
TERAGRID 2007 CONFERENCE, MADISON, WI 1

Building a Grid Portal for Teragrid’s Big Red
Mehmet A. Nacar, Jong Y. Choi, Marlon E. Pierce, and Geoffrey C. Fox

Abstract— We describe the Big Red Portal, which builds on the Open Grid Computing Environment (OGCE) portal software. In

addition to standard OGCE capabilities, this portal includes MEME job submission and job dashboard portlets that are built using

OGCE and related portlet libraries. To simplify the development of such portlets in the future, we introduce an XML tag library

approach that encapsulates common Grid operations for rapid development

—————————— � ——————————

1 INTRODUCTION

TeraGrid Science Gateways are science portals that are
designed to provide high level, user-centric services and
interfaces to the National Science Foundation’s TeraGrid.
Several of these efforts are described in an upcoming spe-
cial issue of Concurrency and Computation [1]. Although not
strictly speaking a “science gateway”, the TeraGrid User
Portal is a related and similarly architected portal system
[2] that shares many common features with the gateway
project. TeraGrid gateway development tends to be a heroic
effort, requiring full time developers. However, it is possi-
ble to start from a base of reusable software that encapsu-
lates basic gateway operations, such as accessing Grid re-
sources. The Open Grid Computing Environments (OGCE)
project [3] provides one such toolkit for gateway building:
several JSR 168 compliant Grid portlets and gateway ser-
vices are deployed into the GridSphere portlet container
[4]. OGCE Grid portlets are built on top of Java CoG Grid
programming abstractions [5].
This paper describes our efforts using the OGCE portal
software to build a portal that combines characteristics of a
“system” portal (incorporating some TeraGrid User Portal
features such as GPIR resource browsing) and a science
gateway for bioinformatics applications. Our primary
backend resource is Indiana University’s Big Red super-
computer (part of TeraGrid), but our portlets have been
tested across other TeraGrid resources. The second half of
the paper reviews our work to simplify the development of
these portlets by using Grid tag libraries, which encapsu-
late common Grid tasks.

2 EXTENDING OGCE TO SUPPORT BIG RED

PORTAL

Big Red is a major new TeraGrid resource and one of the
most powerful computers in the world. As with all TeraGr-
id resources, it runs the Coordinated TeraGrid Software
and Services, which includes Globus services. One of Big
Red’s initial applications is Mutiple EM for Motif Elicitation
(MEME) [6]. MEME is used to discover common motifs in
groups of DNA or protein sequences. Due to its computa-

tional complexity, MEME should be executed in a rich re-
source environment such as Big Red. However, to execute
MEME on Big Red, a user must not only be familiar with
the application itself: he or she must also understand vari-
ous network tools such as FTP for uploading and down-
loading input and output files, and he or she must under-
stand Big Red’s LoadLeveler and MOAB-based scheduling
and queuing system in order to submit, monitor and con-
trol jobs. This kind of inconvenience can be easily overcome
by making a specific portlet that allows a user to execute
the MEME application by using a science portal based on
the OGCE [3]. In addition to MEME execution, we can add
file management and job control functionality into the port-
let by using Java Commodity Grid (CoG) toolkit [5] to util-
ize Big Red’s Grid infrastructure.

2.1 Making MEME Portlet Out of GRAM and GridFTP
Libraries

The main function of the MEME portlet (Figure 1) is to
submit a MEME job to a remote TeraGrid resource such as
Big Red. This can be done either interactively (for very
small jobs) or through Big Red’s queuing system. To pro-
vide a more convenient and user-friendly interface, our
MEME portlet also enables a user to transfer input and
output files to/from the remote server and track the status
of a submitted job. For example, a user can upload a gene
sequence file to a remote server and submit a job to execute
MEME application with the file as an input. After submis-
sion, a user can check whether the job is completed or not.
Once the job is completed, a user can download output files
from the server to his local machine. From the user’s pers-
pective, such operations can be done by simply clicking a
few buttons. Under the user interface, the main Grid tasks
that the MEME portlet performs are submitting the job,
running the GridFTP client, and checking the submitted
job’s status.
We will explain how MEME portlet execute these Grid
tasks with a typical use case. First, the user needs to trans-
fer a gene sequence file from his or her desktop machine to
the desired resource (i.e., Big Red). Since a web portal ser-
vice (i.e., OGCE) is running between a user and a remote
server, MEME portlet should transfer the file from the us-
er’s local system to the remote server, where MEME appli-
cation will be executed, via the server where a web portal
service is in operation. For this end, the MEME portlet ex-
ecutes two consecutive file transfers by using two different
classes: PortletFileUpload class, a library from Apache

————————————————

• Mehmet A. Nacar, Department of Computer Science, Indiana University
• Jong Y. Choil, Department of Computer Science, Indiana University
• Marlon E. Pierce, Community Grids Lab, Indiana University
• Geoffrey C. Fox, Department of Computer Science, Indiana University
• Author emails respectively: {mnacar, jychoi, marpierc, gcf}@indiana.edu

2

Commons, for form-based file upload and
GridFTPClient class. While the PortletFileUpload class
enables the upload of a file from the user space to the server
where web portal service is in operation, the GridFTPClient
class can send a file from this server to the remote gateway
where MEME will be executed.

Secondly, the user will fire a job submission by clicking a
button. Receiving this event, the portlet will submit a job to
the remote server’s job scheduler, which will pick
MEME application to run. To submit a job, we use two
Java CoG classes: GramJob for managing job submission
and GassServer for receiving outputs from the remote ser
er. More specifically, before submission of
command, a Resource Specification Language (RSL)
string is created as an input of GramJob class to define a
MEME job with its working directory, location of input file,
and location of outputs from stdout/stderr. If a user
to see outputs on a screen instead of saving as a file,
MEME portlet will run a GASS server, which is
receive outputs from a remote server in an on-
and include the GASS server information in the RSL string
so that the user can see outputs directly through
Regarding the submit options, a user can choose to submit
a job in two modes: interactive mode and batch mode.
While the user should wait to receive results in i
mode, in batch mode a user can check the result later i
stead of waiting for immediate output. To enable a user to
access the result later in batch job submission, the portlet
saves a job handle string returned by getIDA
GramJob after job submission into a persistent storage. In
the MEME portlet, job handles are saved by u
Preferences’s save() function so that a user can retrieve an
time even after logging out.
Thirdly, after submitting a job in a batch mode, the user
can check from the MEME portlet whether the job is f
nished or not. By retrieving the job handles saved in the
previous step, the portlet will check the status of the job by
calling jobStatus() function of Gram class with a job handle

Figure 1 The MEME portlet uses OGCE portal l
ries to upload and download files, submit jobs, and
monitor their progress.

TERAGRID 2007 CONFER

based file upload and the CoG’s
GridFTPClient class. While the PortletFileUpload class

a file from the user space to the server
GridFTPClient

class can send a file from this server to the remote gateway

Secondly, the user will fire a job submission by clicking a
button. Receiving this event, the portlet will submit a job to

server’s job scheduler, which will pick the
To submit a job, we use two

Java CoG classes: GramJob for managing job submission
and GassServer for receiving outputs from the remote serv-
er. More specifically, before submission of the MEME
command, a Resource Specification Language (RSL) [7]
string is created as an input of GramJob class to define a
MEME job with its working directory, location of input file,
and location of outputs from stdout/stderr. If a user wants

a screen instead of saving as a file, the
MEME portlet will run a GASS server, which is designed to

-line manner,
and include the GASS server information in the RSL string

ly through the portlet.
Regarding the submit options, a user can choose to submit

batch mode.
should wait to receive results in interactive

mode, in batch mode a user can check the result later in-
stead of waiting for immediate output. To enable a user to
access the result later in batch job submission, the portlet
saves a job handle string returned by getIDAsString() of
GramJob after job submission into a persistent storage. In

b handles are saved by using Portlet-
Preferences’s save() function so that a user can retrieve any-

Thirdly, after submitting a job in a batch mode, the user
can check from the MEME portlet whether the job is fi-

retrieving the job handles saved in the
previous step, the portlet will check the status of the job by
calling jobStatus() function of Gram class with a job handle

as an input.
Finally, when the batch job is completed, the user can
download outputs from MEME. If the output is saved as a
file in remote server’s file system, we download the file by
the GridFTP protocol, using the GridFTPClient class. Ot
erwise, we execute a remote command to r
put by using the job handle. For this end, our MEME por
let will submit an interactive GRAM job to query output by
giving the job handle as an input.

2.2 Job Tracking with a Dashboard

The Dashboard portlet (Figure 2) is designed to
information about job status by using Big Red’s job mana
er. As a default job manager, Big Red is using
job scheduler. Thus, a submitted job to
nitored by querying MOAB’s job queue status
be done by using a command line tool, called
vided by MOAB. By executing the showq
behalf of a user in Big Red, our dashboard portlet can di
play job queues and status so that a user can easily access
the information about the submitted job.
this simple approach to work on other TeraGrid resources
as well.

In many cases, it is desirable to only show
her specific jobs. This can be done by r
showq with the proper arguments such as
ID. However, TeraGrid does not provide a glo
user ID system, so a user can have diffe
different machines, even though the user’s Grid credential
provides single sign on. One simple sol
problem is to execute the whoami com
correct user ID in a gateway before e
mand. This can be made into a one-time
user ID as a portlet’s preference value, instead of executing
every time before showq execution.
To execute the remote showq command, our Dashboard
portlet follows a three step procedure
execution, showq execution, and finally
ecuting whoami and showq command can be done
way that we execute MEME command
and GassServer Java CoG classes. Since we need

uses OGCE portal libra-
ries to upload and download files, submit jobs, and

Figure 2. The dashboard portlet allows users to
track jobs on the selected resource. The user can
view either his own set of jobs or get information
all submitted jobs.

TERAGRID 2007 CONFERENCE, MADISON, WI

the batch job is completed, the user can
download outputs from MEME. If the output is saved as a
file in remote server’s file system, we download the file by

GridFTPClient class. Oth-
erwise, we execute a remote command to retrieve the out-
put by using the job handle. For this end, our MEME port-
let will submit an interactive GRAM job to query output by

Dashboard Portlet
is designed to provide

information about job status by using Big Red’s job manag-
As a default job manager, Big Red is using the MOAB

job scheduler. Thus, a submitted job to Big Red can be mo-
job queue status, and this can

a command line tool, called showq, pro-
showq command on the

behalf of a user in Big Red, our dashboard portlet can dis-
play job queues and status so that a user can easily access
the information about the submitted job. We have adopted
this simple approach to work on other TeraGrid resources

In many cases, it is desirable to only show a user his or
This can be done by remotely executing

with the proper arguments such as the user
TeraGrid does not provide a global UNIX

different user IDs on
different machines, even though the user’s Grid credential

olution to evade this
mmand to obtain the

in a gateway before executing showq com-
time task by saving the

as a portlet’s preference value, instead of executing

command, our Dashboard
three step procedure: whoami command

finally output parsing. Ex-
command can be done the same
E commands, using GramJob

and GassServer Java CoG classes. Since we need immediate

allows users to
track jobs on the selected resource. The user can
view either his own set of jobs or get information on

NACAR ET AL.: BUILDING A GRID PORTAL FOR TERAGRID’S BIG RED 3

results, each execution is performed in interactive mode.
Once obtained from whoami, the right user ID will be given
as an input to the showq execution. After executing showq
command, the output is parsed in order to be displayed
inside portlet as an HTML document. Since the showq
command on Big Red has an option to output in XML for-
mat, we use a XML parser, known as XML Pull Parser
(XPP) [8], to convert output into a proper HTML object.

2.3 Other Portlets
The OGCE release comes with several other portlets
(GridFTP, WS-GRAM, Pre-WS GRAM, MyProxy credential
management) that we have adopted as-is. We have also
configured the OGCE GPIR portlet to point to the TeraGr-
id’s GPIR Web Service [9], thus providing a global view of
resource load and related information (see [2] for more in-
formation). In addition to these Grid-centric portlets, the
OGCE IFrame portlet provides a simple mechanism for
integrating non-portlet Web pages. We used this in the Big
Red portal to provide an interface to Indiana University’s
Knowledge Base website [10].

2.4 Integration with Other TeraGrid Resources
Although designed to work with Big Red, our portlets

can be used with any other gateway in TeraGrid. To pro-
vide the same functions transparently, our portlets provide
a few methods to allow a user to customize environmental
settings such as execution path and working directory.
Such values can be redefined by changing portlet.xml file
(which must be done by the portal administrator) or by
using the portlet’s EDIT function, a standard interface to
change user’s preferences. In the case of the Dashboard
portlet, discordance of user ID between a user certificate
and a remote system can be a problem. To avoid this prob-
lem, we can submit a Gram job to execute whoami command
to find a correct user ID.

3 INTEGRATING GTLAB WITH BIG RED PORTLETS

Portlets provide a common component for building por-
tals out of reusable parts. For example, as mentioned pre-
viously, the OGCE portal has portlets for job submission,
credential management, and file management that can be
plugged into any standard compliant container. Often,
however, as in the case of the MEME portlet described
above, portlets are not quite fine-grained enough compo-
nents. We would like to build portlets that combine several
Grid operations in the same portlet. Our work on Grid Tags
Libraries And Beans (GTLAB) provides a set of Java Server
Faces (JSF) tag libraries and backing JavaBeans (called Grid
beans) that attempt to solve this problem [11][12]. A full
discussion of JSF is out of scope here, but briefly, JSF gene-
rates HTML from a set of XML tags. HTML form actions
are associated with so-called backing JavaBeans, which in
turn may act as Web Service clients or connect to databases.
Developers can extend these libraries to provide their own
XML tags.
The goal of GTLAB is to simplify the process of Grid port-
let development by encapsulating common Grid operations
as XML tags that can be embedded in portlet pages, enabl-
ing rapid development. GTLAB capabilities include creden-

tial management, remote file operations, remote job execu-
tions, and file transfers.
The JSF Web application framework provides us with an
extensible component architecture. Each XML tag is asso-
ciated with a backing Grid bean that implements the actual
Grid clients, which we build with the Java CoG kit [5]. We
use JSF’s built-in functionality to pass attribute values from
the XML tags to the backing beans. Grid beans are asso-
ciated with Grid tags and their action methods are fired by
our 'submit' tag. Tracking the jobs and monitoring is also
part of the GTLAB framework.

3.1 How to use GTLAB within Big Red portlets

Typically a Grid portlet stages various related tasks in re-
sponse to a user-generated event. These are usually the
nodes of a Directed Acyclic Graph (DAG), which our Grid
tags are designed to support. The DAG, or composite task,
is called multitask in GTLAB. Currently, multitasks only
allow dependent task units and prevent parallel tasks and
cycles.
After building the sub-tasks, multitask and their depen-
dencies, GTLAB then registers multitasks in the browser
session. In addition, it registers their handler information
within the session to track their lifecycle. All of the objects
are stored in hash tables with a unique key. The job handler
information can be stored persistently to a backend storage
system (i.e., a database) by setting persistent attribute of
multitask.
The following use case explains a multitask for MEME
with sub-tasks and their dependencies. Assume a develop-
er has been assigned the job of creating a portlet to do the
following basic tasks. First, Task A makes a working direc-
tory on Big Red. Then, Task B transfers an input file from a
remote host to the newly created directory. Finally, Task C
is responsible for submitting a command script on Big Red
using the input file. The following sections explain the sce-
nario in detail through the use of Grid tags. After the port-
let is finished and deployed, users will then submit and
monitor jobs using the developer’s portlet. Users will not
see the tag libraries and will interact with standard HTML
pages that get generated when the portlet is rendered.

3.2 Preparing Application Pages

The developer starts by creating a JSF form that generates
the HTML interface (Figure 1). After the HTML form is
prototyped, the developer can now add GTLAB tags to
Grid-enable the HTML form submission components.
GTLAB tags consist of non-visual page action components
with one exception: we override the 'submit’ button tag that
propagates user events to the backend.
A full example is given in Table 1. The GTLAB tag part
that specifies the Grid actions is surrounded by GTLAB
submit tag, which in turn is contained within JSF view page.
Table 1 shows the key GTLAB tags for constructing the
Dashboard portlet. As explained in the previous section,
this portlet basically submits two dependent jobs using
GRAM service. The first one is to retrieve the user ID on the
specific TeraGrid resource, and the second is to submit the
showq command. These two jobs and their dependency are
shown in Table 1. Note resulting output data must still be

4 TERAGRID 2007 CONFERENCE, MADISON, WI

formatted for display.
To generalize this portlet, we will need to associate tag

attributes with information collected from the user. These
inputs (i.e., the specific computer hostname to use or the
name of the task) correspond to XML tag attribute fields
with dynamic parameters. In other words, attribute values
should be supplied by the user in a dynamic web user in-
terface. We have defined resource bean to manage these
specific user inputs. The resource bean represents all prop-
erties of the GTLAB tags and supplies default values. The
application programmer has to tie the user inputs with cor-
responding property using resource bean as follows:

 <h:outputText value="Taskname: "/>
 <h:inputText value="#{resource.taskname}" />
 <o:multitask id="multi" persitent="true" task
 name="#{resource.taskname}" />
Here, <outputText> and <inputText> are standard JSF tags
that are rendered as text and input text fields, respectively.
The attribute value #{resource.taskname} uses JSF’s Expres-
sion Language (EL) syntax. The user will be prompted to
provide a name for the particular task, which will also be
used by GTLAB’s <multitask> tag as the value for its name
attribute.

3.3 Tracking and Managing Jobs with GTLAB
Grid applications typically must submit jobs to batch
queues, and even interactive jobs may take a several mi-
nutes to finish. Thus we must provide a callback system
that lets jobs run while allowing the portal to return control
to the user. Thus the GTLAB tags need to track the jobs’
lifecycle and monitor their status, displaying this informa-
tion back to the user.
GTLAB creates a handler for every submitted job and
displays status information using JSF data tables (which are
rendered as HTML tables for display). These data tables are
fed by job handlers that are saved in hash tables within the
session. The visual design of the job tracking’s display table
and filtering on the values are left to application develop-

ers.
After submission, the GTLAB job handlers can be used to

manage, stop, or cancel running jobs. Permanent job arc-
hiving is also tied to job handlers. For example, users can
keep good samples, remove old jobs or failed jobs, and oth-
erwise organize their repository. The job’s metadata fea-
tures (submit time, status, finish time, output location and
input parameters) are stored and can also be listed.

4 CONCLUSIONS

We have described in this paper our work to build a sim-
ple science gateway for Indiana University’s Big Red super-
computer, based on the OGCE portal software release. In
our discussion, we have focused on new portlets for MEME
job submission and job tracking that we developed from
OGCE and related libraries. We then described our work to
simplify the process for creating new Grid portlets using
Java Server Faces tag library extensions.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion’s National Middleware Initiative program.

REFERENCES

[1] Nancy Wilkins-Diehr, Special Issue: Science Gateways -
Common Community Interfaces to Grid Resources.
Published Online: 10 Oct 2006 DOI: 10.1002/cpe.1098.
Available from
http://www3.interscience.wiley.com/cgi-
bin/fulltext/113391281/PDFSTART.

[2] Maytal Dahan, Eric Roberts, “TeraGrid User Portal
v1.0: Architecture, Design, and Technologies.” Second
International Workshop on Grid Computing Environ-
ments GCE06 at SC06, Tampa, FL. Nov. 12-13 2006.

[3] Jay Alameda, Marcus Christie, Geoffrey Fox, Joe Fu-
trelle, Dennis Gannon, Mihael Hategan, Gopi Kandas-

<o:submit id=”track” action=”list_page” />

 <o:multitask id=”dashboard” taskname=”track” persistent=”true” >

 <o:myproxy id=”proxy” hostname=”gf1.ucs.indiana.edu” port=”7512”

 lifetime=”2” username=”dash” password=”******” />

 <o:jobsubmit id=”jobA” hostname=”cobalt.ncsa.teragrid.org”

 provider=”GT4” executable=”/bin/whoami”

 stdout=”tmp/result”

 stderr=”tmp/error” />

 <o:jobsubmit id=”jobB” hostname=”cobalt.ncsa.teragrid.org”

 provider=”GT4” executable=”/bin/showq”

 stdin=”tmp/result” stdout=”tmp/list”

 stderr=”tmp/error” />

 <o:dependency id=”depend” task=”jobB” dependsOn=”jobA” />

 </o:multitask>
</o:submit>

Table 1 GTLAB example for creating Grid portlets to collect data for the dashboard portlet.

NACAR ET AL.: BUILDING A GRID PORTAL FOR TERAGRID’S BIG RED 5

wamy, Gregor von Laszewski, Mehmet A. Nacar, Mar-
lon Pierce, Eric Roberts, Charles Severance, Mary Tho-
mas, The Open Grid Computing Environments collaboration:

portlets and services for science gateways. Published Online:
10 Oct 2006 DOI: 10.1002/cpe.1078. Available from
http://www3.interscience.wiley.com/cgi-

bin/fulltext/113391287/PDFSTART
[4] Jason Novotny, Michael Russell, Oliver Wehrens:

GridSphere: a portal framework for building collabora-
tions. Concurrency - Practice and Experience 16(5): 503-
513 (2004).

[5] Kaizar Amin, Mihael Hategan, Gregor von Laszewski,
Nestor J. Zaluzec: Abstracting the Grid. PDP 2004: 250-
257.

[6] The MEME/MAST System. [Online]
http://meme.sdsc.edu/meme/intro.html.

[7] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kes-
selman, Stuart Martin, Warren Smith, Steven Tuecke.
“A Resource Management Architecture for Metacom-
puting Systems”. LNCS Vol. 1459, 1998

[8] Aleksander Slominski. Design of a Pull and Push
Parser System for Streaming XML. Technical report,
Indiana University Computer Science Department,
2002. Available from
http://www.extreme.indiana.edu/xgws/papers/xml_
push_pull/. last accessed in March 2005

[9] M. Dahan, M. Thomas, E. Roberts, A. Seth, T. Urban, D.
Walling, J.R. Boisseau. ”Grid Portal Toolkit 3.0 (Grid-
Port)”, in Proceedings. 13th IEEE International Sympo-
sium on High performance Distributed Computing, 4-
6, pp.272 - 273, June 2004

[10] Indiana University Knowledge Base. [Online]
http://kb.iu.edu/.

[11] Mehmet Nacar, Marlon Pierce, Gordon Erlebacher,
Geoffrey Fox. “Designing Grid Tag Libraries and Grid
Beans.” Second International Workshop on Grid Com-
puting Environments GCE06 at SC06, Tampa, FL. Nov.
12-13 2006.

[12] Mehmet A. Nacar, Mehmet S. Aktas, Marlon Pierce,
Zhenyu Lu and Gordon Erlebacher, Dan Kigelman,
Evan F. Bollig, Cesar De Silva, Benny Sowell, and
David A. Yuen VLab: Collaborative Grid Services
and Portals to Support Computational Material
Science Dec 30, 2005 Special Issue on Grid Portals
based on SC05 GCE'05 Workshop, Concurrency and
Computation: Practice and Experience.

