
A Scalable Framework for the Collaborative Analysis of Scientific Data

Jaliya Ekanayake, Shrideep Pallickara and Geoffrey Fox

Department of Computer Science

Indiana University, Bloomington, IN 47404, USA

{jekanaya,spallick,gcf}@indiana.edu

Abstract

 Data analysis involving the processing of large

amounts of distributed data is becoming increasingly

common. This is especially true in the scientific

community where voluminous data is routinely

produced and consumed by instruments, experiments,

models and simulations. Despite the ever increasing

compute capabilities of modern processors, the

distributed nature and the sheer volume of the data

that needs to be processed presents unique challenges

that need to be addressed in a distributed fashion. The

composition property is a feature often found in many

such data analysis; here, the analysis can be divided

into multiple subtasks, which are performed in parallel

and the results produced therein are then merged to

form the final result. Scientists often work as teams and

typically collaborate over the analysis of data. In this

proposal we present a scalable, collaborative data

analysis framework for analysis tasks that have the

composition property.

1. Introduction

 In recent years there has been an exponential growth

in the amount of data that needs to be processed by

scientific applications. The producers, consumers and

the processors of this data are all distributed. Scientists

cite two core requirements for data analysis

frameworks: scale and collaboration. Scale

corresponds to the ability to deal with increases not

only in data volumes but also in the number of

distributed components. Collaboration corresponds to

the ability to perform this data analysis collaboratively

in groups with fluid memberships while at the same

time retaining control of authorizations to be part of a

collaborative session. Two other requirements of this

framework are security and fault-tolerance. Security

corresponds to the ability to have confidential and

authorized interactions with entities, while at the same

time dealing with issues related to tampering and

denial of service attacks. The fault tolerance aspect

corresponds to the ability to sustain failures that take

place within the system. This thesis focuses on the

design of a scalable framework for the secure, fault

tolerant collaborative analysis of scientific data.

 In this thesis we focus on two domains viz. Particle

Physics and Information Retrieval. Data processing in

these domains often follow the composition property,

wherein a task can be split into smaller sub-tasks, and

the results from these sub-tasks composed to constitute

the final result.

 To delve a little deeper into the composition

property, consider a common practice in many particle

physics data analysis where the aim is to identify

particular type of events within a collection of millions

of events. The result of such analysis would be a

histogram of possible events. The analysis task is to go

through all the events available and identify a

particular set of events. We can easily break the initial

set of events into smaller subsets and run the same

analysis software on these subsets concurrently. The

resulting histograms can then be combined to produce

the final result. This approach is much more scalable

than running the entire analysis as a single task, which

would preclude the possibility of concurrent analysis.

 Information retrieval is another example where we

can apply the composition property to accrue

performance gains. A typical information retrieval

system comprises information collection, indexing and

query processing subcomponents which normally

operate on a single collection of documents. The

documents can be simple textual data, multimedia

documents or documents with linked structures such as

web pages. Querying the same document collection

with multiple queries or querying different document

collections with same query are two scenarios where

we can apply the composition property to gain

scalability. In a typical information retrieval scenario,

merging the results may involve computing new

relevance ranking values for the information retrieved

from either multiple sources or using multiple similar

queries.

 Apart from these examples, there are other data

analysis tasks that have the composition property.

Image analysis tasks in astronomy and the genome

sequence analysis in biology are data analysis tasks

which have the composition property. However, there

are other analysis tasks that do not have this

composition property. Distributed simulations, for

example, would typically not be composable in this

fashion.

 A data analysis task that has the composition

property has two distinct phases.

1. Analysis of the data subsets.

2. Merging results obtained from subset

processing and applying various models.

 These two phases fit very well the compute

capabilities available within computational grids. The

data analysis phase can be best handled by using

multiple machines or clusters or grid computers while

the less computationally intensive task of merging

results and fitting deferent models can be handled at

the user machines as depicted in Figure 1. In addition,

the results produced by these data analyses may not

only be of interest to the scientist who originally ran

the analysis, but also to many other researchers in

disparate geographical locations who are doing similar

research may want to see these results. An

infrastructure capable of handling both the analysis

aspects and also the collaborative aspects of the

analysis would benefit the scientists involved in similar

scientific experiments.

Figure 1. Composition property in data
analysis.

 In this thesis we will focus on providing a

framework for scalable, collaborative analysis of

datasets within the Particle Physics domains. We will

also investigate the applicability of our approach to

data analysis tasks in other fields such as information

retrieval and astronomical image processing.

 The rest of the paper is organized as follows. In

section 2 we describe the problem of data analysis in

Particle Physics. Section three describes the three main

software subsystems that we intend to use in our

design. Section four explains the proposed solution

elaborating on the key design goals and the section five

describes the work done so far in this regard. Related

work is the section six and in section seven we give

our conclusions.

2. High Energy Physics Data Analysis

 Particle accelerators and colliders play a major part

in most of the High Energy Physics(HEP) experiments

and analyzing the large amount of data produced by

these instruments is a significant challenge. The Large

Hadron Collider (LHC) [1], a particle accelerator and

collider, currently under construction will produce an

enormous amount of data once it is in operation. It is

expected to produce tens of Petabytes (PB) of data per

year even after multiple layers of filtration. Processing

these large sets of data is one of the many challenges

faced by particle physicists. For example, the estimated

processing power required for reconstruction,

simulation and analysis of the data produces by the

Compact Muon Solenoid (CMS) [2] in LHC is

2^7SPECint2000 or equivalent of ~15000 of today’s

processors. In addition, the CMS has been built as a

collaboration involving several countries and

collaborative data analysis is a requirement.

 Data analysis in HEP experiments usually requires

processing of all the reconstructed events (even after

multiple layers of online filtrations) produced during

an experiment to identify events with some topology of

interest. The de facto standard analysis tool used today

in HEP is the ROOT framework [3]. According to

Holtman[4] a typical data analysis that a physicist wants

to do, would be:

 “run this next version of the system I am developing to

locate the Higgs events, and create a plot of these

parameters that I will use to determine the properties

of this version.”

 Another possible task would be to perform a similar

analysis not by a single physicist but by an operator on

behalf of a group of collaborative physicists. The

physicist needs to perform two main tasks:

1. Develop an analysis function to identify

features in experimental data and test it using

sample data.

2. Locate a relevant data set and run the analysis

function on each data file of this data set.

 Although these two steps simply explain the analysis

task at hand, it hides one critical requirement that is the

movement of data from its original location to the

physicist’s desktop computer or the cluster. It would be

ideal if the data and the computing power are located at

the same place. However, in most situations this data

movement is inevitable and the accessibility of

processing power and the necessary software are key

factors in deciding where to move the data. The

movement of data can be minimized if the analysis can

be performed at a close (network) proximity to the

data. This requires a mechanism for physicists to

Compute

Cloud

Distributed

Data

Data Analysis is

performed as a

collection of sub

analysis tasks

Aggregate

Results at the

Clients
Client 1
 Client n

access the computing power available in those

locations and run their analysis on those computers.

 The Clarens [5] Grid-Enabled Web Services

Framework is a "portal" for ubiquitous access to data

and computational resources provided by

computational grids. Clarens provides libraries to

utilize ROOT functionalities at both the server and the

client. Typical steps that a physicist should execute to

analyze data using Clarens are as follows.

 Physicist writes and tests the data analysis

function on sample data which normally

involves functions written using ROOT.

 Physicist then uses Clarens’ client libraries to

upload the analysis function to the Clarens

server and execute it over the available data

files using web service interfaces.

 After the analysis, the client library can be

used to retrieve the resulting histograms of the

analysis tasks and merge them to produce the

final result.

 Although Clarens provides a solution to accessing

computing resources and the movement of data, it does

not provide a solution for analyzing data from multiple

geographic locations or the collaborative analysis of

data.

 As mentioned in the introduction section, the main

goal of this research is to investigate data analysis tasks

that can be found in various scientific domains have

the composition property, and to design a software

system and the necessary algorithms capable of

analyzing such data in secure, fault-tolerant and

collaborative fashion. To achieve this we incorporate

the following widely known software subsystems:

Clarens, NaradaBrokering [6] and the ROOT Analysis

Framework. We would also provide a detailed analysis

on the applicability of the designed system in similar

data analysis.

3. Software Sub Systems

3.1. ROOT Analysis Framework

 ROOT is an object oriented data analysis framework

capable of analyzing large amounts of data in a very

efficient manner. The ROOT framework includes

support for one, two and three dimensional histograms

and also various curve fitting, function evaluation,

minimization, graphics and visualization techniques in

its class libraries. C++ is the programming language

for ROOT and it also comes with a built-in C++

interpreter named CINT [7] which makes prototyping

very easy by providing C++ based scripting language.

Capabilities of the ROOT framework can easily be

extended by linking external libraries, a feature we will

use in our design as well, making it the most popular

data acquisition, analysis and simulation framework for

scientific data.

2.2. Clarens Server

Clarens is a grid enabled web service framework

that supports most common web service protocol

stacks comprising HTTP, SOAP/XML-RPC and

SSL/TLS encryption and X.509 certificate-based

authentication implemented in Python. Although the

server implementation of Clarens is completely Python

based, it provides client libraries for other languages

such as Python, Iguana, JavaScript, and most

importantly the C++ based interpreted language

supported by the ROOT Analysis framework. Support

for all the above features as well as the integrated

support for ROOT makes Clarens a key framework for

particle physics data analysis.

2.3. Naradabrokering

 A content distribution infrastructure based on the

publish/subscribe paradigm. The NaradaBrokering

substrate itself comprises a distributed network of

cooperating broker nodes. It can be used as a message

oriented middleware or as a notification framework.

Communication within NaradaBrokering is

asynchronous and the substrate places no constraints

either on the size, rate or scope of the interactions

encapsulated within events or the number of entities

present in the system. Also, it provides support for

wide verity of transport protocols making it an ideal

messaging infrastructure for heterogeneous distributed

systems.

4. Proposed Solution

 Before proceeding to a solution, we would like to

present a set of features that the system should provide

to support the above data analysis task as follows:

1. Functionality to create an experiment workspace

to keep track of relevant content such as

analysis scripts, configuration and, if required,

resulting data files.

2. Upload analysis scripts into the experiment’s

workspace.

3. Execute the analysis in multiple geographic

locations where the data is available.

4. Combine the resulting histograms from the data

analysis subtasks.

5. Apply different models on the results to see how

they fit into the results.

6. Perform the above scenarios in a secure and

fault tolerant manner.

4.1. Distributed Analysis

 A system capable of supporting the above

requirements can be architected by incorporating a

messaging substrate with the Clarens Server and a set

of agents which keep track of the available Clarens

Servers and the list of ongoing experiments. Figure 2

shows a high level architecture diagram of the system.

Figure2. Architecture of the proposed data
analysis framework.

 At startup, each Clarens server notifies its

availability to the agents using a messaging

infrastructure, and the agents start keeping track of the

available servers thereafter. We have given complete

details of a scalable approach to tracking entities in a

distributed system in a secure and authorized manner

in Ref [8]. The physicist that initiates the analysis uses

his/her client-software (simply client hereafter) to

locate the available servers and browse to see the data

available for the analysis. In order to discover

available Clarens servers the client first has to discover

an agent and query it to get a list of available servers.

After the discovery phase, the physicist can proceed to

create an experiment space to upload the analysis

scripts and start invoking them against the selected

data. During the creation of the experiment space, the

client application notifies the agent about the

experiment details such as, the data files, the analysis

files and other settings such as communication topics.

During these steps the publish/subscribe infrastructure

is used for communications between the client and

agents and also to receive notifications from Clarens

servers (shown in thick arrows in Figure 2). The client

uses SOAP/XML-RPC communication to invoke web

services in the Clarens server.

4.2. Collaboration

 Once an experiment is set up by a physicist, other

participants can join the experiment using the same

client software. In this scenario, they will simply

discover experiments and subscribe to receive

notifications from the ongoing experiments or simply

retrieve results from completed experiments. The client

software can be configured to merge and apply a “fit”

function for the received events. The client software

can download these functions from the experiment

space or can be configured to use a different one. The

shared event based collaboration allows all the

participants to receive the results of the individual

analysis tasks in real time.

4.3. Security

 Security is another area of research within this

framework. The Clarens Server provides authentication

[9] via the Public Key Infrastructure, which is based on

the X509 certificates issued by a trusted Certificate

Authority, and authorization via a gridmap file similar

to other grid frameworks such as the GlobusToolkit

[10]. Communication between the clients and different

Clarens Servers uses transport layer security using

SSL. In a companion paper S. Pallickara et al. [11]

have given a detailed description of NaradaBrokering’s

secure and authorized end-to-end delivery capability of

streams. Integrating these software systems so that the

security infrastructure of the framework is transparent

to the user is an important design aspect. We will be

designing the necessary components to integrate these

two security schemes so that the overall system is

compliant with grid security standards such as Grid

Security Infrastructure [12].

4.4. Fault Tolerance

 The proposed architecture does not have any central

control point such as a “portal” and hence poses no

threat of a single-point-of-failure. The messaging

infrastructure can be configured as a set of broker

network which supports fault tolerance [13]. Agents

keep track of the ongoing experiments and other

bookkeeping information relevant to the experiments.

We incorporate a discovery mechanism for agents

wherein the client is allowed to discover an available

agent based on certain criteria such as response time.

Once such an agent is discovered, the client uses that

agent to run the experiments. Agents also use a gossip

protocol to synchronize the experiment’s metadata

between them: this allows the system to tolerate

individual agent failures. Clarens server failures

Clarens
Server 1

Agent 1 Client 1

Client n

Clarens
Server m

Publish/subscribe
Messaging

SOAP/XML-RPC
Communication

Agent p

Publish /Subscribe
Messaging Infrastructure

during the execution of a data analysis task can cause

an incomplete result set. However, the composition

nature of the data analysis task makes it easy to restart

the analysis in a different Clarens server for the data

files that have not been analyzed and combine the

results from that point on. User intervention is required

in selecting a new Clarens server and also for restarting

the analysis.

5. Work So far

 NaradaBrokering is a messaging substrate developed

entirely using Java and we plan to use it as the

messaging infrastructure for the above architecture.

However, integrating Naradabrokering written in Java

with ROOT written in C++ and Clarens written in

Python is one of the major challenges we had to face.

The solution to the above required:

1. Providing a C++ client library for

Naradabrokering so that other C++ programs

can utilize publish/subscribe capabilities of

NaradaBrokering.

2. Provide a ROOT compatible version of the

same so that the interpreted code (interpreted

by CINT) can publish messages to and receive

subscription messages from the Clarens

servers.

 We developed the C++ Client for Naradabrokering

in a generic form so that other programs can also use it

to utilize NaradaBrokering. The Application

Programming Interface (API) was kept very simple so

that a user can publish a message containing a set of

bytes to a topic and subscribe to receive messages from

any topic. To use this library with ROOT requires

writing the necessary wrapper classes so that the

ROOT interpreter can link to the C++ library.

Figure3. Proof of concept implementation.

 With the above implementation we were able to

develop a proof of concept client written in the CINT

interpreted language. The client (if used for submitting

analysis jobs) first connects to the available Clarens

servers and submits jobs for analyzing data available

on those servers. Then it waits on a subscription over a

given topic and retrieves partial results, merges with

previously received histograms and visualizes the

result. Other collaborative clients can use the same

software to retrieve, merge and visualize histograms as

and when they are available by subscribing to the same

topic. This program utilizes Clarens, ROOT and the

C++ Client library for Naradabrokering to provide the

desired capabilities. Figure 3 shows a user interface of

the client application when an analysis is in progress.

6. Related work

 Grid-enabled portals [14] have been proven to be an

effective mechanism for exposing computing resources

and distributed systems to various scientific

communities. It is possible to develop a portal based

solution for a data analysis task that is similar to HEP

data analysis. The architecture, that we propose utilizes

the computing power available at the user machines for

merging the results of data analysis sub tasks. In a

portal based system this would be handled by the

portal itself. Portal based approach does not require

additional software to be installed at the user machines.

However, in our design the shared event based

communication between the processing entities and the

collaborative clients allows different models to be fit to

the results available at the client side. The physicist

may be experimenting with his code that fits a model

to the results, and he can simply debug it by running it

at the client side, without needing to upload it to the

server. Our approach will be able to provide a better

fault tolerance over the portal based approach since it

does not have a single point of failure.

 PROOF [15, 16] provides a cluster based scalable

solution for analyzing large amount of particle physics

data files in parallel. PROOFs analysis is controlled by

a master node and it also supports multi-tier masters.

The tree structured master-participant connections may

cause a single point of failure where as in the proposed

architecture we do not impose any such single point of

control over the data analysis. Also the metadata

regarding the analysis jobs are maintained by multiple

agents. Client can always connect to a different agent if

the one that it was connected to fails. Also, PROOF

does not support collaborative data analysis.

 GRID IR [17, 18] describes a proposed architecture

for building an information retrieval system based on

grid technology where Matthew at el. explain how the

subtask processing can be exploited using grid

technology. However, the document does not explain a

possible method to combine the retrieved results by

Connected Clarens
Servers

Result is received
and merged

Result is not yet
received

Result is received
not yet merged

Histogram for each
data file is merged with
the rest

multiple searches. Yangwoo Kim in his memo [19]

describes a possible architecture for grid information

retrieval based on the concept of virtual organizations.

Here the focus is more on allocating the computation

resource for three main tasks, information collection,

indexing/search and query processing. J. Callan [20]

discusses the advantages of using multiple databases to

retrieve information with a detailed discussion on

merging document rankings from multiple results sets

from different databases.

 N. Yamamoto et al. [21] discuss worldwide parallel

and distributed data analysis in the observational

astronomical field based on a network shared file

system Gfarm. Here the main focus is to allow multiple

processors to access data files and their replicas in an

efficient manner. Their work does not support

collaborative analysis.

8. Conclusion

In this proposal we have presented how data analysis

tasks that have the composition property can benefit

from using our approach. Many analysis takes can be

broken down into multiple subtasks, which are then

executed in parallel. The results from these analysis

subtasks can then be combined to produce the final

result. We have elaborated on a possible solution for

large-scale data analysis tasks that are common in

many particle physics experiments. We have also

discussed the possibility of extending the approach to

other similar tasks such as information retrieval.

9. Advisor’s Note

 Work on this started eight months ago and exploited

the work done four months prior to that. The research

will be completed in next twelve months or

thereabouts.

10. References

[1] The Large Hadron Collider, http://lhc.web.cern.ch/lhc/

[2] Compact Muon Solenoid, http://cms.cern.ch/

[3] ROOT - An Object Oriented Data Analysis Framework,

http://root.cern.ch/

[4] K. Holtman, CMS Data Grid System Overview and

Requirements, The Compact Muon Solenoid (CMS)

Experiment Note 2001/037, CERN, Switzerland, 2001.

[5] The Clarens Grid-Enabled Web Services Framework,

http://clarens.sourceforge.net/

[6] The NaradaBrokering Project @ Indiana University,

http://www.naradabrokering.org/

[7] CINT – The CINT C/C++ Interpreter,

http://root.cern.ch/twiki/bin/view/ROOT/CINT

[8] S Pallickara, J Ekanayake, G Fox: A Scalable Approach

for the Secure and Authorized Tracking of the Availability of

Entities in Distributed Systems, IPDPS 2007: 1-10.

[9] Steenberg et al .The Clarens Web Services Architecture.,

Proceedings of CHEP2003, La Jolla, Paper MONT008, 2003.

[10] The Globus Toolkit, http://www.globus.org/toolkit/

[11] S Pallickara et al: A Framework for Secure End-to-End

Delivery of Messages in publish/Subscribe Systems, GRID

2006: 215-222.

[12] Overview of the Grid Security Infrastructure,
http://www.globus.org/security/overview.html

[13] S Pallickara, H Bulut, G Fox. Fault-Tolerant Reliable

Delivery of Messages in Distributed Publish/Subscribe

Systems, Fourth International Conference on Autonomic

Computing. 2007 Page(s):19 – 19.

[14] G. Fox, D. Gannon, and M. Thomas, “Editorial: A

Summary of Grid Computing Environments.” Concurrency

and Computation: Practice and Experience, Vol. 14, No. 13-

15, pp. 1035-1044 (2002).

[15] PROOF – The Parallel ROOT

Facilityhttp://root.cern.ch/twiki/bin/view/ROOT/PROOF

[16] Fons Rademakers, PROOF will analyse LHC data,

CERN NEWSLETTER, Feb 9, 2006.

[17] GRID IR - GRID Information Retrieval,

http://www.w3c.rl.ac.uk/Euroweb/poster/112/gridir.html

[18] Dovey, M. J. (2002). Music GRID: A Collaborative

Virtual Organization for Music Information Retrieval

Collaboration and Evaluation. In the MIR/MDL Evaluation

Project White Paper Collection (2nd ed., pp. 50--52),

Champaign, IL: GSLIS.

[19] Yangwoo Kim, Grid Information Retrieval System for

Dynamically Reconfigurable Virtual Organization, Memo for

Grid Information Retrieval Working Group (GIR-WG).

[20] J. Callan, Distributed information retrieval, In W.B.

Croft, editor, Advances in information retrieval, chapter 5,

pages 127-150, Kluwer Academic Publishers, 2000.

[21] Naotaka Yamamoto, Osamu Tatebe, Satoshi Sekiguchi,

Parallel and Distributed Astronomical Data Analysis on Grid

Datafarm, Proceedings of 5th IEEE/ACM International

Workshop on Grid Computing,2004, pp.461-466, 2004.

