
A Collaborative Sensor Grids Framework

Geoffrey Fox1,2, Alex Ho2, Rui Wang2, Edward Chu2 and Isaac Kwan2
1Community Grids Laboratory, Indiana University, Suite 224, 501 North Morton Street,

Bloomington IN 47404
2Anabas Inc, Suite 106C, 501 North Morton Street,

Bloomington, IN 47404
gcf@indiana.edu, alexho@anabas.com, rui.wang@anabas.com, edward.chu@anabas.com,

isaac.kwan@anabas.com

Abstract

Integrating sensors and grid computing provides a
way to gather, process and model real-time
information from the environment for informed
decision-support and timely actions, proactive or
reactive, to events. We create a collaborative sensor
grid framework to support the integration of a sensor
grid with collaboration and other grids. The
framework includes a grid builder tool for discovering
and managing grid services and remote, distributed
sensors. It provides a real-time collaborative client to
enable distributed stakeholders to have a consistent
view of displayed sensor streams. We illustrate the
versatility of the framework by constructing a robot-
based customizable application for shared situational
awareness.

1. Introduction

Increased use of sensors in commercial and military
environments is being driven by the need for better
intelligence data and advancement in technology,
which provides smaller, less costly and more capable
sensors. It is not sufficient and in many situations not
productive to just overwhelm decision-makers at all
levels with lots of sensor data for their missions on
hand. Our collaborative sensor grid framework
supports seamless integration of loosely-coupled and
custom-developed sensor data management,
visualization and presentation tools, and real-time
collaboration capability for sharing situational
awareness. Real-time information about the
environment can be gathered, processed, correlated
and shared to facilitate quick and relevant decision-
making on a large scale.

Our research is motivated to design and develop an
enabling framework to support the development,
deployment, management and real- time visualization
and presentation of collaborative, geo-coded sensor
grid applications with extensibility, scalability and
security. Our Collaborative Sensor Grid (CSG)
framework uses a “publish and subscribe”
communication paradigm over a distributed message
broker architecture based on a NaradaBrokering (NB)
transport network [1]. This approach has already been
successfully used in GPS Sensor Grid for Earthquake
Science [2-4]. A key component of the CSG
framework is the Grid Builder tool which supports the
building of grid of grids - a compositional model of
assembling a multitude of subgrids into a mission-
specific grid application. In CSG the Grid Builder
facilitates the assemblage of important subgrids,
namely a real-time multimedia collaboration grid and
hierarchical, executable sensor grid for a collaborative
sensor grid. The earlier work combined simulation
and sensor grids without the powerful management
features of the Grid Builder. A particular design
objective for the CSG client is to provide an intuitive
user interface for enabling UDOP (User Defined
Operation Picture) and COP (Common Operation
Picture) capabilities, which are essential for agile
formulation and sharing of visual, situational
awareness and effective decision-support.

In Section 2 we provide an overview of the CSG

system architecture and describe some physical sensors
that we implemented and used in a Lego Mindstorm
NXT robot-based UDOP (User-defined Operating
Picture)/COP (Common Operating Picture)
application. In Section 3 we describe how the Grid
Builder tool facilitates the discovery and management
of distributed sensors. Visualization and presentation

for displaying sensor data in the collaboration grid are
illustrated in section 4. Finally, section 5 summarizes
the paper with conclusions and future work.

2. Collaborative Sensor Grids

2.1. System Architecture and Sensors

The CSG framework comprises a Grid Builder
module, a sensor grid and collaboration grid. Figure 1
illustrates the architectural relationship among them.

Figure 1: A Collaborative sensor grid
architecture

Sensor Grid Server

Meeting Session

Meeting Client

Meeting Session...

...

Message
Adapter

Meeting Client

Message
Adapter

Meeting Client

Message
Adapter

Meeting Client

Message
Adapter

... ...

Sensor Adapter
Sensor

Data Flow

Sensor Adapter

Control & Visualization

Sensor Adapter
Sensor

Figure 2: Implementation architecture of a
collaborative sensor grid

Each sensor grid client in Figure 1 is a
representation of a collaborative session or “meeting”
within which the meeting participants shared real-time
streaming sensor information.

As shown in Figure 2, multiple collaborative sessions
could interact with any combination of deployed
sensors via the sensor grid. A collaborative sensor grid
is abstracted into 3 parts:

(1) sensor adapter,
(2) data flow, and
(3) control and visualization – these are the “V”

and “C” in a classic MVC model.

Our approach uses a scalable, hierarchical and
collaborative architecture. Hybrid, large-scale
distributed sensor nodes are loosely coupled by a
message-oriented middleware system called
NaradaBrokering (NB) [1], which is a content
distribution infrastructure based on the
publish/subscribe paradigm.

Sensor grids are a combination of sensor networks and
grid computing. The underlying service model and
robust publish-subscribe messaging provides greater
management capabilities [5, 6] and scalability than
traditional sensor nets [7-13]. For example, a geo-
spatial sensor grid can be used to provide real time
position data [2, 3] with on the fly data conversions
and hidden Markov model analysis [4, 14]. In our
specific example, we used a mobile tablet computer
(i.e., Nokia N800, an Internet Tablet PC) which has
considerable computing power with supports for both
Wi-Fi and Bluetooth connections. Different types of
sensors are integrated in our collaborative sensor grid
application. They provide various sources of real-time
information as follows:

(1) GPS sensor: It is a portable GPS receiver,

which receives geospatial location information (e.g.,
latitude, longitude, etc) from satellites and transfers
such information to the Nokia N800 via Bluetooth
connection.

(2) Video/Audio: Those sensors, which are actually

the built-in webcam and microphone in the Nokia
N800 tablet, provide video/audio streams that can be
published to the sensor grid. We have previously
shown that publish subscribe software technology, in
particular NaradaBrokering; can support large scale
collaborative audio-video streams [15-17].

(3) RFID sensor: The Mantis RFCode M220

reader and RFCode M100 active tags are used. The

reader senses information about RFID tags such as the
signal strength, motion, temper and panic and
encapsulates the information in tag event messages.

While RFID positioning result is not included in this
paper, we developed a new RFID positioning
algorithm that gave encouraging initial results over
LANDMARC (LocAtioN iDentification based on
dynaMic Active Rfid Calibration) [18] and LEMT
(Location Estimation using Model Trees) [19, 20].
LANDMARC’s indoor accuracy was: 50 % of errors
were within 1 meter while the maximum error distance
was around 2 meters with 4 RFID readers [18].
LEMT’s indoor accuracy was: 40% of errors were
within 0.5meter and 80% of errors were within 1.5
meters with a considerable number of readers and
reference tags [19, 20]. According to our initial test
results with a new algorithm that we devised and
record in the appendix, errors were around 0.5 meter
with one reader and one tag only.

 (4) Lego Robot: We used the Lego Mindstorm
NXT robots for our application. Two types of robots
were assembled. One is a humanoid called Alpha Rex
and the other a vehicle called Tribot. In our initial
system demonstration, we implemented seven sensor
types on the two robots. We equipped the Alpha Rex
with sound, ultrasonic, light and temperature sensors
and the Tribot with sound, ultrasonic, compass and
accelerometer. Their detected information is sent to the
PC via the Bluetooth module in the robots. The robot
can also act as instructed by taking programmable
commands from any collaborative session participants.

 The two robots also carried external payloads. In this
case, the Alpha Rex carried a GPS and an Nokia N800.
The Tribot carried a GPS, a Nokia N800 and a Mantis
RFID reader. Unlike most RFID use cases in which
the reader is stationary, we made the RFID reader a
mobile unit by having the Tribot carrying it around a
test environment within which there were stationary
RFID tags.

Sensor Type Attributes

GPS - Time
- Latitude
- Longitude
- ID

Video/Audi
o

- Video stream
- Audio stream

RFID - Tag ID
- Group code
- Motion or stationary
- Signal strength

Lego Robot - Sound
- Light
- Touch
- Ultrasonic
- Temperature
- Compass
- Accelerometer

Table 1: Sensor Types and Attributes

2.2. Distributed Transport Network

Our approach uses a scalable, hierarchical and
collaborative architecture. Hybrid, large-scale
distributed sensor nodes are loosely coupled by a
message-oriented middleware system called
NaradaBrokering (NB) [1], which is a content
distribution infrastructure based on the
publish/subscribe paradigm. This is overlaid with a
fault tolerant management system [5, 6].

The NaradaBrokering fabric itself comprises a
distributed network of cooperating broker nodes. One
reason for choosing NaradaBrokering as the
middleware fabric for Sensor Grids is that it places no
restrictions on the type of the content: it has been
deployed in systems where the content has been GIS
data, multimedia codecs, images, text, bit maps and
objects among others [2-4, 15, 21]. NaradaBrokering
places no constraints on the size, rate and scope of the
interactions encapsulated within the streams, or on the
number of entities within the system. Also,
NaradaBrokering has other useful features such as:
secure end-to-end delivery of streams, robust stream
disseminations, efficient ordering and synchronization
of streams, support for rich Quality of Services,
support for multiple transport protocols and support for
Web Services, etc.

NaradaBrokering

Server

NaradaBrokering

Server

NaradaBrokering

Server

Ultrasonic
Sensor

Sound Sensor

Light
Sensor

RFID
reader

GPS receiver Tablet PC

Robot
Alpha
Rex

Robot
Tribot

Figure 3: Lego Mindstorm NXT robot-based

collaborative sensor grid application architecture

Our sample application of Collaborative Sensor
Grid framework is depicted in Figure 3. There are
different types of sensors distributed globally. Each
sensor (GPS, Video/Audio, RFID, etc) gathers
information from the environment and publishes it in
real-time. A sensor adapter retrieves data from a
connected sensor and communicates to the sensor grid.
The adapter provides among other capabilities a
service interface to each sensor which facilitates the
Grid integration and the Web service based
management framework [5, 6]. A sensor adapter
processes raw sensor data and may publish refined
information encoded in certain message format to the
sensor grid. A “sensor grid client”, in our case, a
collaborative session client, is running on a computer
for presenting such information. It can subscribe to
specific topics of the sensor grid in order to receive
relevant messages. Different information from
different types of sensors will be presented to users
through a collaborative session client. In Section 4, we
will describe a specific collaborative session client, the
Anabas Impromptu for Sensors, that includes multiple
collaborative applications called sharedlets and explain
how to use Impromptu for Sensors to compose a
UDOP and sharing it as a COP among remote,
distributed users.

High-speed, reliable physical network is always a

key requirement for this system. There are two types of
network connections in the architecture: Bluetooth and
WiFi. Bluetooth is generally used for the connection
between a sensor and its respective sensor adapter
since most sensors are Bluetooth enabled. It is efficient
and reliable for transporting data in a short range. For

the connection between sensor adapters and sensor
grid, WiFi 802.11 protocol is typically used.

A Sensor Grid may consist of sensor units arranged

hierarchically. It communicates with a collaboration
grid server where meeting sessions reside. Primary
functions of a sensor grid server are to manage and
broker sensor message flows. It optimizes bandwidth
usage by only forwarding messages to collaborative
sessions that need them. This server is stateful and has
memory of connections of sensor and meeting
sessions. An overview of the sensor data flow
architecture is shown in Figure 4. Since the sensor grid
and collaboration grid are distributed systems by
themselves, this structure makes the system scalable
for a large-scaled deployment. The underlying
transport layer is in essence a distributed NB network,
which has demonstrated high scalability and reliability.
With the integration of collaboration grid, users also
have a consistent view of extracted, processed and
organized information from all those sensors.

Figure 4: Overview of the sensor data flow

2.3. Implementation of Sensor Grids

We adopted a general procedure to implement
Sensor Grids based on the architecture described
before. The major steps include:

1) Establishing the Bluetooth connection between
a sensor and a sensor adapter;

2) On the sensor adapter, a filter service extracts
useful information from raw data through the
established connection;

3) Refined data is encoded in messages and
published to a sensor grid topic;

4) On a computer for presentation, a client
program subscribes to the specific sensor grid
topics in order to receive relevant sensor
messages;

5) Retrieved messages are parsed to get
information that users are interested;

6) The information is presented in a defined
collaborative session client for sharing.

We take implementing the GPS sensor grid as a
concrete example here:

First, we use a portable tablet Nokia N800 for hosting
a GPS sensor adapter, which connects a GPS receiver
device (I-Blue) via Bluetooth. The sensor adapter
extracts useful information such as latitude, longitude
and time from incoming raw data. Then it publishes
encoded messages to a sensor grid topic
(Streams/GPS/Location1) with a certain frequency
(e.g. every 3 seconds).

Next, on the computer for presenting GPS information
to users, a collaborative session client subscribes to the
same topic (Streams/GPS/Location1) in the sensor grid
to retrieve real-time data of the GPS location. We use
the Google Maps API to show the GPS current
location on the map based on its geospatial location
information (latitude and longitude). Also, the GPS ID
is marked on the map to distinguish it from other GPS
sensors.

Finally, the map application is integrated with
Impromptu for Sensors as a sharedlet. A user can have
a global view of all GPS sensors or select a single GPS
location to view its details. The sharedlet also provides
functions specific to geographic information such as
zoom in, zoom out, and panning the map to different
directions.

For other sensors like Video/Audio, RFID and Lego
Robot, they are implemented following the same
pattern. Major differences between implementing
different types of sensors lie in the filter for extracting
sensed information from raw data and the presentation
interface for such information.

One issue to mention is that several filters may process
sensed information collaboratively as a workflow. For
example, after a sensor adapter receives raw data from
GPS stations it generates and publishes messages
through a port in a binary format called RYO. One
filter on the client side can decode captured RYO
messages into text format. Another filter can convert
text format to Geography Markup Language (GML)
format, since different users may be interested in
geographic information in different formats [4, 5].
Further research is ongoing to study the issue of
workflow in Sensor Grids.

3. Sensor Grid Management

Sensor services need to be managed over the

network so that users, in this case, collaborative
session clients, can find out new sensors, monitor the
status of existing sensors and recover from failure by
replacing malfunctioning sensors. We extended a
generic management framework [22] that is capable of
managing any type of service with modest external
state [5, 6] for Sensor Grids. Web service based
protocols are implemented in the framework to provide
interoperable management. A hierarchical
bootstrapping mechanism is deployed to scale the
management framework over a wide-area. The
framework can tolerate failures within the framework
itself while service failure is handled by executing
user-defined failure handling policies. The unit of
management framework consists of a set of
manageable services, their associated service mangers,
message nodes (to provide a scalable messaging
substrate) and a scalable, fault-tolerant data structure
called a registry. The system provides fault tolerance to
Grid resources including sensors and to the
NaradaBrokering messaging subsystem.

Figure 5: Grid Builder tool interface

In order to make a sensor service manageable by the
management tool, we implemented a specific sensor
service adapter and a sensor manager using the WS
Management protocol. The interface of the Grid
Builder tool that implements the management
framework is shown in Figure 5. The user can easily
view a list of discovered sensor services in the left
panel and select one to get more detailed information
about it such as its location, the host address and its
UUID, etc. The user can also deploy a sensor service
on a remote sensor node through the application. Thus,

in case one necessary sensor service becomes
unavailable due to some reasons, it is still possible to
find an alternative sensor to start the same service.

The process of finding new sensors is based on WS-
Discovery specification, in which the message
exchange between a sensor service adapter and a
sensor manager is described as below:

1) Initially a sensor sends a multicast Hello message

when it joins a network;
2) The sensor manager multicasts a Probe message

with Type and/or Scope to discover existing sensors;
3) A sensor may receive a multicast Probe message

and send a unicast Probe Match (PM) if it matches that
Probe;

4) The sensor manager multicasts a Resolve
message with Name to discover existing sensors;

5) A sensor may receive a multicast Resolve
message and send a unicast Resolve Match (RM) if it
matches that Resolve;

6) When a sensor leaves a network, it sends a
multicast Bye message

7) The sensor manager will add/remove a sensor
when it receives a multicast Hello/Bye
message.

The Grid Builder tool follows the idea of constructing
grid of grids, which assembles a multitude of subgrids
into a mission-specific grid application. In the CSG
framework, the Grid Builder tool facilitates the
assemblage of two important subgrids, namely a real-
time multimedia collaboration grid and hierarchical,
executable sensor grid. For example, many types of
sensors have controls for changing their respective
behavior and to perform actions. However, the specific
action and its corresponding control operation vary
from sensors to sensors. To facilitate the control of
sensors in an end-user application, the CSG client will
support sets of customable controls to be defined by
users with Grid Builder. This information will be
transmitted to the respective sensor sharedlets in order
to construct appropriate buttons for sensor control. We
provided some initial sensor sharedlet controls for
certain generic sensor types, which will be shown in
the next section.

4. Visualization and Presentation

A particular design objective for the CSG client is
to provide an intuitive user interface for enabling
UDOP (User Defined Operation Picture) and COP
(Common Operation Picture) capabilities, which are

essential for agile formulation and sharing of visual,
situational awareness and effective decision-support.

To have the basic support of sensors, users must be
able to visualize sensors’ data and to control sensors.
Some basic principles for visualizing sensor are:

1) Groups of geo-located sensors can be

visualized by their geospatial locations;
2) Each sensor can be visualized particularly

based on its property;
3) Sensors can be grouped and visualized on a

single canvas
4) Multiple canvas can be viewed concurrently
5) The state can be captured

Also, each sensor should accept control which can

be none. And those control functions should be
generated according to sensor’s controllable capability.
Multiple sensors can be controlled simultaneously.

We used Anabas Impromptu for Sensors as the

collaboration solution for sharing information from
sensors among distributed users. It is a system for real
time sharing of sensor streams, visualization, VoIP,
Video over IP and supports multiple chat rooms. Its
portal consists of multiple sharedlets, each of which
can be a standalone, shared application. Different
sharedlets were developed for handling and displaying
different types of real time information in Impromptu
for Sensors.

Figure 6: A maps sharedlet integrating real-time
GPS sensor streams with Google map.

Figure 7: Video Sensors sharedlet interface

Figure 6 and Figure 7 show the display for 4 GPS

and 4 video (Webcam) sensors, respectively. The GPS
sharedlet includes a Google Map with four different
GPS locations marked on. Users can use the supported
control to zoom in, zoom out, and move the map
around via the sensor control tool menu. In the Video
sharedlet, there are four windows streaming real time
videos from those locations without any user control.

Figure 8: A UDOP composed by selecting from

an extensible list of sensors

Figure 8 presents a case that a user was in the

process of defining a UDOP simply by
dragging/selecting sensor information of relevancy
from an extensible list of real-time sensor streams from
the right hand side panel to one of four visualization
windows. In this case, the user selected to show the
real-time streams from sensors carried by an Alpha
Rex on the upper left window, real-time streams from
sensors carried by a Tribot on the upper right window,

and real-time stream from the RFID reader carried by
the Tribot as an external payload on the lower right.

In Figure 9, the user selected to define an operating
picture that places visualization of robot Alpha Rex
sensor streams in the upper left window with its geo-
spatial information (Bloomington, Indiana) in upper
right window; while at the same time, visualizing
robot Tribot’s sensor streams in lower left window and
its geo-spatial information (San Francisco) in lower
right window.

Figure 9: Another User-defined Operating

Picture

Simply by double clicking on the lower left window,
the 4 sensor streams delivered from the Tribot is
expanded and the expanded view becomes the current
UDOP and will be shared automatically as a COP for
all collaborative session participants, in this case, 6 of
them as seen on the participant list in the lower left
hand side control panel . In Figure 10, it is shown that
the sound sensor detected sound level at 6 dBA,
ultrasonic sensor measured a distance of 6 cm,
compass sensor pointed to North and accelerometer
indicated X-axis tilt values as the Tribot cruised in the
environment.

Figure 10: A UDOP sharing 4 sensor streams

delivered by a Tribot robot

Figure 11 is a UDOP similar to that of Figure 10 but
sharing in this case the visualization of information
from the 4 sensor streams delivered from the sensors
carried by an Alpha Rex robot. It shows sound volume
at 5 dBA, ultrasonic value of 44 cm and temperature
measured at 23.9 degree Celsius with light intensity
fluctuating as the robot roamed around.

Figure 11: Another easily composed UDOP

Figure 12 is another user-defined operating being
shared instantly by the Impromptu for Sensor client as
a common operating picture. In this case, the user
chose to share an expanded view of the RFID signal
strength as detected by the RFID reader carried by the
Tribot robot.

Figure 12: A UDOP sharing RFID signal strength

I
5. Conclusions and Future Work

We have developed a framework to support easy and
rapid development, deployment, management,
visualization of collaborative, geospatially located
sensor grids with flexibility, extensibility and
scalability. Based on the framework, we created sensor
grid applications for several types of commonly
available sensors, used a Grid Builder tool for
discovering and managing those sensors, and provided
a rich, informative, easy to use (drag & drop and
double clicking metaphors) user interface for
presenting real-time sensor data to users according to
the UDOP model. Also, we used advanced
collaborative technology built on top of message-
oriented middleware to enable distrusted users to have
a consistent view of such information. The Impromptu
for Sensors client immediately and automatically
shares a UDOP as a COP for all collaborative session
participants.

There are still many important issues for future work.
First, currently the Grid Builder tool is standalone. It
will be integrated with Impromptu for Sensors as a
sharedlet. Not only it will make the interface more
consistent but also it will link the collaboration grid
with the sensor grid in an integrated fashion. Second, it
is expected that a user can customize controls for new
types of sensors. Predefined controls may not be
suitable for those. More interactions between users and
the system can be useful. Last, information from
different sensors can be synthesized and processed
through a workflow to make it more meaningful to
users. This is illustrated by the current GPS sensor and
simulation grid seen in the Earthquake science
example [2-4, 14].

Acknowledgements
We thank Bill McQuay of AFRL, Shrideep Pallickara
and Marlon Pierce of the Community Grids Laboratory
and Gary Whitted of Ball Aerospace for important
suggestions

References

[1] The open source NaradaBrokering Project.

http://www.naradabrokering.org

[2] Galip Aydin, “Service Oriented Architecture for

Geographic Information Systems Supporting Real Time
Data Grids”, Indiana University PhD, January 15, 2007
http://grids.ucs.indiana.edu/ptliupages/publications/Gali
pAydin-Thesis.pdf

[3] Galip Aydin, Zhigang Qi, Marlon E. Pierce, Yehuda

Bock, and Geoffrey C. Fox, “Building a Sensor Grid for
Real Time Global Positioning System Data”, in
Proceedings of Workshop on Principles of Pervasive
Information Systems Design Toronto May 13, 2007
http://grids.ucs.indiana.edu/ptliupages/publications/Perv
asive2007Toronto_PierceSensorGrid-final.pdf

[4] Andrea Donnellan, Jay Parker, Robert Granat, Geoffrey

Fox, Marlon Pierce, John Rundle, Dennis McLeod,
Rami Al-Ghanmi, Lisa Grant, Walter Brooks
QuakeSim: Efficient Modeling of Sensor Web Data in a
Web Services Environment November 30 2007 to be
published in 2008 IEEE Aerospace Conference March
1-8 2008, Big Sky MT
http://grids.ucs.indiana.edu/ptliupages/publications/F12
24_3.pdf

[5] Harshwardhan Gadgil, Geoffrey Fox, Shrideep

Pallickara, and Marlon Pierce, Scalable, Fault-tolerant
Management of Grid Services, in Proceedings of IEEE
Cluster 2007.
http://grids.ucs.indiana.edu/ptliupages/publications/mg
mt-cluster-final.pdf

[6] Harshawardhan Gadgil, Geoffrey Fox, Shrideep

Pallickara, Scalable, Fault-tolerant Management in a
Service Oriented Architecture, Poster in pages 235-236
of proceedings for IEEE International Symposium in
High-Performance Distributed Computing (HPDC),
June, 2007
http://grids.ucs.indiana.edu/ptliupages/publications/mg
mtArchitecturePaper-POSTER.pdf

[7] Donald F. (Rick) McMullen, Marlon Pierce, Carol
Deng, Kia Huffman Real-time Web 2.0: Evolution of
Middleware for Grid-based Instruments and Sensors
Web 2.0 Workshop at The 21st Open Grid Forum -
OGF21 Grand Hyatt Seattle Seattle, Washington
October 15-19, 2007

http://www.ogf.org/gf/event_schedule/index.php?id=10
22

[8] ESTO / AIST Sensor Web PI Meeting - February 13-14,

2007, San Diego
http://esto.nasa.gov/sensorwebmeeting/

[9] UbITA 2007 Workshop on u-City (Ubiquitous City)

http://ubita.org/ October 31-November 2 2007 Konkuk
University Korea

[10] ROADNet: Real-time Observatories, Applications and

Data Management Network
http://roadnet.ucsd.edu/index.html

[11] Center for Embedded Networked Sensing CENS

http://research.cens.ucla.edu/

[12] INGRID 2007 - Instrumenting the Grid workshop

http://www.ingrid07.cnit.it/

[13] Microsoft eScience 2007 meeting at RENCI UNC

October 21-23 2007
http://research.microsoft.com/workshops/escience2007/
default.aspx

[14] Robert Granat, Galip Aydin, Zhigang Qi, and Marlon

Pierce, GPS Sensor Web Time Series Analysis Using
SensorGrid Technology American Geophysical Union
AGU Fall Meeting, Moscone Conventon Center, San
Francisco, CA, USA, 11–15 December 2006.
http://www.agu.org/meetings/fm06/

[15] Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar,

Tao Huang Service Oriented Architecture for VoIP
conferencing. Special Issue on Voice over IP - Theory
and Practice of the International Journal of
Communication Systems Volume 19, Issue 4 , Pages
445 - 461 Edited by John Fox and P. Gburzynski
http://grids.ucs.indiana.edu/ptliupages/publications/soa-
voip-05.doc

[16] Ahmet Uyar and Geoffrey Fox Investigating the

Performance of Audio/Video Service Architecture I:
Single Broker Proceedings of the IEEE International
Symposium on Collaborative Technologies and Systems
CTS05 May 2005, St. Louis Missouri, USA. Pages 120-
127.
http://grids.ucs.indiana.edu/ptliupages/publications/Sing
leBroker-cts05-submitted.PDF

[17] Ahmet Uyar and Geoffrey Fox Investigating the

Performance of Audio/Video Service Architecture II:
Broker Network Proceedings of the IEEE International
Symposium on Collaborative Technologies and Systems
CTS05 May 2005, St. Louis Missouri, USA. Pages 128-
135
http://grids.ucs.indiana.edu/ptliupages/publications/Bro
kerNetwork-cts05-final.PDF

[18] L.M. Ni, Y. Liu, Y.C. Lau, and A.P. Patil.

LANDMARC: Indoor location sensing using active
RFID. In Proceedings of IEEE International Conference
in Pervasive Computing and Communications
(PerCom), pg 407–415, Dallas, TX, USA, March 2003.

[19] J Yin, Q Yang and LM Ni. Learning Adaptive Temporal

Radio Maps for Signal-Strength-Based Location
Estimation. IEEE Transactions on Mobile Computing,
2007.

[20] J. Yin, Q. Yang, L. Ni. Adaptive Temporal Radio Maps

for Indoor Location Estimation. In Proceedings of
IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 85–
94, Kauai Island, HW, USA, March 2005.

[21] Clemson and Indiana University Team, Feature -

Testing the waters: coastal ecologists look to open
source software to manage distributed sensor data,
International Science Grid This Week
http://www.isgtw.org/?pid=1000863 6 February 2008

[22] Harshawardhan Gadgil SCALABLE, FAULT-

TOLERANT MANAGEMENT OF GRID SERVICES:
APPLICATION TO MESSAGING MIDDLEWARE
Indiana University PhD April 5 200
http://grids.ucs.indiana.edu/ptliupages/publications/hgad
gil-THESIS.pdf

Appendix: RFID Positioning Algorithm

The signal strength (expressed as power per unit
square) received by a RFID reader from a RFID tag is
inversely proportional to the square of the distance
between the reader and the tag. So we have

2

1
r

P ∝ .However, the output of the signal strength

received by a RFID reader is in dBm. To express an

arbitrary power P as x dBm, we have: 1010
x

P =

Assume that the signal strength received by a RFID
reader from a RFID tag depends on their distance and
their surrounding disturbance according to a
multiplicative model as follow:

()FactortalEnvironmen
r

P ⋅∝ 2

1
.

Suppose that there are a reference tag and a target tag,
which follow multiplicative models as below
respectively:

()Target Target2
Target

1P Environmental Factor
r

∝ ⋅

()Reference Reference2
Reference

1P Environmental Factor
r

∝ ⋅

We further assume that the effect of the environmental
factors on the 2 tags is similar. We can cancel the
environmental factors as follows:

2
Target Reference

2
Reference Target

P r
P r

∝

A linear model is obtained in the logarithmic space:

Target 0 1 Reference 2 Target

3 Reference

ln ln ln

ln

P a a P a r

a r ε

= + +

+ +

By rearranging, we have:

Target 0 1 Reference 2 Target

3 Reference

ln ' ' ln ' ln

' ln '

r a a r a P

a P ε

= + +

+ +

Substituting 1010
x

P = , we get:

Target 0 1 Reference 2 Target

3 Reference

ln ln

''

r b b r b x

b x ε

= + +

+ +

which is the linear model on which our RFID
positioning result is based.

