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Abstract—Earthquake science and emergency response require 
integration of many data types and models that cover a broad 
range of scales in time and space. Timely and efficient 
earthquake analysis and response require automated processes 
and a system in which the interfaces between models and 
applications are established and well defined. Geodetic 
imaging data provide observations of crustal deformation from 
which strain accumulation and release associated with 
earthquakes can be inferred. Data products are growing and 
tend to be either large in size, on the order of 1 GB per image, 
or high data rate, such as from 1 Hz GPS solution. As a result, 
the products can be computationally intensive to manipulate, 
analyze, or model. Required computing resources can be large, 
even for a few users, and can spike when new data are made 
available or when an earthquake occurs. Moving to a cloud 
computing environment is the natural next extension for some 
components of QuakeSim as an increasing number of data 
products and model applications become available to users. An 
additional consideration is that moving large images consumes 
a tremendous amount of bandwidth. Storing the data near the 
model applications improves performance for the user. 
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1. INTRODUCTION 

QuakeSim is a computational environment integrating data 
and models for understanding earthquake processes. 
QuakeSim focuses on using remotely sensed geodetic 
imaging data to study the interseismic part of the earthquake 
cycle (Figure 1). Geodetic imaging data provide 
observations of crustal deformation from which strain 
accumulation and release associated with earthquakes can 
be inferred. The goal is to understand earthquakes for 
mitigation and response. Remotely sensed geodetic imaging 
observations provide information on motions of the surface 
of the Earth’s crust, expressing the cycle of strain 
accumulation and release.  These data products are fused 
with geologic and seismicity information in the QuakeSim 
environment with visualization, modeling, and pattern 
analysis tools. E-DECIDER is an earthquake response 
decision support system that also uses remotely sensed 
observations and some QuakeSim components.  
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QuakeSim and E-DECIDER are downstream data product 
consumers that perform forward modeling, inverse 
modeling, forecasting, event detection, and response on the 
data products. Both E-DECIDER and QuakeSim rely on 
processed data products, which are typically velocities and 
time series from GPS, and ground range changes from 
Interferometric Synthetic Aperture Radar (InSAR). These 
and other data products such as seismicity, geologic fault 
data, or civil infrastructure, are integrated and assimilated 
into models for understanding, forecasting, and response. As 
a result of this reliance on data product providers, it is 
imperative that data specifications, standards, and locations 
are well understood.  

QuakeSim is distributed and heterogeneous because of the 
many different data products and numerous different 
applications. Decomposing QuakeSim into its different 
parts, strategically using cloud resources where necessary, 
and using other resources as practical result in greater 
efficiency. In cases where data volumes are large, such as 
InSAR, it is important to ensure that model applications 
reside close to the data products to reduce latency from 
bandwidth limitations. Alternatively, data products can be 
connected to applications through high bandwidth 
pathways.  

Earthquakes are the result of complex solid Earth processes. 
Plate tectonics drive motion of the Earth’s crust, 
accumulating deformation primarily along plate boundaries. 
Strain stored as elastic energy is released in earthquakes 
along faults. These processes occur on scales of 

milliseconds to millions of years, and from microns to 
global scales. Crustal deformation data products derived 
from GPS and interferometric synthetic aperture radar 
(InSAR) observations enable an understanding of the cycle 
of strain accumulation and release. Geological and seismic 
data complement the spaceborne observations. Various 
domain experts study aspects of these processes using 
experimental, theoretical, modeling, or statistical tools. Over 
the last decade, in part due to the advent of new 
computational methods, there has been an increasing focus 
on mining and integrating the heterogeneous data products 
into complex models of solid Earth processes. 

QuakeSim focuses on the cycle of strain accumulation and 
release that is well addressed by geodetic imaging data and 
related model applications.  Coseismic offset is the slip that 
occurs during an earthquake. Postseismic deformation is 
continued motion that occurs following an earthquake and 
deviates from the long-term slip rate. Postseismic 
deformation is usually some combination of afterslip, 
relaxation, or poroelastic rebound. Interseismic strain 
accumulation occurs as a result of plate tectonic motion. 
QuakeSim addresses the size and location of events, 
coseismic offsets associated with the earthquakes, and the 
time varying displacements that occur throughout the 
earthquake cycle. Seismicity and geology yield information 
on size and location of events.  GPS provides position time 
series. Interferometric synthetic aperture radar from airborne 
and spaceborne platforms provide images of displacement. 
All data sources provide information on geometry of faults 
and time varying slip. 
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Figure 1. Schematic of earthquake cycle of strain accumulation and release with the long-term tectonic 
rate removed.   
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While we use seismicity as a data source for size, location, 
and mechanism of events, we do not focus on seismic 
waveforms. Understanding crustal deformation and fault 
behavior leads to improved forecasting, emergency 
planning, and disaster response. Analysis of crustal 
deformation data can be used to indicate the existence of 
otherwise unknown faults (e.g., Donnellan et al., 1993), 
particularly when they are not exposed at the surface. 
Accurate fault models are required for understanding 
earthquake processes and require the integration of multiple 
types of data. Identifying, characterizing, modeling and 
considering the consequences of unknown faults, and 
improving the models of known faults contributes to seismic 
risk mitigation.  

The goal of QuakeSim is to improve understanding of 
earthquake processes by integrating remotely sensed 
geodetic imaging and other data with modeling, simulation, 
and pattern analysis applications. Model and analysis 
applications are delivered as standalone offline software 
packages or online through web services and Science 
Gateway user interfaces [1]. Data products are available 
online for browsing, download, and online or offline 
analysis through a database and services. QuakeSim utilizes 

data products that have typically been generated elsewhere; 
raw data is not ingested or processed but higher level data 
products from other data providers are made available 
through Open Geospatial Consortium (OGC)-compliant 
web services (Donnellan, et al., 2012, Wang, et al., 2012).  

2. DATA PRODUCTS  
QuakeSim applications use multiple data products from 
multiple providers (Figure 2). Data products include faults, 
GPS position time series and velocities, Radar repeat pass 
interferometry (RPI) or Interferometric Synthetic Aperture 
Radar (InSAR) ground range change images, and seismicity.  

It is important that the data products come from trusted 
sources and are reliable in order to construct valid models of 
earthquake processes and produce accurate earthquake 
probabilities. Understanding the history of the data products 
and how they were produced allows a user to make 
informed decisions and interpretations. It is also important 
to ensuring reproducibility of results. Tracking data 
provenance is necessary, particularly when data are 
reprocessed or originate from a variety of solutions, such as 
with GPS data.  
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Figure 2. QuakeSim inputs, outputs, and feedback to data providers are shown. Multiple data products are used 
from numerous providers. These are used in applications for understanding faults and forecasting earthquake 
likelihood. At times output from the applications identifies issues with the data products, which can be in the form of 
previously unrecognized faults, unmodeled error sources, or processing issues. 
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The requirements for QuakeSim as a data product consumer 
and upstream users of QuakeSim results are the same.  
Standards and services are necessary for efficient 
consumption and analysis of products. Data product 
customers specifically need: 1) Standard data formats like 
GeoTIFF (UAVSAR), GeoJSON, etc.; 2) Better metadata, 
such as how the data product was explicitly created 
(particularly for GPS, in our experience); 3) No 
undocumented, post-publication changes; 4) Delivery of 
data via standard mechanisms, e.g., OGC services; 5) 
Cloud-based delivery of data sets, such as with Amazon S3 
and Elastic Block Store services; and 6) Notification 
services for new products and changes. Web Services are 
key to effectively supporting downstream users; these 
should not be entangled with Web and desktop clients. 
Effective utilization of data products and analysis results by 
emergency responders require standard interfaces and 
products that are easily and readily interpretable. 

A key issue for earthquake response efforts is data 
availability and reliability, especially in the first hours to 
days following the event.  Responders and decision makers 
require access to rapid fault solutions, deformation and 

displacement information, and geologic and geodetic data 
quickly and easily. Available and trusted data products in 
times of crisis are essential in the decision making process. 
Quick-look products that may not be as accurate are of more 
value than accurate products with a long latency. 

3. MODELING AND ANALYSIS 
Data products are used in for main ways by QuakeSim 
modeling and analysis tools. The goal is to identify active 
faults or regions, understand earthquake fault behavior, 
search for anomalies, and estimate earthquake likelihood.  

QuakeSim provides integrated map-based interfaces and 
applications for 1) accessing remotely-sensed and ground-
based data products; 2) exploring and analyzing 
observations; 3) modeling earthquake processes; and 4) 
conducting pattern analysis to focus attention and identify 
significant and/or subtle features in the data. Data products 
and model tools can be accessed by network service (Web 
Services and REST) interfaces, directly through web-based 
user interfaces, or run offline on local or high-performance 
computers. 

Figure 3. Simplified E-DECIDER workflow where inputs, outputs, and delivery mechanisms are shown. Input data 
in the form of remote sensing imagery or simulation results generate derived decision support products that are then 
delivered as OGC-compliant products through the DHS UICDS software and the E-DECIDER interfaces. 
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Cloud computing is applicable in cases where multiple runs 
can be made in an embarrassingly parallel fashion.  This 
includes analysis of high rate GPS time series analysis, 
during post event response, when numerous users might be 
using the QuakeSim environment, and for simulating 
earthquakes or inverting crustal deformation observations in 
which numerous runs are carried out with different initial 
conditions. 

4. DECISION SUPPORT  
QuakeSim tools and Web services are used as a back end for 
E-DECIDER. E-DECIDER provides decision support for 
earthquake disaster management and response utilizing 
NASA and other available remote sensing data and 
QuakeSim modeling software (Figure 3). E-DECIDER 
delivers a web-based infrastructure and mobile interface 
designed for ease-of-use by decision makers, including 
rapid and readily accessible satellite imagery and synthetic 
interferograms following earthquakes; standards-compliant 
map data products; and deformation modeling and 
earthquake aftershock forecasting results [2].  The decision 
support tools are developed working in partnership with end 

users in first response and disaster management agencies, 
such as the US Geological Survey (USGS), California 
Geological Survey (CGS), and the Department of Homeland 
Security (DHS). A recent addition to the suite of tools 
includes delivery of E-DECIDER information through the 
DHS Unified Incident Command and Decision Support 
(UICDS) software, which allows data providers a means to 
communicate and send their products in a standard manner 
in the event of a disaster. 

An example workflow includes an end-to-end process that 
starts with the triggering of a deformation simulation from a 
>M5 earthquake from the USGS feed and ends with those 
results posted to an RSS feed. We have developed 
algorithms and web services to automatically process output 
from the Disloc model to produce tilt and deformation 
gradient information using a Sobel operator.  The tilt is a 
measurement of the change of slope that can affect water 
distribution, drainage, and sewage services.  The 
deformation gradient is a measure of the rate of change of 
deformation and can detect locations of possible fault 
rupture on the surface as well as locations where 

Figure 4. Example E-DECIDER output with deformation simulation result (tilt map – red/blue dots) generated 
from QuakeSim RSSDisloc tool with epicenter and 40 mile radius denoted with E-DECIDER’s On-Demand 
HAZUS KML Generation service. Critical infrastructure can be overlain and attention can be focused on 
potential facilities that may have been exposed to damage resulting earthquakes.  The call out bubble identifies a 
fire station within the 40 mile radius of the epicenter of the 21 October M 5.3 Central California earthquake. 
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infrastructure may be impacted by tension, compression, or 
shear at the surface. 

The tilt and gradient processing can be performed as an on-
demand process or as a web service.  The web service 
version will be chained with RSSDisloc to provide 
automatic mapping of tilt and gradient for earthquakes as 
they appear on the USGS Prompt Assessment of Global 
Earthquakes for Response (PAGER) feed. The tilt and 
gradient information can be mapped either with KML for 
display in Google Earth or with ArcGIS or other desktop 
GIS tools.  Mapping products generated in ArcGIS are 
shared either as image/PDF files or in native mapping 
formats.  Additionally, these products will be disseminated 
automatically via UICDS to responders (in locations where 
UICDS is in use).  The JPL UICDS core has been installed 
and is operational and has been tested in a response exercise 
to push E-DECIDER products to end users in an operational 
environment during the ShakeOut in mid-October 2012.  
Future plans to send epicenter and potentially exposed 
infrastructure from Hazards-United States (HAZUS) 
databases from the E-DECIDER GeoServer directly to 
UICDS upon the USGS feed trigger are also underway. 

5. CLOUD COMPUTING  
Cloud computing in the general sense represents the 
centralization of general computing capacity into highly 
scalable data centers [3]. The National Institute of Standards 
is standardizing cloud computing concepts and terminology, 
which we briefly summarize here. 

In brief summary, we can think of clouds as consisting of 
the following service layers.  Infrastructure as a Service: 
through Virtual Machine technologies, clouds provide 
access to hosted servers and resources that appear to the 
user as “just another server.” The advantage from the user’s 
point of view is that the resources are elastic and can be 
scaled up or down as needed.  Amazon, Azure and Google 
Compute Engine are examples.  Open source examples 
include OpenStack, OpenNebula, CloudStack, Nimbus, and 
Eucalyptus. Platform as a Service:  This allows the user to 
deploy user-created applications within a specific cloud 
framework into the cloud for use by others. Google App 
Engine and Amazon’s Elastic MapReduce [4] are prominent 
examples. Here the cloud provider creates a framework that 
can be used to build applications while hiding underlying 
complexities (such as those exposed in Infrastructure as a 
Service).  Software as a Service:  The cloud provider 
provides a specific capability or software to the user. 
Examples are seen in the individual services corresponding 
to different QuakeSim tools or to individual services 
corresponding to different forecasting models. 

Compared to traditional high performance computing, 
Cloud Computing provides much potential greater 
computing capacity but with larger latencies.  This makes 
Cloud Computing an excellent candidate for “big data” 
problems in which the same operations need to be 

performed on very large data sets, but little communication 
between individual processes or movement of data is 
needed.  Further, even in problems needing communication, 
these are not small messages familiar from parallel 
simulations but rather large “reductions” (such as global 
sums or broadcasts) supported by MapReduce and its 
iterative extensions in the cloud [4-7].  

A growing body of research indicates that Cloud computing 
approaches are a good match for many large-scale data-
centric scientific computing problems [8-13]. Cloud 
computing infrastructure in many fields is overtaking the 
traditional data center.  The size of data in many fields (such 
as the life sciences) is growing so rapidly that frequent data 
movement is impractical, and so computing must be brought 
to the data.  This is likely the case for InSAR geodetic 
imaging data, as volumes grow over time. High rate GPS 
data products also are a good candidate for analysis on the 
cloud. Other applications may be impractical for cloud 
computing, and analysis should be done to gain efficiency 
with cloud computing while not incurring expense where 
unnecessary. 

It is important to prototype these approaches for NASA data 
collections, particularly the anticipated large collections of 
InSAR imagery from the DESDynI-R mission. QuakeSim’s 
QuakeTables database houses some processed InSAR data 
products and also the complete set of processed repeat pass 
interferometry products from the airborne UAVSAR InSAR 
project. These data provide essential information for 
modeling earthquake processes and particularly for 
developing accurate fault models. We are collaborating with 
data product providers to ensure standard interfaces formats 
as well as jointly used cloud infrastructure where 
appropriate. The infrastructure must be flexible enough to 
support other data sets and use cases. 

Under the present cloud models storage at existing data 
center appears more cost effective than storage on the cloud 
where recurring costs are at present cost prohibitive.  
However, this may change in the future. Microsoft Azure’s 
Blob storage service, Amazon’s S3, and the Lustre file 
system-based Whamcloud are examples of unstructured 
storage, and BigTable, HBase, and the Azure Table Service 
are examples of structured data storage.  We will evaluate 
these for the storage and access of large collections of 
individually large data sets.  A key observation from our 
research on cloud systems for science is that data storage 
and computing must be coupled. We must therefore couple 
our IaaS prototyping with SaaS prototyping.  Specifically, 
the SaaS models that we will consider are MapReduce and 
its derivatives.  MapReduce-style approaches are 
particularly useful for data-parallel computing problems 
such as DESDynI-R image processing and GPS signal 
analysis. Simulations and inversions where similar runs are 
done with different initial conditions are also candidates for 
cloud computing. 
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We are exploring use of Amazon Cloud and Indiana 
University’s FutureGrid system. FutreGrid is an NSF-
funded testbed that is designed to foster research on Cloud 
Computing for science and other advanced topics.  We will 
use FutureGrid to help build and evaluate prototypes. 
Ultimately, the goal is to package these tools with a 
workflow engine and gateway.  

Generally QuakeSim can be run on cloud services, as from 
QuakeSim's point of view there is little difference between 
the VM IaaS and a regular host.  A major difference is that 
hardware can be dynamically acquired, so we can test many 
different VM sizes to determine what we need to run and 
under what circumstances (e.g. in the event of an 
earthquake). We do not have to spend weeks configuring 
and ordering hardware only to find out it is too small or too 
big, which can waste time and money. Further, commercial 
clouds dynamically reallocate resources on the fly to satisfy 
drastic changes in demand. 

6. SUMMARY  
Clouds are a promising new method for analysis and 
modeling of large data product sets and for multiple parallel 
runs. In some instances it may be better to use standard 
resources instead of clouds. Careful consideration should be 
given to what resources to use for various tasks.  QuakeSim 
consists of several components interfacing with many 
different organizations, data products, and with several 
different types of applications for modeling and analysis. 
Collaboration between QuakeSim developers and data 
product providers and downstream consumers early on will 
result in improved efficiency across the board for 
earthquake studies and analysis of geodetic imaging 
observations. 
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