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Abstract 
 

Integrating sensors and grid computing provides a 
way to gather, process and model real-time 
information from the environment for informed 
decision-support and timely actions, proactive or 
reactive, to events. We create a collaborative sensor 
grid framework to support the integration of a sensor 
grid with collaboration and other grids. The 
framework includes a grid builder tool for discovering 
and managing grid services and remote, distributed 
sensors. It provides a real-time collaborative client to 
enable distributed stakeholders to have a consistent 
view of displayed sensor streams.   We illustrate the 
versatility of the framework by constructing a robot-
based customizable application for shared situational 
awareness.   
 
1. Introduction 
 

Increased use of sensors in commercial and military 
environments is being driven by the need for better 
intelligence data and advancement in technology, 
which provides smaller, less costly and more capable 
sensors. It is not sufficient and in many situations not 
productive to just overwhelm decision-makers at all 
levels with lots of sensor data for their missions on 
hand.  Our collaborative sensor grid framework 
supports seamless integration of loosely-coupled and 
custom-developed sensor data management, 
visualization and presentation tools, and real-time 
collaboration capability for sharing situational 
awareness. Real-time information about the 
environment can be gathered, processed, correlated 
and shared to facilitate quick and relevant decision-
making on a large scale.  

 

Our research is motivated to design and develop an 
enabling framework to support the development, 
deployment, management and real- time visualization 
and presentation of collaborative, geo-coded sensor 
grid applications with extensibility, scalability and 
security. Our Collaborative Sensor Grid (CSG) 
framework uses a “publish and subscribe” 
communication paradigm over a distributed message 
broker architecture based on a NaradaBrokering (NB) 
transport network [1]. This approach has already been 
successfully used in GPS Sensor Grid for Earthquake 
Science [2-4]. A key component of the CSG 
framework is the Grid Builder tool which supports the 
building of grid of grids - a compositional model of 
assembling a multitude of subgrids into a mission-
specific grid application.  In CSG the Grid Builder 
facilitates the assemblage of important subgrids, 
namely a real-time multimedia collaboration grid and 
hierarchical, executable sensor grid for a collaborative 
sensor grid.  The earlier work combined simulation 
and sensor grids without the powerful management 
features of the Grid Builder. A particular design 
objective for the CSG client is to provide an intuitive 
user interface for enabling UDOP (User Defined 
Operation Picture) and COP (Common Operation 
Picture) capabilities, which are essential for agile 
formulation and sharing of visual, situational 
awareness and effective decision-support. 

 
In Section 2 we provide an overview of the CSG 

system architecture and describe some physical sensors 
that we implemented and used in a Lego Mindstorm 
NXT robot-based UDOP (User-defined Operating 
Picture)/COP (Common Operating Picture) 
application. In Section 3 we describe how the Grid 
Builder tool facilitates the discovery and management 
of distributed sensors. Visualization and presentation 



for displaying sensor data in the collaboration grid are 
illustrated in section 4. Finally, section 5 summarizes 
the paper with conclusions and future work. 
 
2. Collaborative Sensor Grids 
 
2.1. System Architecture and Sensors 
 

The CSG framework comprises a Grid Builder 
module, a sensor grid and collaboration grid. Figure 1 
illustrates the architectural relationship among them.  
 

 
 

Figure 1: A Collaborative sensor grid 
architecture 
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Figure 2: Implementation architecture of a 
collaborative sensor grid 

Each sensor grid client in Figure 1 is a 
representation of a collaborative session or “meeting” 
within which the meeting participants shared real-time 
streaming sensor information.   
 
As shown in Figure 2, multiple collaborative sessions 
could interact with any combination of deployed 
sensors via the sensor grid. A collaborative sensor grid 
is abstracted into 3 parts:  

(1) sensor adapter,  
(2) data flow, and  
(3) control and visualization – these are the “V” 

and “C” in a classic MVC model. 
 
Our approach uses a scalable, hierarchical and 
collaborative architecture. Hybrid, large-scale 
distributed sensor nodes are loosely coupled by a 
message-oriented middleware system called 
NaradaBrokering (NB) [1], which is a content 
distribution infrastructure based on the 
publish/subscribe paradigm. 
 
Sensor grids are a combination of sensor networks and 
grid computing.  The underlying service model and 
robust publish-subscribe messaging provides greater 
management capabilities [5, 6] and scalability than 
traditional sensor nets [7-13]. For example, a geo-
spatial sensor grid can be used to provide real time 
position data [2, 3] with on the fly data conversions 
and hidden Markov model analysis [4, 14]. In our 
specific example, we used a mobile tablet computer 
(i.e., Nokia N800, an Internet Tablet PC) which has 
considerable computing power with supports for both 
Wi-Fi and Bluetooth connections. Different types of 
sensors are integrated in our collaborative sensor grid 
application. They provide various sources of real-time 
information as follows: 

 
(1) GPS sensor: It is a portable GPS receiver, 

which receives geospatial location information (e.g., 
latitude, longitude, etc) from satellites and transfers 
such information to the Nokia N800 via Bluetooth 
connection. 

 
(2) Video/Audio: Those sensors, which are actually 

the built-in webcam and microphone in the Nokia 
N800 tablet, provide video/audio streams that can be 
published to the sensor grid. We have previously 
shown that publish subscribe software technology, in 
particular NaradaBrokering; can support large scale 
collaborative audio-video streams [15-17].   

 
(3) RFID sensor: The Mantis RFCode M220 

reader and RFCode M100 active tags are used. The 



reader senses information about RFID tags such as the 
signal strength, motion, temper and panic and 
encapsulates the information in tag event messages.   
 
While RFID positioning result is not included in this 
paper, we developed a new RFID positioning 
algorithm that gave encouraging initial results over 
LANDMARC (LocAtioN iDentification based on 
dynaMic Active Rfid Calibration) [18] and LEMT 
(Location Estimation using Model Trees) [19, 20]. 
LANDMARC’s indoor accuracy was: 50 % of errors 
were within 1 meter while the maximum error distance 
was around 2 meters with 4 RFID readers [18]. 
LEMT’s indoor accuracy was: 40% of errors were 
within 0.5meter and 80% of errors were within 1.5 
meters with a considerable number of readers and 
reference tags [19, 20]. According to our initial test 
results with a new algorithm that we devised and 
record in the appendix, errors were around 0.5 meter 
with one reader and one tag only. 
 
     (4) Lego Robot: We used the Lego Mindstorm 
NXT robots for our application. Two types of robots 
were assembled.  One is a humanoid called Alpha Rex 
and the other a vehicle called Tribot. In our initial 
system demonstration, we implemented seven sensor 
types on the two robots. We equipped the Alpha Rex 
with sound, ultrasonic, light and temperature sensors 
and the Tribot with sound, ultrasonic, compass and 
accelerometer. Their detected information is sent to the 
PC via the Bluetooth module in the robots. The robot 
can also act as instructed by taking programmable 
commands from any collaborative session participants.  
 
 The two robots also carried external payloads.  In this 
case, the Alpha Rex carried a GPS and an Nokia N800.  
The Tribot carried a GPS, a Nokia N800 and a Mantis 
RFID reader.  Unlike most RFID use cases in which 
the reader is stationary, we made the RFID reader a 
mobile unit by having the Tribot carrying it around a 
test environment within which there were stationary 
RFID tags. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Sensor Type Attributes 

GPS - Time 
- Latitude 
- Longitude 
- ID 

Video/Audi
o 

- Video stream 
- Audio stream 

RFID - Tag ID 
- Group code 
- Motion or stationary 
- Signal strength 

Lego Robot - Sound        
- Light          
- Touch        
- Ultrasonic 
- Temperature 
- Compass 
- Accelerometer   

Table 1: Sensor Types and Attributes 
 

2.2. Distributed Transport Network 
 

Our approach uses a scalable, hierarchical and 
collaborative architecture. Hybrid, large-scale 
distributed sensor nodes are loosely coupled by a 
message-oriented middleware system called 
NaradaBrokering (NB) [1], which is a content 
distribution infrastructure based on the 
publish/subscribe paradigm. This is overlaid with a 
fault tolerant management system [5, 6]. 

 
The NaradaBrokering fabric itself comprises a 
distributed network of cooperating broker nodes. One 
reason for choosing NaradaBrokering as the 
middleware fabric for Sensor Grids is that it places no 
restrictions on the type of the content: it has been 
deployed in systems where the content has been GIS 
data, multimedia codecs, images, text, bit maps and 
objects among others [2-4, 15, 21]. NaradaBrokering 
places no constraints on the size, rate and scope of the 
interactions encapsulated within the streams, or on the 
number of entities within the system. Also, 
NaradaBrokering has other useful features such as: 
secure end-to-end delivery of streams, robust stream 
disseminations, efficient ordering and synchronization 
of streams, support for rich Quality of Services, 
support for multiple transport protocols and support for 
Web Services, etc. 
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Figure 3: Lego Mindstorm NXT robot-based 

collaborative sensor grid application architecture 
 

Our sample application of Collaborative Sensor 
Grid framework is depicted in Figure 3. There are 
different types of sensors distributed globally. Each 
sensor (GPS, Video/Audio, RFID, etc) gathers 
information from the environment and publishes it in 
real-time. A sensor adapter retrieves data from a 
connected sensor and communicates to the sensor grid. 
The adapter provides among other capabilities a 
service interface to each sensor which facilitates the 
Grid integration and the Web service based 
management framework [5, 6]. A sensor adapter 
processes raw sensor data and may publish refined 
information encoded in certain message format to the 
sensor grid. A “sensor grid client”, in our case, a 
collaborative session client, is running on a computer 
for presenting such information. It can subscribe to 
specific topics of the sensor grid in order to receive 
relevant messages. Different information from 
different types of sensors will be presented to users 
through a collaborative session client. In Section 4, we 
will describe a specific collaborative session client, the 
Anabas Impromptu for Sensors, that includes multiple 
collaborative applications called sharedlets and explain 
how to use Impromptu for Sensors to compose a 
UDOP and sharing it as a COP among remote, 
distributed users. 

 
High-speed, reliable physical network is always a 

key requirement for this system. There are two types of 
network connections in the architecture: Bluetooth and 
WiFi. Bluetooth is generally used for the connection 
between a sensor and its respective sensor adapter 
since most sensors are Bluetooth enabled. It is efficient 
and reliable for transporting data in a short range. For 

the connection between sensor adapters and sensor 
grid, WiFi 802.11 protocol is typically used.   

 
A Sensor Grid may consist of sensor units arranged 

hierarchically. It communicates with a collaboration 
grid server where meeting sessions reside. Primary 
functions of a sensor grid server are to manage and 
broker sensor message flows. It optimizes bandwidth 
usage by only forwarding messages to collaborative 
sessions that need them. This server is stateful and has 
memory of connections of sensor and meeting 
sessions. An overview of the sensor data flow 
architecture is shown in Figure 4. Since the sensor grid 
and collaboration grid are distributed systems by 
themselves, this structure makes the system scalable 
for a large-scaled deployment. The underlying 
transport layer is in essence a distributed NB network, 
which has demonstrated high scalability and reliability.  
With the integration of collaboration grid, users also 
have a consistent view of extracted, processed and 
organized information from all those sensors. 

 

 
Figure 4: Overview of the sensor data flow 

 
2.3. Implementation of Sensor Grids 
 

We adopted a general procedure to implement 
Sensor Grids based on the architecture described 
before. The major steps include: 

1) Establishing the Bluetooth connection between 
a sensor and a sensor adapter; 

2) On the sensor adapter, a filter service extracts 
useful information from raw data through the 
established connection; 

3) Refined data is encoded in messages and 
published to a sensor grid topic; 

4) On a computer for presentation, a client 
program subscribes to the specific sensor grid 
topics in order to receive relevant sensor 
messages; 



5) Retrieved messages are parsed to get 
information that users are interested; 

6) The information is presented in a defined 
collaborative session client for sharing.  

 
We take implementing the GPS sensor grid as a 
concrete example here: 

 
First, we use a portable tablet Nokia N800 for hosting 
a GPS sensor adapter, which connects a GPS receiver 
device (I-Blue) via Bluetooth. The sensor adapter 
extracts useful information such as latitude, longitude 
and time from incoming raw data. Then it publishes 
encoded messages to a sensor grid topic 
(Streams/GPS/Location1) with a certain frequency 
(e.g. every 3 seconds). 

 
Next, on the computer for presenting GPS information 
to users, a collaborative session client subscribes to the 
same topic (Streams/GPS/Location1) in the sensor grid 
to retrieve real-time data of the GPS location. We use 
the Google Maps API to show the GPS current 
location on the map based on its geospatial location 
information (latitude and longitude). Also, the GPS ID 
is marked on the map to distinguish it from other GPS 
sensors.  

 
Finally, the map application is integrated with 
Impromptu for Sensors as a sharedlet. A user can have 
a global view of all GPS sensors or select a single GPS 
location to view its details. The sharedlet also provides 
functions specific to geographic information such as 
zoom in, zoom out, and panning the map to different 
directions. 

 
For other sensors like Video/Audio, RFID and Lego 
Robot, they are implemented following the same 
pattern. Major differences between implementing 
different types of sensors lie in the filter for extracting 
sensed information from raw data and the presentation 
interface for such information. 

 
One issue to mention is that several filters may process 
sensed information collaboratively as a workflow. For 
example, after a sensor adapter receives raw data from 
GPS stations it generates and publishes messages 
through a port in a binary format called RYO. One 
filter on the client side can decode captured RYO 
messages into text format. Another filter can convert 
text format to Geography Markup Language (GML) 
format, since different users may be interested in 
geographic information in different formats [4, 5]. 
Further research is ongoing to study the issue of 
workflow in Sensor Grids. 

 
3. Sensor Grid Management 

 
Sensor services need to be managed over the 

network so that users, in this case, collaborative 
session clients, can find out new sensors, monitor the 
status of existing sensors and recover from failure by 
replacing malfunctioning sensors. We extended a 
generic management framework [22] that is capable of 
managing any type of service with modest external 
state [5, 6] for Sensor Grids. Web service based 
protocols are implemented in the framework to provide 
interoperable management. A hierarchical 
bootstrapping mechanism is deployed to scale the 
management framework over a wide-area. The 
framework can tolerate failures within the framework 
itself while service failure is handled by executing 
user-defined failure handling policies. The unit of 
management framework consists of a set of 
manageable services, their associated service mangers, 
message nodes (to provide a scalable messaging 
substrate) and a scalable, fault-tolerant data structure 
called a registry. The system provides fault tolerance to 
Grid resources including sensors and to the 
NaradaBrokering messaging subsystem. 

 

 
Figure 5: Grid Builder tool interface 

 
In order to make a sensor service manageable by the 
management tool, we implemented a specific sensor 
service adapter and a sensor manager using the WS 
Management protocol. The interface of the Grid 
Builder tool that implements the management 
framework is shown in Figure 5. The user can easily 
view a list of discovered sensor services in the left 
panel and select one to get more detailed information 
about it such as its location, the host address and its 
UUID, etc. The user can also deploy a sensor service 
on a remote sensor node through the application. Thus, 



in case one necessary sensor service becomes 
unavailable due to some reasons, it is still possible to 
find an alternative sensor to start the same service. 
 
The process of finding new sensors is based on WS-
Discovery specification, in which the message 
exchange between a sensor service adapter and a 
sensor manager is described as below: 

 
1) Initially a sensor sends a multicast Hello message 

when it joins a network; 
2) The sensor manager multicasts a Probe message 

with Type and/or Scope to discover existing sensors; 
3) A sensor may receive a multicast Probe message 

and send a unicast Probe Match (PM) if it matches that 
Probe; 

4) The sensor manager multicasts a Resolve 
message with Name to discover existing sensors; 

5) A sensor may receive a multicast Resolve 
message and send a unicast Resolve Match (RM) if it 
matches that Resolve; 

6) When a sensor leaves a network, it sends a 
multicast Bye message 

7) The sensor manager will add/remove a sensor 
when it receives a multicast Hello/Bye 
message. 

 
The Grid Builder tool follows the idea of constructing 
grid of grids, which assembles a multitude of subgrids 
into a mission-specific grid application.  In the CSG 
framework, the Grid Builder tool facilitates the 
assemblage of two important subgrids, namely a real-
time multimedia collaboration grid and hierarchical, 
executable sensor grid. For example, many types of 
sensors have controls for changing their respective 
behavior and to perform actions. However, the specific 
action and its corresponding control operation vary 
from sensors to sensors. To facilitate the control of 
sensors in an end-user application, the CSG client will 
support sets of customable controls to be defined by 
users with Grid Builder. This information will be 
transmitted to the respective sensor sharedlets in order 
to construct appropriate buttons for sensor control. We 
provided some initial sensor sharedlet controls for 
certain generic sensor types, which will be shown in 
the next section. 
 
4. Visualization and Presentation 
 

A particular design objective for the CSG client is 
to provide an intuitive user interface for enabling 
UDOP (User Defined Operation Picture) and COP 
(Common Operation Picture) capabilities, which are 

essential for agile formulation and sharing of visual, 
situational awareness and effective decision-support. 

  
To have the basic support of sensors, users must be 
able to visualize sensors’ data and to control sensors. 
Some basic principles for visualizing sensor are: 

 
1) Groups of geo-located sensors can be 

visualized by their geospatial locations; 
2) Each sensor can be visualized particularly 

based on its property; 
3) Sensors can be grouped and visualized on a 

single canvas 
4) Multiple canvas can be viewed concurrently 
5) The state can be captured 
 
Also, each sensor should accept control which can 

be none. And those control functions should be 
generated according to sensor’s controllable capability. 
Multiple sensors can be controlled simultaneously. 

 
We used Anabas Impromptu for Sensors as the 

collaboration solution for sharing information from 
sensors among distributed users. It is a system for real 
time sharing of sensor streams, visualization, VoIP, 
Video over IP and supports multiple chat rooms. Its 
portal consists of multiple sharedlets, each of which 
can be a standalone, shared application. Different 
sharedlets were developed for handling and displaying 
different types of real time information in Impromptu 
for Sensors. 
 

 
 

Figure 6: A maps sharedlet integrating real-time 
GPS sensor streams with Google map. 

 



 
Figure 7: Video Sensors sharedlet interface 

 
Figure 6 and Figure 7 show the display for 4 GPS 

and 4 video (Webcam) sensors, respectively. The GPS 
sharedlet includes a Google Map with four different 
GPS locations marked on. Users can use the supported 
control to zoom in, zoom out, and move the map 
around via the sensor control tool menu. In the Video 
sharedlet, there are four windows streaming real time 
videos from those locations without any user control. 

 

 
Figure 8: A UDOP composed by selecting from 

an extensible list of sensors 
 
Figure 8 presents a case that a user was in the 

process of defining a UDOP simply by 
dragging/selecting sensor information of relevancy 
from an extensible list of real-time sensor streams from 
the right hand side panel to one of four visualization 
windows. In this case, the user selected to show the 
real-time streams from sensors carried by an Alpha 
Rex on the upper left window, real-time streams from 
sensors carried by a Tribot on the upper right window, 

and real-time stream from the RFID reader carried by 
the Tribot as an external payload on the lower right.  

 
In Figure 9, the user selected to define an operating 
picture that places visualization of robot Alpha Rex 
sensor streams in the upper left window with its geo-
spatial information (Bloomington, Indiana) in upper 
right window;  while at the same time,  visualizing 
robot Tribot’s sensor streams in lower left window and 
its geo-spatial information (San Francisco) in lower 
right window. 

 

 
Figure 9: Another User-defined Operating 

Picture 
 
Simply by double clicking on the lower left window, 
the 4 sensor streams delivered from the Tribot is 
expanded and the expanded view becomes the current 
UDOP and will be shared automatically as a COP for 
all collaborative session participants, in this case, 6 of 
them as seen on the participant list in the lower left 
hand side control panel . In Figure 10, it is shown that 
the sound sensor detected sound level at 6 dBA, 
ultrasonic sensor measured a distance of 6 cm, 
compass sensor pointed to North and accelerometer 
indicated X-axis tilt values as the Tribot cruised in the 
environment. 

 



 
Figure 10: A UDOP sharing 4 sensor streams 

delivered by a Tribot robot 
 
Figure 11 is a UDOP similar to that of Figure 10 but 
sharing in this case the visualization of information 
from the 4 sensor streams delivered from the sensors 
carried by an Alpha Rex robot. It shows sound volume 
at 5 dBA, ultrasonic value of 44 cm and temperature 
measured at 23.9 degree Celsius with light intensity 
fluctuating as the robot roamed around. 

 

 
Figure 11: Another easily composed UDOP 

 
Figure 12 is  another user-defined operating being 
shared instantly by the Impromptu for Sensor client as 
a common operating picture.  In this case, the user 
chose to share an expanded view of the RFID signal 
strength as detected by the RFID reader carried by the 
Tribot robot. 

 

 
Figure 12: A UDOP sharing RFID signal strength 

 
 

 
 
 

I 
5. Conclusions and Future Work 
 
We have developed a framework to support easy and 
rapid development, deployment, management, 
visualization of collaborative, geospatially located 
sensor grids with flexibility, extensibility and 
scalability. Based on the framework, we created sensor 
grid applications for several types of commonly 
available sensors, used a Grid Builder tool for 
discovering and managing those sensors, and provided 
a rich, informative, easy to use (drag & drop and 
double clicking metaphors)  user interface for 
presenting real-time sensor data to users according to 
the UDOP model. Also, we used advanced 
collaborative technology built on top of message-
oriented middleware to enable distrusted users to have 
a consistent view of such information. The Impromptu 
for Sensors client immediately and automatically 
shares a UDOP as a COP for all collaborative session 
participants. 
 
There are still many important issues for future work. 
First, currently the Grid Builder tool is standalone. It 
will be integrated with Impromptu for Sensors as a 
sharedlet. Not only it will make the interface more 
consistent but also it will link the collaboration grid 
with the sensor grid in an integrated fashion. Second, it 
is expected that a user can customize controls for new 
types of sensors. Predefined controls may not be 
suitable for those. More interactions between users and 
the system can be useful. Last, information from 
different sensors can be synthesized and processed 
through a workflow to make it more meaningful to 
users. This is illustrated by the current GPS sensor and 
simulation grid seen in the Earthquake science 
example [2-4, 14]. 
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Appendix: RFID Positioning Algorithm 
 
The signal strength (expressed as power per unit 
square) received by a RFID reader from a RFID tag is 
inversely proportional to the square of the distance 
between the reader and the tag. So we have 

2

1
r

P ∝ .However, the output of the signal strength 

received by a RFID reader is in dBm. To express an 

arbitrary power P as x dBm, we have: 1010
x

P =  

Assume that the signal strength received by a RFID 
reader from a RFID tag depends on their distance and 
their surrounding disturbance according to a 
multiplicative model as follow: 

( )FactortalEnvironmen
r

P ⋅∝ 2

1
. 

Suppose that there are a reference tag and a target tag, 
which follow multiplicative models as below 
respectively: 

( )Target Target2
Target

1P Environmental Factor
r

∝ ⋅  

( )Reference Reference2
Reference

1P Environmental Factor
r

∝ ⋅

 
We further assume that the effect of the environmental 
factors on the 2 tags is similar. We can cancel the 
environmental factors as follows: 

2
Target Reference

2
Reference Target

P r
P r

∝  

A linear model is obtained in the logarithmic space: 

Target 0 1 Reference 2 Target

3 Reference

ln ln ln

ln

P a a P a r

a r ε

= + +

+ +
 

 
By rearranging, we have: 

Target 0 1 Reference 2 Target

3 Reference

ln ' ' ln ' ln

' ln '

r a a r a P

a P ε

= + +

+ +
 

Substituting 1010
x

P = , we get: 

Target 0 1 Reference 2 Target

3 Reference

ln ln

''

r b b r b x

b x ε

= + +

+ +
 

which is the linear model on which our RFID 
positioning result is based. 

 


