grid Builder tool for
discovering and managing those sensors, and provided
a rich, informative user interface for presenting real-
time sensor data to users. Also, we used advanced
collaborative technology built on top of message-
oriented middleware to enable distrusted users to have
a consistent view of such information.

There are still unfinished issues for future work.
First, currently the Grid Builder tool is standalone. It is
expected to be integrated with Impromptu as a
sharedlet. Not only it will make the interface more
consistent but also it can link the collaboration grid
with the sensor grid better. Second, it is expected that a
user can customize controls for new types of sensors.
Predefined controls may not be suitable for those.
More interactions between users and the system can be
useful. Last, information from different sensors can be
synthesized through a workflow to make it more
meaningful to users.

References

[1] The Gridbus Project. http://www.gridbus.org
[2] The NaradaBrokering Project.
http://www.naradabrokering.org

[3] Harshwardhan Gdgil, Geoffrey Fox, Shrideep Pallickara,
and Marlon Pierce, “Scalable, Fault-tolerant Management of
Grid Services”, in Proceedings of IEEE Cluster, 2007.

