
TITLE
Computational Sciences and Parallelism

BYLINE
Geoffrey Fox
School of Informatics and Computing
And Pervasive Technology Institute
Indiana University
Bloomington IN

SYNONYMS
Applications and Parallelism
Problem Architectures

DEFINITION
Here we ask which applications should run in parallel and correspondingly which areas
of computational science will benefit from parallelism. In studying this we will discover
which applications benefit from particular hardware and software choices. A driving
principle is that in parallel programming, one must map problems into software and then
into hardware. The architecture differences in source and target of these maps will affect
the efficiency and ease of parallelism.

DISCUSSION

Introduction
I have an application – can and should it be parallelized and if so, how should this be
done and what are appropriate target hardware architectures; what is known about clever
algorithms and what are recommended software technologies? Fox introduced in [1] a
general approach to this question by considering problems and the computer
infrastructure on which they are executed as complex systems. Namely each is a
collection of entities and connections between them governed by some laws. The entities
can be illustrated by mesh points, particles, data points for problems; cores, networks and
storage locations for hardware; objects, instructions and messages for software. The
processes of deriving numerical models, generating the software to simulate model,
compiling the software, generating the machine code and finally executing the program
on particular hardware can be considered as maps between different complex systems.
Many performances models and analyses have been developed and these describe the
quality of map. We know that maps are essentially never perfect and describing
principles for quantifying this is a goal of this entry. At a high level, we understand that
the architecture of problem and hardware/software must match; given this we have
quantitative conditions that the performance of the parts of the hardware must be
consistent with the problem. For example if two mesh points in problem are strongly
connected, then bandwidth between components of hardware to which they are mapped

must be high. In this discussion, we want to describe the issues of parallelism and here
there are two particularly interesting general results. Firstly we can usually define a space
(the domain of entities) and a time associated with a complex system. Time is nature’s
time for the complex system that describes time dependent simulations. However for
linear algebra time for that complex system is an iteration count. Note for the simplest
sequential computer hardware there is no space and just a time defined by the control
flow. Thus in executing problems on computers one is typically mapping all or part of the
space of the problem onto time for the computer and parallel computing corresponding
case where both problem and computer have well defined spatial extent. Mapping is
usually never 1:1 and reversible and “information is lost” as one maps one system into
another. In particular one fundamental reason why automatic parallelism can be hard is
that the mapping of problem into software has thrown away key information about the
space-time structure of original problem. Language designers in this field try to find
languages that preserve key information needed for parallelism while hardware designers
design computers that can work around this loss of information. For an example use of
arrays in many data parallel languages from APL, HPF to Sawzall, can be viewed as a
way to preserve spatial structure of problems when expressed in these languages. In this
article, we will not discuss these issues in depth but rather discuss what is possible with
“knowledgeable users” mapping problems to computers or particular programming
paradigms.

Simple Example
We consider the simple case of a problem whose complex system spatial structure is
represented as a 2D mesh. This comes in material science when one considers local
forces between a regular array of particles or in the finite difference approach to solving
Laplace or Poisson’s equation in two dimensions. There are many important subtleties
such as adaptive meshes and hierarchical multigrid methods but in the simplest
formulation such problems are set up as a regular grid of field values where the basic
iterative update links nearest neighbors in two dimensions.

If the points are labeled by an index pair (i,j), then Jacobi's method (not state of the art
but chosen as simplicity allows a clear discussion) can be written

φ (i,j) is replaced by (φLeft + φRight + φUp + φDown) / 4 (1)
where φLeft =φ (i,j-1)and similarly for φRight, φUp, and φDown.

 Such problems would usually be parallelized by a technique that is often called "domain
decomposition" or "data parallelism" although these terms are not very precise.
Parallelism is naturally found for such problems by dividing the domain up into parts and
assigning each part to a different processors as seen in Figure 1. Here the problem
represented as a 16x16 mesh is solved on a 4x4 mesh of processors. For problems coming
from nature this geometric view is intuitive as say in a weather simulation, the
atmosphere over California evolves independently from that over Indiana and so can be
simulated on separate processors. This is only true for short time extrapolations –
eventually information flows between these sites and their dynamics are mixed. Of
course it is the communication of data between the processors (either directly in a

distributed memory or implicitly in a shared memory) that implements this eventual
mixing.

Figure 1: Communication Structure for 2D Complex System Example. The dots are the 256
points in the problem. Shown by dashed lines is the division into 16 processors. The circled

points are the halo or ghost grid points communicated to processor they surround.

Such block data decompositions typically lead to a SPMD (Single Program Multiple
Data) structure with each processor executing the same code but on different data points
and with differing boundary conditions. In this type of problem, processors at the edge of
the (4x4) mesh do not see quite the same communication and compute complexity as the
“general case” of an inside processor shown in figure 1. For the local nearest neighbor
structure of Equation (1), one needs to communicate the ring of halo points shown in
figure. As computation grows like the number of points (grain size) n in each processor
and communication like the number on edge (proportional to √n), the time “wasted”
communicating decreases as a fraction of the total as the grain size n increases. Further
one can usually "block" the communication to transmit all the needed points in a few
messages as latency can be an important part of communication overhead.

Note that this type of data decomposition implies the so-called “owner’s-compute” rule.
Here we imagine each data point as being owned by the processor to which the
decomposition assigns it. The owner of a given data-point is then responsible for
performing the computation that “updates” its corresponding data values. This produces a
common scenario where parallel program consists of a loop over iterations divided into
compute-communicate phases:

• Communicate: At the start of each iteration, first communicate any outside data
values needed to update the data values at points owned by this processor.

• Compute: Perform update of data values with each processor operating without
need to further synchronize with other machines.

This general structure is preserved even in many complex physical simulations with fixed
albeit irregular decompositions. Dynamic decompositions introduce a further step where
data values are migrated between processors to ensure load balance but this is usually still
followed by similar communicate-compute phases. The communication phase naturally
synchronizes the operation of the parallel processors and provides an efficient barrier

point which naturally scales. The above discussion uses a terminology natural for
distributed memory hardware or message passing programming models. With a shared
memory model like OpenMP, communication would be implicit and the “communication
phase” above would be implemented as a barrier synchronization.

Performance Model
We can use our current Poisson equation example to illustrate some simple techniques
that allow estimates of the performance of many parallel programs.

Figure 2: Parameters determining performance of loosely synchronous problems.

As shown in Figure 4.5, we characterize the node of a parallel machine by a parameter
tfloat, which is time taken for a single floating point operation. tfloat is of course not very
well defined as depends on the effectiveness of cache, possible use of fused multiply-add
and other issues. This implies that this measure will have some application dependence
reflecting the goodness of the match of the problem to the node architecture. We let n be
the grain size – the number of data points owned by a typical processor. Communication
performance – whether through a shared or distributed memory architecture – can be
parameterized as

Time to communicate Ncomm words = tlatency + Ncomm tcomm (2)
This equation ignores issues like bus or switch contention but is a reasonable model in
many cases. Latencies tlatency can be around 1 microsecond on high performance systems
but is measured in milliseconds in a geographically distributed grid. tcomm is time to
communicate a single word and for large enough messages, the latency term can be
ignored which we will do in the following.

Parallel performance is dependent on load balancing and communication and both can be
discussed but here we focus on communication with problem of figure 1 generalized to
Nproc processors arranged in an √Nproc by √Nproc grid with a total of N mesh points and the
grain size n = N/Nproc. Let T(Nproc) be the execution time on Nproc processors and we find
two contributions to this ignoring small load imbalances from edge processors. There is a
calculation time expressed as n tcalc with tcalc = 4 tfloat as the time to execute the basic
update equation (1). In addition the parallel program has communication overhead, which
adds to T(Nproc) a term 4√n tcomm. Now we find the speed up formula:

S(Nproc) =T(1)/ T(Nproc)= Nproc / (1 + tcomm/(√n tfloat)) (3)

We note that this analysis ignores the possibility available on some computers of
overlapping communication and computation which is straightforwardly included. We
can generalize the above formalism most conveniently using the notation that

S(Nproc) = ε Nproc = Nproc /(1 + f), (4)

which defines efficiency ε and overhead f. Note that we prefer to discuss overhead rather
than speed-up or efficiency as one typically gets simpler models for f as the effects of
parallelism are additive to f but for example occur in the denominator of equation (3) for
speedup and efficiency. The communication part fcomm of the overhead f is given by
combining equations (3) and (4) as

fcomm = tcomm/(√n tfloat) (5)

Note that in many instances, fcomm can be thought of as simply the ratio of parallel
communication to parallel computation. This equation can be generalized to essentially
all problems we will later term loosely synchronous. Then in each coupled communicate-
compute phases of such problems, one finds that the overhead takes the form:

fcomm = constant . tcomm/(n1/d tfloat) (6)

Here d is an appropriate (complexity or information) dimension, which is equal to the
geometric dimension for partial differential based equations or other geometrically local
algorithms such as particle dynamics. A particularly important case in practice is the 3D
value d=3 when n-1/d is just surface/volume in three dimensions. However equation (6)
describes many non geometrically local problems with for example the value d=2 for the
best decompositions for full matrix linear algebra and d=1 for long range interaction
problems. The Fast Fourier Transform FFT finds n1/d in equation (6) replaced by ln(n)
corresponding to d=∞.

From equation (4), we find that S(Nproc) increases linearly with Nproc as long as Nproc is
increased with fixed fcomm which implies fixed grain size n, while tcomm and tfloat are
naturally fixed. This is scaled speedup where the problem size N = n Nproc also increases
linearly with Nproc. The continuing success of parallel computing even on very large
machines can be considered as a consequence of equations like (6) as the formula for
fcomm only depends on local node parameters and not on the number of processors. Thus
as we scale up the number of processors keeping the node hardware and application grain
size n fixed, we will get scaling performance – speedup proportional to Nproc. Note this
implies that total problem size increases proportional to Nproc – the defining characteristic
of scaled speedup.

Complex Applications are better for Parallelism
The simple problem described above is perhaps the one where the parallel issues are most
obvious; however it is not the one where good parallel performance is easiest to obtain as
the small computational complexity of the update equation (1) makes the communication
overhead relatively more important. There is a fortunate general rule that as one increases
the complexity of a problem, the computation needed grows faster than the
communication overhead and we will illustrate this below. Jacobi iteration does have
perhaps the smallest communication for problems of this class. However it has one of
largest ratios of communication to computation and correspondingly high parallel
overhead. Note one sees the same effect on a hierarchical (cache) memory machine,
where problems such as Jacobi Iteration for simple equations can perform poorly as the
number of operations performed on each word fetched into cache is proportional to

number of links per entity and this is small (four in the 2-D mesh considered above) for
this problem class.

As an illustration of the effect varying computational complexity, we see in figure 3 how
the above analysis is altered as one changes the update formula of equation (1). We can
now systematically increase the size of the stencil parameterized by an integer l and find
how fcomm changes. In the case where points are particles the value of l corresponds to the
range of their mutual force and in the case of discretization of partial differential
equations l measures the order of the approximation.

Figure 3: Communication Structure as a function of stencil size. The figure shows 4 stencils with

from left to right, range l = 1,1,2,3.
We find that the communication overhead decreases systematically as shown in Figure 3
as the range of the force increases. The general 2D result is:

fcomm ∝ tcomm/(l √n tfloat) (7)
This is valid for l which is large compared to 1 but smaller than the length scale
corresponding to region stored in each processor. In the interesting limit of an infinite
range (l→∞) force, the analysis needs to be redone and one finds the result that is
independent of the geometric dimension

fcomm ∝ tcomm/(n tfloat) (8)
which is of the general form of equation (6) with complexity dimension d=1. This is the
best-understood case where the geometric and complexity dimensions are different. The
overhead formula of equation (8) corresponds to the computationally intense O(N2)
algorithms for evolving N-body problems. The amount of computation is so large that the
ratio of communication to computation is extremely small.

Application Architectures

The analysis above can be applied to many SPMD problems and addresses the matching
of “spatial” structure of applications and computers. This drives needed linkage of
individual computers in a parallel system in terms of topology and performance of
network. However this only works if we can match the temporal structure and this aspect
is more qualitative and perhaps controversial. The simplest ideas here underlied the early
SIMD (Single Instruction Multiple Data) machines that were popular some 20 years ago.
These are suitable for problems where each point of the complex system evolves with the
same rule (mapping into machine instruction) at each time. There are many such
problems including for example the Laplace solver discussed above. However many

related problems do not fit this structure – called synchronous in [1] – with the simplest
reason being heterogeneity in system requiring different computational approaches at
different points. A huge number of scientific problems fit a more general classification –
loosely synchronous. Here we see SPMD applications which have the compute-
communication stages described above but now the compute phases are different on
different processors. One uses load balancing methods to ensure that the computational
work on each node is balanced but not on each machine instruction but rather in a coarse
grain fashion at every iteration or time-step – whatever defines the temporal evolution of
the complete system. Loosely synchronous problems fit naturally MIMD machines with
the communication stages at macroscopic “time-steps” of the application. This
communication ensures the overall correct synchronization of the parallel application.
Thus overhead formulae like equations (5) and (6) describe both communication and
synchronization overhead. As this overhead only depends on local parameters of the
application, we understand why loosely synchronously can get good scalable
performance on the largest supercomputers. Such applications need no expensive global
synchronization steps. Essentially all linear algebra, particle dynamics and differential
equation solvers fall in the loosely synchronous class. Note synchronous problems are
still around but they are run on MIMD (Multiple Instruction Multiple Data) machines
with the SPMD model.

A third class of problems – termed asynchronous -- consists of asynchronously
interacting objects and is often people’s view of a typical parallel problem. It probably
does describe the concurrent threads in a modern operating system and some important
applications such as event driven simulations and areas like search in computer games
and graph algorithms. Shared memory is natural for asynchronous problems due to low
latency often needed to perform dynamic synchronization. It wasn’t clear in the past but
now it appears this category is not very common in large scale parallel problems of
importance. The surprise of some at the practical success of parallel computing can
perhaps be understood from people thinking about asynchronous problems whereas its
loosely synchronous and pleasingly parallel problems that dominate. The latter class is
the simplest algorithmically with disconnected parallel components. However the
importance of this category has probably grown since the original 1988 analysis[2] when
it was estimated as 20% of all parallel computing. Both Grids and clouds are very natural
for this class which does not need high performance communication between different
nodes. Parameter searches and many data analysis applications of independent
observations fall into this class.

From the start, we have seen a fifth class -- termed metaproblems – which refer to
the coarse grain linkage of different “atomic” problems . Here synchronous, loosely
synchronous, asynchronous and pleasingly parallel are the atomic classes. Metaproblems
are very common and expected to grow in importance. One often uses a two level
programming model in this case with the metaproblem linkage specified by workflow
and the component problems with traditional parallel languages and runtimes. Grids or
Clouds are suitable for metaproblems as coarse grain decomposition does not usually
require stringent performance

These five categories are summarized in Table 1 which also introduces a new
category MapReduce++ which has recently grown in importance to described data

analysis. Nearly all the early work on parallel computing focused on simulation as
opposed to data analysis (or what some call data intensive applications). Data analysis
has exploded in importance recently [3] correspondingly to growth in number of
instruments, sensors and human (the web) sources of data.

Table 1 Application classification

Class Description Machine
Architecture

1) Synchronous The problem class can be implemented with instruction level Lockstep Operation as
in SIMD architectures SIMD

2)

Loosely
Synchronous
(or BSP Bulk
Synchronous
Processing)

These problems exhibit iterative Compute-Communication stages with independent
compute (map) operations for each CPU that are synchronized with a
communication step. This problem class covers many successful MPI applications
including partial differential equation solution and particle dynamics applications.

MIMD on
MPP (Massively
Parallel
Processor)

3) Asynchronous
Illustrated by Compute Chess and Integer Programming; Combinatorial Search
often supported by dynamic threads. This is rarely important in scientific
computing but at heart of operating systems and concurrency in consumer
applications such as Microsoft Word.

Shared Memory

4) Pleasingly
Parallel

Each component is independent. In 1988, Fox estimated this at 20% of the total
number of applications[2] but that percentage has grown with the use of Grids and
data analysis applications including for example the Large Hadron Collider analysis
for particle physics.

Grids moving to
Clouds

5) Metaproblems
These are coarse grain (asynchronous or dataflow) combinations of classes 1)-4)
and 6). This area has also grown in importance and is well supported by Grids and
described by workflow of Section 3.5.

Grids of
Clusters

6) MapReduce++

It describes file(database) to file(database) operations which has three subcategories
given below and in table 2.
 6a) Pleasingly Parallel Map Only – similar to category 4
 6b) Map followed by reductions
 6c) Iterative “Map followed by reductions” – Extension of Current Technologies
that supports much linear algebra and data mining

Data-intensive
Clouds
a) Master-
Worker
or Mapreduce
b) MapReduce
c) Twister

The MapReduce++ category has three subdivisions a) “map only” applications similar to
pleasingly parallel category; b) The classic MapReduce with file to file operations
consisting of parallel maps followed by parallel reduce operations.; c) captures the
extended MapReduce introduced in [4-10]. Note this category has the same complex
system structure as loosely synchronous or pleasingly parallel problems but is
distinguished by the reading and writing of data. This comparison is made clearer in
Table 2. Note nearly all early work on parallel computing discussed computing with data
on memory. MapReduce and languages like Sawzall [11] and Pig-Latin [12] emphasize
the parallel processing of data on disks -- a field that until recently was only covered by
database community.

Table 2 Comparison of MapReduce++ subcategories and Loosely Synchronous category

Map-only Classic MapReduce Iterative MapReduce Loosely Synchronous

• Document
conversion
(e.g. PDF-
>HTML)

• Brute force
searches in
cryptography

• Parametric sweeps
• Gene assembly
• Much data

analysis of
independent
samples

• High Energy
Physics (HEP)
Histograms

• Distributed
search

• Distributed sort
• Information

retrieval
• Calculation of

Pairwise
Distances for
sequences
(BLAST)

• Expectation
maximization
algorithms

• Linear Algebra
• Datamining including
• Clustering
• K-means
• Multidimensional

Scaling (MDS)

• Many MPI
scientific
applications
utilizing wide
variety of
communication
constructs including
local interactions

• Solving differential
equations and

• Particle dynamics
with short range
forces

Domain of MapReduce and Iterative Extensions MPI

Summary
Problems are set up as computational or numerical systems and these can be considered
as a “space” of linked entities evolving in time. We have discussed the spatial structure
(which is critical for performance) and the temporal structure which is critical to
understand the class of software and computer needed. These we termed "basic complex
systems" and characterized them by their possibly dynamic spatial (geometric) and
temporal structure. We have noted the difference between the structure of the original
problem and that of computational system derived from it. We can summarize much of
the past experience in parallelizing applications by the conclusion:

Synchronous and Loosely Synchronous problems perform well on large parallel
machines as long as the problem is large enough. For a given machine, there is a typical
sub-domain size (i.e. the grain size or size of that part of the problem stored on each
node) above which one can expect to get good performance. There will be a roughly
constant ratio of parallel speedup to Nproc if one scales the problem with fixed sub-domain
size and total size proportional to Nproc. This conclusion has been enriched by study of
grids and clouds with an emphasize on pleasingly parallel and MapReduce++ style
problems often with a data intensive focus. These also parallelize well.

BIBLIOGRAPHIC NOTES AND FURTHER READING
The approach followed here was developed in [1, 13] with further details in [2, 14]. The
extension to include data intensive applications was given in [8, 15]. There are many
good discussions of speedup including Gustafson’s seminal work[16] and the lack of it –

Amdahl’s law[17]. The recent spate of papers on MapReduce [4, 7] and its applications
and extensions[4-12, 15] allow one to extend the discussion of parallelism from
simulation (which implicitly dominated the early work) to data analysis[3].

BIBLIOGRAPHY

1. Fox, G.C., R.D. Williams, and P.C. Messina, Parallel computing works! 1994:

Morgan Kaufmann Publishers, Inc. http://www.old-
npac.org/copywrite/pcw/node278.html#SECTION001440000000000000000

2. Fox, G.C., What Have We Learnt from Using Real Parallel Machines to Solve
Real Problems, in Third Conference on Hypercube Concurrent Computers and
Applications, G.C. Fox, Editor., 1988, ACM Press: Vol. 2. pages. 897-955.

3. Jim Gray, Tony Hey, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm:
Data-Intensive Scientific Discovery. 2010 [accessed 2010 October 21];
Available from: http://research.microsoft.com/en-
us/collaboration/fourthparadigm/.

4. J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, Twister: A
Runtime for iterative MapReduce, in Proceedings of the First International
Workshop on MapReduce and its Applications of ACM HPDC 2010 conference
June 20-25, 2010. 2010, ACM. Chicago, Illinois.
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-
submission.pdf.

5. Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst, HaLoop:
Efficient Iterative Data Processing on Large Clusters, in The 36th International
Conference on Very Large Data Bases. September 13-17, 2010, VLDB
Endowment: Vol. 3. Singapore.
http://www.ics.uci.edu/~yingyib/papers/HaLoop_camera_ready.pdf.

6. Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes, and
Geoffrey Fox, Applying Twister to Scientific Applications, in CloudCom 2010.
November 30-December 3, 2010. IUPUI Conference Center Indianapolis.
http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf.

7. Dean, J. and S. Ghemawat, MapReduce: simplified data processing on large
clusters. Commun. ACM, 2008. 51(1): p. 107-113.

8. Jaliya Ekanayake,Ph. D. Thesis ARCHITECTURE AND PERFORMANCE OF
RUNTIME ENVIRONMENTS FOR DATA INTENSIVE SCALABLE
COMPUTING, in School of Informatics and Computing. December, 2010,
Indiana University: Bloomington.
http://grids.ucs.indiana.edu/ptliupages/publications/thesis_jaliya_v24.pdf

9. Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski, Pregel: A System for Large-Scale
Graph Processing, in International conference on Management of data. 2010.
Indianapolis, Indiana, USA. pages. 135-146.

10. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica, Spark: Cluster Computing with Working Sets, in 2nd USENIX Workshop

http://www.old-npac.org/copywrite/pcw/node278.html#SECTION001440000000000000000
http://www.old-npac.org/copywrite/pcw/node278.html#SECTION001440000000000000000
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-submission.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-submission.pdf
http://www.ics.uci.edu/~yingyib/papers/HaLoop_camera_ready.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/thesis_jaliya_v24.pdf

on Hot Topics in Cloud Computing (HotCloud '10). June 22, 2010. Boston.
http://www.cs.berkeley.edu/~franklin/Papers/hotcloud.pdf.

11. Pike, R., S. Dorward, R. Griesemer, and S. Quinlan, Interpreting the data:
Parallel analysis with sawzall. Scientific Programming Journal Special Issue on
Grids and Worldwide Computing Programming Models and Infrastructure, 2005.
13(4): p. 227–298. http://iospress.metapress.com/content/99VJKGKAE3JKVU9T

12. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins, Pig latin: a not-so-foreign language for data processing, in
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. 2008, ACM. Vancouver, Canada. pages. 1099-1110.
http://portal.acm.org/citation.cfm?id=1376726.

13. Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda
Torczon, and Andy White, The Sourcebook of Parallel Computing. 2002: Morgan
Kaufmann. ISBN:978-1558608719

14. Fox, G.C. and P. Coddington, Parallel computers and complex systems, in
Complex Systems: From Biology to Computation, T.R.J. Bossomaier and D.G.
Green, Editors. 2000, Cambridge University Press. p. 272-287.
http://cs.adelaide.edu.au/~paulc/papers/sccs-370b/abs-0370b.html.

15. Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason,
Jong Youl Choi, Yang Ruan, Seung-Hee Bae, and Hui Li, Applicability of
DryadLINQ to Scientific Applications. January 30, 2010, Community Grids
Laboratory, Indiana University.
http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf.

16. Gustafson, J.L., Reevaluating Amdahl's law. Commun. ACM, 1988. 31(5): p.
532-533. DOI:10.1145/42411.42415

17. Wikipedia. Amdahl's law. [accessed 2010 December 28]; Available from:
http://en.wikipedia.org/wiki/Amdahl's_law.

http://www.cs.berkeley.edu/~franklin/Papers/hotcloud.pdf
http://iospress.metapress.com/content/99VJKGKAE3JKVU9T
http://portal.acm.org/citation.cfm?id=1376726
http://cs.adelaide.edu.au/~paulc/papers/sccs-370b/abs-0370b.html
http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf
http://en.wikipedia.org/wiki/Amdahl's_law

	fcomm = tcomm/((n tfloat) (5)

