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DEFINITION 
Here we ask which applications should run in parallel and correspondingly which areas 
of computational science will benefit from parallelism. In studying this we will discover 
which applications benefit from particular hardware and software choices. A driving 
principle is that in parallel programming, one must map problems into software and then 
into hardware. The architecture differences in source and target of these maps will affect 
the efficiency and ease of parallelism. 
 
DISCUSSION 
 
Introduction  
I have an application – can and should it be parallelized and if so, how should this be 
done and what are appropriate target hardware architectures; what is known about clever 
algorithms and what are recommended software technologies? Fox introduced in [1] a 
general approach to this question by considering problems and the computer 
infrastructure on which they are executed as complex systems. Namely each is a 
collection of entities and connections between them governed by some laws. The entities 
can be illustrated by mesh points, particles, data points for problems; cores, networks and 
storage locations for hardware; objects, instructions and messages for software. The 
processes of deriving numerical models, generating the software to simulate model, 
compiling the software, generating the machine code and finally executing the program 
on particular hardware can be considered as maps between different complex systems. 
Many performances models and analyses have been developed and these describe the 
quality of map. We know that maps are essentially never perfect and describing 
principles for quantifying this is a goal of this entry. At a high level, we understand that 
the architecture of problem and hardware/software must match; given this we have 
quantitative conditions that the performance of the parts of the hardware must be 
consistent with the problem. For example if two mesh points in problem are strongly 
connected, then bandwidth between components of hardware to which they are mapped  



must be high. In this discussion, we want to describe the issues of parallelism and here 
there are two particularly interesting general results. Firstly we can usually define a space 
(the domain of entities) and a time associated with a complex system. Time is nature’s 
time for the complex system that describes time dependent simulations. However for 
linear algebra time for that complex system is an iteration count. Note for the simplest 
sequential computer hardware there is no space and just a time defined by the control 
flow. Thus in executing problems on computers one is typically mapping all or part of the 
space of the problem onto time for the computer and parallel computing corresponding 
case where both problem and computer have well defined spatial extent. Mapping is 
usually never 1:1 and reversible and “information is lost” as one maps one system into 
another. In particular one fundamental reason why automatic parallelism can be hard is 
that the mapping of problem into software has thrown away key information about the 
space-time structure of original problem. Language designers in this field try to find 
languages that preserve key information needed for parallelism while hardware designers 
design computers that can work around this loss of information. For an example use of 
arrays in many data parallel languages from APL, HPF to Sawzall, can be viewed as a 
way to preserve spatial structure of problems when expressed in these languages. In this 
article, we will not discuss these issues in depth but rather discuss what is possible with 
“knowledgeable users” mapping problems to computers or particular programming 
paradigms. 
 
Simple Example 
We consider the simple case of a problem whose complex system spatial structure is 
represented as a 2D mesh. This comes in material science when one considers local 
forces between a regular array of particles or in the finite difference approach to solving 
Laplace or Poisson’s equation in two dimensions. There are many important subtleties 
such as adaptive meshes and hierarchical multigrid methods but in the simplest 
formulation such problems are set up as a regular grid of field values where the basic 
iterative update links nearest neighbors in two dimensions. 
 
If the points are labeled by an index pair (i,j), then Jacobi's method (not state of the art 
but chosen as simplicity allows a clear discussion) can be written 
 

φ (i,j) is replaced by (φLeft + φRight + φUp + φDown ) / 4  (1) 
where φLeft =φ (i,j-1)and similarly for φRight, φUp, and φDown. 
 
 Such problems would usually be parallelized by a technique that is often called "domain 
decomposition" or "data parallelism" although these terms are not very precise. 
Parallelism is naturally found for such problems by dividing the domain up into parts and 
assigning each part to a different processors as seen in Figure 1. Here the problem 
represented as a 16x16 mesh is solved on a 4x4 mesh of processors. For problems coming 
from nature this geometric view is intuitive as say in a weather simulation, the 
atmosphere over California evolves independently from that over Indiana and so can be 
simulated on separate processors. This is only true for short time extrapolations – 
eventually information flows between these sites and their dynamics are mixed. Of 
course it is the communication of data between the processors (either directly in a 



distributed memory or implicitly in a shared memory) that implements this eventual 
mixing. 

 
Figure 1: Communication Structure for 2D Complex System Example. The dots are the 256 
points in the problem. Shown by dashed lines is the division into 16 processors. The circled 

points are the halo or ghost grid points communicated to processor they surround. 
 
Such block data decompositions typically lead to a SPMD (Single Program Multiple 
Data) structure with each processor executing the same code but on different data points 
and with differing boundary conditions. In this type of problem, processors at the edge of 
the (4x4) mesh do not see quite the same communication and compute complexity as the 
“general case” of an inside processor shown in figure 1. For the local nearest neighbor 
structure of Equation (1), one needs to communicate the ring of halo points shown in 
figure. As computation grows like the number of points (grain size) n in each processor 
and communication like the number on edge (proportional to √n), the time “wasted” 
communicating decreases as a fraction of the total as the grain size n  increases. Further 
one can usually "block" the communication to transmit all the needed points in a few 
messages as latency can be an important part of communication overhead.  
 
Note that this type of data decomposition implies the so-called “owner’s-compute” rule. 
Here we imagine each data point as being owned by the processor to which the 
decomposition assigns it. The owner of a given data-point is then responsible for 
performing the computation that “updates” its corresponding data values. This produces a 
common scenario where parallel program consists of a loop over iterations divided into 
compute-communicate phases: 

• Communicate: At the start of each iteration, first communicate any outside data 
values needed to update the data values at points owned by this processor. 

• Compute: Perform update of data values with each processor operating without 
need to further synchronize with other machines. 

This general structure is preserved even in many complex physical simulations with fixed 
albeit irregular decompositions. Dynamic decompositions introduce a further step where 
data values are migrated between processors to ensure load balance but this is usually still 
followed by similar communicate-compute phases. The communication phase naturally 
synchronizes the operation of the parallel processors and provides an efficient barrier 



point which naturally scales. The above discussion uses a terminology natural for 
distributed memory hardware or message passing programming models. With a shared 
memory model like OpenMP, communication would be implicit and the “communication 
phase” above would be implemented as a barrier synchronization. 
 
Performance Model 
We can use our current Poisson equation example to illustrate some simple techniques 
that allow estimates of the performance of many parallel programs. 

 
Figure 2: Parameters determining performance of loosely synchronous problems. 
 
As shown in Figure 4.5, we characterize the node of a parallel machine by a parameter 
tfloat, which is time taken for a single floating point operation. tfloat is of course not very 
well defined as depends on the effectiveness of cache, possible use of fused multiply-add 
and other issues. This implies that this measure will have some application dependence 
reflecting the goodness of the match of the problem to the node architecture. We let n be 
the grain size – the number of data points owned by a typical processor. Communication 
performance – whether through a shared or distributed memory architecture – can be 
parameterized as 

Time to communicate Ncomm words = tlatency + Ncomm tcomm          (2)   
This equation ignores issues like bus or switch contention but is a reasonable model in 
many cases. Latencies tlatency can be around 1 microsecond on high performance systems 
but is measured in milliseconds in a geographically distributed grid.  tcomm is time to 
communicate a single word and for large enough messages, the latency term can be 
ignored which we will do in the following.  
 
Parallel performance is dependent on load balancing and communication and both can be 
discussed but here we focus on communication with problem of figure 1 generalized to 
Nproc processors arranged in an √Nproc by √Nproc grid with a total of N mesh points and the 
grain size n = N/Nproc. Let T(Nproc)  be the execution time on Nproc processors and we find 
two contributions to this ignoring small load imbalances from edge processors. There is a 
calculation time expressed as n tcalc with tcalc = 4 tfloat as the time to execute the basic 
update equation (1). In addition the parallel program has communication overhead, which 
adds to T(Nproc) a term 4√n tcomm. Now we find the speed up formula: 
 

S(Nproc) =T(1)/ T(Nproc)=  Nproc / (1 + tcomm/(√n tfloat))  (3) 
 
 
We note that this analysis ignores the possibility available on some computers of 
overlapping communication and computation which is straightforwardly included. We 
can generalize the above formalism most conveniently using the notation that 

S(Nproc)  = ε Nproc  = Nproc /(1 + f ),  (4) 



which defines efficiency ε and overhead f. Note that we prefer to discuss overhead rather 
than speed-up or efficiency as one typically gets simpler models for f as the effects of 
parallelism are additive to f but for example occur in the denominator of equation (3) for 
speedup and efficiency. The communication part fcomm of the overhead f  is given by 
combining equations (3) and (4) as 

fcomm = tcomm/(√n tfloat)  (5) 
 
Note that in many instances, fcomm can be thought of as simply the ratio of parallel 
communication to parallel computation. This equation can be generalized to essentially 
all problems we will later term loosely synchronous. Then in each coupled communicate-
compute phases of such problems, one finds that the overhead takes the form: 
 

fcomm = constant . tcomm/(n1/d tfloat)  (6) 
 

Here d is an appropriate (complexity or information) dimension, which is equal to the 
geometric dimension for partial differential based equations or other geometrically local 
algorithms such as particle dynamics. A particularly important case in practice is the 3D 
value d=3 when n-1/d is just surface/volume in three dimensions. However equation (6) 
describes many non geometrically local problems with for example the value d=2 for the 
best decompositions for full matrix linear algebra and d=1 for long range interaction 
problems. The Fast Fourier Transform FFT finds n1/d in equation (6) replaced by ln(n) 
corresponding to d=∞. 
 
From equation (4), we find that S(Nproc) increases linearly with  Nproc  as long as Nproc is 
increased with fixed fcomm which implies fixed grain size n, while tcomm and tfloat are 
naturally fixed. This is scaled speedup where the problem size N = n Nproc also increases 
linearly with Nproc. The continuing success of parallel computing even on very large 
machines can be considered as a consequence of equations like (6) as the formula for 
fcomm only depends on local node parameters and not on the number of processors. Thus 
as we scale up the number of processors keeping the node hardware and application grain 
size n fixed, we will get scaling performance – speedup proportional to Nproc. Note this 
implies that total problem size increases proportional to Nproc – the defining characteristic 
of scaled speedup. 
 
Complex Applications are better for Parallelism 
The simple problem described above is perhaps the one where the parallel issues are most 
obvious; however it is not the one where good parallel performance is easiest to obtain as 
the small computational complexity of the update equation (1) makes the communication 
overhead relatively more important. There is a fortunate general rule that as one increases 
the complexity of a problem, the computation needed grows faster than the 
communication overhead and we will illustrate this below. Jacobi iteration does have 
perhaps the smallest communication for problems of this class. However it has one of 
largest ratios of communication to computation and correspondingly high parallel 
overhead. Note one sees the same effect on a hierarchical (cache) memory machine, 
where problems such as Jacobi Iteration for simple equations can perform poorly as the 
number of operations performed on each word fetched into cache is proportional to 



number of links per entity and this is small (four in the 2-D mesh considered above) for 
this problem class. 
 
As an illustration of the effect varying computational complexity,  we see in figure 3 how 
the above analysis is altered as one changes the update formula of equation (1). We can 
now systematically increase the size of the stencil parameterized by an integer l and find 
how fcomm changes. In the case where points are particles the value of l corresponds to the 
range of their mutual force and in the case of discretization of partial differential 
equations l measures the order of the approximation. 

 
Figure 3: Communication Structure as a function of stencil size. The figure shows 4 stencils with 

from left to right, range l = 1,1,2,3. 
We find that the communication overhead decreases systematically as shown in Figure 3 
as the range of the force increases. The general 2D result is: 

fcomm ∝ tcomm/(l √n tfloat) (7)  
This is valid for l which is large compared to 1 but smaller than the length scale 
corresponding to region stored in each processor. In the interesting limit of an infinite 
range ( l→∞) force, the analysis needs to be redone and one finds the result that is 
independent of the geometric dimension 

fcomm ∝ tcomm/(n tfloat)  (8) 
which is of the general form of equation (6) with complexity dimension d=1. This is the 
best-understood case where the geometric and complexity dimensions are different. The 
overhead formula of equation (8) corresponds to the computationally intense O(N2) 
algorithms for evolving N-body problems. The amount of computation is so large that the 
ratio of communication to computation is extremely small.  

 
Application Architectures 
 
The analysis above can be applied to many SPMD  problems and addresses the matching 
of “spatial” structure of applications and computers. This drives needed linkage of 
individual computers in a parallel system in terms of topology and performance of 
network. However this only works if we can match the temporal structure and this aspect 
is more qualitative and perhaps controversial. The simplest ideas here underlied the early 
SIMD (Single Instruction Multiple Data) machines that were popular some 20 years ago. 
These are suitable for problems where each point of the complex system evolves with the 
same rule (mapping into machine instruction) at each time. There are many such 
problems including for example the Laplace solver discussed above. However many 



related problems do not fit this structure – called synchronous in [1] – with the simplest 
reason being heterogeneity in system requiring different computational approaches at 
different points. A huge number of scientific problems fit a more general classification – 
loosely synchronous. Here we see SPMD applications which have the compute-
communication stages described above but now the compute phases are different on 
different processors. One uses load balancing methods to ensure that the computational 
work on each node is balanced but not on each machine instruction but rather in a coarse 
grain fashion at every iteration or time-step – whatever defines the temporal evolution of 
the complete system. Loosely synchronous problems fit naturally MIMD machines with 
the communication stages at macroscopic “time-steps” of the application. This 
communication ensures the overall correct synchronization of the parallel application. 
Thus overhead formulae like equations (5) and (6) describe both communication and 
synchronization overhead. As this overhead only depends on local parameters of the 
application, we understand why loosely synchronously can get good scalable 
performance on the largest supercomputers. Such applications need no expensive global 
synchronization steps. Essentially all linear algebra, particle dynamics and differential 
equation solvers fall in the loosely synchronous class. Note synchronous problems are 
still around but they are run on MIMD (Multiple Instruction Multiple Data) machines 
with the SPMD model.  

A third class of problems – termed asynchronous -- consists of asynchronously 
interacting objects and is often people’s view of a typical parallel problem. It probably 
does describe the concurrent threads in a modern operating system and some important 
applications such as event driven simulations and areas like search in computer games 
and graph algorithms. Shared memory is natural for asynchronous problems due to low 
latency often needed to perform dynamic synchronization. It wasn’t clear in the past but 
now it appears this category is not very common in large scale parallel problems of 
importance. The surprise of some at the practical success of parallel computing can 
perhaps be understood from people thinking about asynchronous problems whereas its 
loosely synchronous and pleasingly parallel problems that dominate. The latter class is 
the simplest algorithmically with disconnected parallel components. However the 
importance of this category has probably grown since the original 1988 analysis[2] when 
it was estimated as 20% of all parallel computing. Both Grids and clouds are very natural 
for this class which does not need high performance communication between different 
nodes. Parameter searches and many data analysis applications of independent 
observations fall into this class. 

From the start, we have seen a fifth class -- termed metaproblems – which refer to 
the coarse grain linkage of different “atomic” problems . Here synchronous, loosely 
synchronous, asynchronous and pleasingly parallel are the atomic classes. Metaproblems 
are very common and expected to grow in importance. One often uses a two level 
programming model in this case with the metaproblem  linkage specified by workflow 
and the component problems with traditional parallel languages and runtimes. Grids or 
Clouds are suitable for metaproblems as coarse grain decomposition does not usually 
require stringent performance 
 

These five categories are summarized in Table 1 which also introduces  a new 
category MapReduce++ which has recently grown in importance to described data 



analysis. Nearly all the early work on parallel computing focused on simulation as 
opposed to data analysis (or what some call data intensive applications). Data analysis 
has exploded in importance recently [3] correspondingly to growth in number of 
instruments, sensors and human (the web) sources of data. 

 
Table 1 Application classification 

# Class Description Machine 
Architecture 

1) Synchronous The problem class can be implemented with instruction level Lockstep Operation as 
in SIMD architectures SIMD 

2) 

Loosely 
Synchronous 
(or BSP Bulk 
Synchronous 
Processing) 

These problems exhibit iterative Compute-Communication stages with independent 
compute (map) operations for each CPU that are synchronized with a 
communication step. This problem class covers many successful MPI applications 
including partial differential equation solution and particle dynamics applications. 

MIMD on 
MPP (Massively 
Parallel 
Processor) 

3) Asynchronous 
Illustrated by Compute Chess and Integer Programming; Combinatorial Search 
often supported by dynamic threads. This is rarely important in scientific 
computing but at heart of operating systems and concurrency in consumer 
applications such as Microsoft Word. 

Shared Memory 

4) Pleasingly 
Parallel 

Each component is independent. In 1988, Fox estimated this at 20% of the total 
number of applications[2] but that percentage has grown with the use of Grids and 
data analysis applications including for example the Large Hadron Collider analysis 
for particle physics. 

Grids moving to 
Clouds 

5) Metaproblems 
These are coarse grain (asynchronous or dataflow) combinations of classes 1)-4) 
and 6). This area has also grown in importance and is well supported by Grids and 
described by workflow of Section 3.5. 

Grids of 
Clusters 

6) MapReduce++ 

It describes file(database) to file(database) operations which has three subcategories 
given below and in table 2. 
   6a) Pleasingly Parallel Map Only – similar to category 4 
   6b) Map followed by reductions 
   6c) Iterative “Map followed by reductions” – Extension of Current Technologies 
that supports much linear algebra and data mining 

Data-intensive 
Clouds  
a) Master-
Worker 
or Mapreduce 
b) MapReduce 
c) Twister 

 
The MapReduce++ category has three subdivisions a) “map only” applications similar to 
pleasingly parallel category; b) The classic MapReduce with file to file operations 
consisting of parallel maps followed by parallel reduce operations.; c) captures the 
extended MapReduce introduced in [4-10]. Note this category has the same complex 
system structure as loosely synchronous or pleasingly parallel problems but is 
distinguished by the reading and writing of data. This comparison is made clearer in 
Table 2. Note nearly all early work on parallel computing discussed computing with data 
on memory. MapReduce and languages like Sawzall [11] and Pig-Latin [12] emphasize 
the parallel processing of data on disks -- a field that until recently was only covered by 
database community. 

 
Table 2 Comparison of MapReduce++ subcategories and Loosely Synchronous category 

Map-only Classic MapReduce Iterative MapReduce Loosely Synchronous 



 
 

 
  

• Document 
conversion  
(e.g. PDF-
>HTML) 

• Brute force 
searches in 
cryptography 

• Parametric sweeps 
• Gene assembly 
• Much data 

analysis of 
independent 
samples 

• High Energy 
Physics (HEP) 
Histograms 

• Distributed 
search 

• Distributed sort 
• Information 

retrieval 
• Calculation of 

Pairwise 
Distances for 
sequences 
(BLAST) 

• Expectation 
maximization 
algorithms 

• Linear Algebra 
• Datamining including 
• Clustering 
• K-means 
• Multidimensional 

Scaling (MDS) 
 

• Many MPI 
scientific 
applications 
utilizing wide 
variety of 
communication 
constructs including 
local interactions 

• Solving differential 
equations and  

• Particle dynamics 
with short range 
forces 

Domain of MapReduce and Iterative Extensions MPI 
 
Summary 
Problems are set up as computational or numerical systems and these can be considered 
as a “space” of linked entities evolving in time. We have discussed the spatial structure 
(which is critical for performance) and the temporal structure which is critical to 
understand the class of software and computer needed. These we termed "basic complex 
systems" and characterized them by their possibly dynamic spatial (geometric) and 
temporal structure. We have noted the difference between the structure of the original 
problem and that of computational system derived from it. We can summarize much of 
the past experience in parallelizing applications by the conclusion: 
 
Synchronous and Loosely Synchronous problems perform well on large parallel 
machines as long as the problem is large enough. For a given machine, there is a typical 
sub-domain size (i.e. the grain size or size of that part of the problem stored on each 
node) above which one can expect to get good performance. There will be a roughly 
constant ratio of parallel speedup to Nproc if one scales the problem with fixed sub-domain 
size and total size proportional to Nproc. This conclusion has been enriched by study of 
grids and clouds with an emphasize on pleasingly parallel and MapReduce++ style 
problems often with a data intensive focus. These also parallelize well. 
  
 
 
BIBLIOGRAPHIC NOTES AND FURTHER READING 
The approach followed here was developed in [1, 13] with further details in [2, 14]. The 
extension to include data intensive applications was given in [8, 15]. There are many 
good discussions of speedup including Gustafson’s seminal work[16] and the lack of it – 



Amdahl’s law[17]. The recent spate of papers on MapReduce [4, 7] and its applications 
and extensions[4-12, 15] allow one to extend the discussion of parallelism from 
simulation (which implicitly dominated the early work) to data analysis[3]. 
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