****** DRAFT ******

Grids meet Too much Computing, Too much Data and never Too much Simplicity
Geoffrey Fox1,2,3 and Marlon Pierce1
1Community Grids Laboratory

2Department of Computer Science

3School of Informatics

Indiana University

{gcf, marpierc}@indiana.edu

Challenge
Let us discuss:

Grids are taking too long to solve the wrong problem at the wrong point in stack with a complexity that makes friendly usability difficult. In spite of the unclear technology directions, e-Science and more generally e-moreorlessanything are thriving with the advantages of distributed enablement of many fields very clear.
Taken from http://grids.ucs.indiana.edu/ptliupages/publications/GridSandwich.pdf
1. Too much Computing
Over the last 20 years we have seen an increase in the power of computers by roughly a factor of a million and this has enabled computational science to become a major force in an ever increasing number of academic fields. This has been nurtured by substantial institutional investment in computational infrastructure spanning campus, laboratory and national scale. This investment involves the use of both grids and parallel computing to increase computing capabilities by aggregating computers together in a distributed or local fashion respectively. Different problem classes are suited to different aggregation architectures; closely coupled problems are suited to closely coupled (i.e. low communication latency) parallel computer systems, loosely coupled problems are suited to loosely coupled (i.e. high communication latency) distributed computer systems. This hybrid strategy ensures an e-infrastructure (Cyberinfrastructure) of broad applicability. This capability must support simulations, the fusion analysis and analysis of data from repositories, instruments and sensors, the distributed users as well as their integration. Such a scenario supports e-moreorlessanything including e-Science, e-Research, e-Business and even e-digitalmedia and e-OpenSocial for the Net-Gens (or more appropriately for this article the e-Gens).
The USA Federal HPCC (High Performance Computing and Communication) initiative started in 1991 was a major driver for both technologies and applications for computational science with parallel computing and simulation as the focus. Following HPCC, Grids and Cyberinfrastructure/e-Infrastructure blossomed and there was a growing recognition of the importance of data which was not stressed with HPCC. In spite of these changes, the community was obsessed with performance shown in many ways. The well known Top500 list measures the stature of your institution by the performance of its supercomputer on matrix algebra. Much of Grid technology aims at linking computers across multiple administrative domains leading to increased total performance but at the cost of significant security challenges that translates into complex Grid virtual organization technology. Further there has been great interest recently in harnessing the potential of graphics boards to deliver very high performance on cluster nodes. When we started this (say around 1980 with the Cray-1 and XMP), we definitely had too little computing as only unrealistic 2D simulations were possible and this motivated much of the early parallel computing research. However the situation is changed and perhaps now most applications have the opposite problem – there is in fact Too much Computing.

Some fields can still use essentially unlimited computing; a few examples are stewardship of the nuclear stockpile for National Security and Quantum Chromodynamics or globular cluster simulations in fundamental science. However even in e-Research these are probably the exception; the common (average) case of computational science does not need petaflop computers. In particular the “new sciences” such as life science and social science definitely need e-Science but typically modest peak performance. A field needs to be quite mature to develop algorithms and accurate phenomenology needed for useful petaflop computing. We have already enough computing in many parts of e-Research; we need to develop other aspects of Cyberinfrastructure

. The situation is even clearer for mass market systems whose CPU chips will be 32-128way parallel in 5 years time but we currently have little idea how to use them on commodity systems – especially on clients. There are perhaps at most 2 releases of standard software (such as Windows or Microsoft Office) in this time span and we need to find value in these new chips for the broad market so that the multicore instantiation of Moore’s law (roughly constant clock speed, increasing core density) will lead to improved performance. We need to address Too much Computing here with approaches that can be implemented in next 3-5 years.
2. Too much Data
The deluge of increasing data is a clearly recognized feature of e-moreorlessanything
including 30 billion web pages with an increasing number of two-way interactive pages from sites like Flickr and YouTube. In e-Science, there are many observatories, satellites, sensors, high throughput screens and instruments whose data products also track Moore’s law with the LHC soon to generate 10 petabytes of data per year. These data sources of course feed repositories that support scientific discovery which also itself produces further auxiliary data adding to the Too much Data scenario. However there are interesting differences between the Data and Compute Deluges. Data is intrinsically distributed as both sources and the managing organizations are distributed. Further multidisciplinary research and commodity mashups link information of different kinds at different places. The data challenges involve its management, federation, access and analysis. This involves computing but architecturally the data and computing are naturally co-located to avoid large communication costs. Intel proposed the RMS (Recognition Mining Synthesis) class of applications corresponding to data-mining and gaming as enabled by future multicore chips. It is clear how this works for servers and especially servers near data sources/repositories but Internet Clouds, Supercomputer centers and Clients are not clearly co-located near relevant data. Clients could host data from local (say video and environmental) sensors plus data fetched from the network (Intranet and Internet). The latter might be mined automatically by the client to provide an “intelligent environment” for user sessions. Most data mining algorithms can be efficiently parallelized as long as the datasets are large enough. Thus we imagine that data-[image: image1.emf]Database

SS

SS SS

SS

SS SS

SS

Portal

Sensor or Data

Interchange

Service

Another

Grid

Raw Data



Data



Information



Knowledge



Wisdom



Decisions

SS

SS

Another

Service

SS

Another

Grid

SS

Another

Grid

SS

SS

SS

SS

SS

SS

SS

SS

Inter

-

Service Messages

Storage

Cloud

Compute

Cloud

SS

SS

SS

SS

Filter

Cloud

Filter

Cloud

Filter

Cloud

Discovery

Cloud

Discovery

Cloud

Filter

Service

fs fs

fs fs

fs fs

Filter

Service

fs fs

fs fs

fs fs

Filter

Service

fs fs

fs fs

fs fs

Filter

Cloud

Filter

Cloud

Filter

Cloud

Filter

Service

fs fs

fs fs

fs fs

mining of this “Too much data” will use up the “Too much computing” on client-side PC’s.
Internet storage and computing clouds as well classic supercomputer centers can be used as shown in figure 1 where the data deluge flows through the computing deluge leading to wisdom and effective decisions. We term the Clouds through which data, information and knowledge flows as Filter Clouds to indicate that they input and output streams of data. Clouds have an attractive interface defining the input and output data but how they and traditional computer centers cope with Too much nonlocal data is not clear. Perhaps this will drive the deployment of networks of even higher performance; this could be practical as its bandwidth not latency that is relevant in osts scenarios represented by figure 1
3. Never Too much Simplicity

There is no precise definition of Web 2.0, but it is operationally defined by a set of technologies (JSON, AJAX, etc) and a wide range of Web sites supporting user interaction among themselves (social networking) and with resources such as images and video. Media sharing and bookmarking are structured to allow communities (i.e. virtual organizations) to grow up around resources. Similarly peer production sites allow users (people in communities) to select and rate presented information. There are also very popular capabilities like Blogs and Wikis supporting communication either broadly or within an organization. These capabilities provide attractive tools enhancing collaboration in all areas of e-moreorlessanything.
Web 2.0 has also encroached on more traditional territory of cyberinfrastructure. Web 2.0 Start Pages challenge portals for access to services and Web 2.0 mashups challenge workflows for integration of services. Further Web 2.0 cloud systems directly support the distributed storage and computing that was up to now the distinctive feature of Grids. These clouds address “commodity usage” and do not currently provide massively parallel systems for the high end users. Google maps illustrate the power of Web deployment of important capabilities – in this case geographic information systems.
Web 2.0 capabilities and technologies are simpler than their Grid counterparts and are user friendly for developers and users. For example as shown in figure 1, Cloud systems are “Grid islands” which only expose the key interface to input and output data and control information. Grids adopt the Web service philosophy where all services are exposed allowing greater power but at greater complexity. Originally we expected that Web Services would dominate a new generation of Enterprise software and that distributed systems would leverage commercial investment in this field and be built in terms of Web Services. However this is not what happened. There is general agreement on service architectures but Web Services were characterized by very specific specification of operating environment through WSDL Interfaces and SOAP header elements. This leads as shown in figure 1 to Grids where individual services are visible and potentially interoperable; as discussed above Clouds have a more limited but friendlier interface. Grid services tend to expose even more detail than Web services. Web 2.0 systems may consider such information important but leave such details to the application allowing a much simpler hosting environment. Rather than Web services dominating practical distributed systems, they will have some use but their complexity and Grid refinements are likely to be ignored as they are accessed by a sea of Web 2.0 services and mashups; Web 2.0 achieves interoperability by simplicity rather than the detailed WS-* specifications. Web 2.0 teaches us that we only need interoperability at a few sweet spots; user data formats at cloud interfaces and the lowest level protocols typified by HTTP transport. Web 2.0 teaches to re-use wherever possible; scripting rather BPEL for workflow for example. Web 2.0 teaches us the power of distributed simple specification; developer uploads of API’s to http://programmableweb.com rather than the stultified UDDI; use of microformats rather than large ontologies; rapid deployment of modules rather than lengthy development of universal systems.
There is still substantial uncertainty but history teaches us that simplicity is often a winning principle. Grids and e-infrastructure should examine its implications for both low level protocol and the high level user and user data interfaces. Too much computing and Too much data have nontrivial implications for computer and networking hardware as well associated software and standards. Perhaps five years ago, we settled on software and decided on needed standards too quickly; we should expect change and mix research with robust deployment this time around.
Figure 1: Information architecture combining Web 2.0 and Grid Concepts. Wisdom is obtained by fusing and transforming data that comes from sensors, instruments, services, Grids and Clouds. Data is transformed by filters that perform data analysis, transformation, assimilation or production from simulations. Traditional Grids expose constituent services as illustrated by Filter Service surrounded by other (fluff services fs) services in dashed rectangles. Compute, Storage and Filter clouds hide this detail and expose data interfaces. Discovery is needed for both Clouds and Grid services and all components are linked by messages

