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Challenge 
 
Let us discuss: 
Grids are taking too long to solve the wrong problem at the wrong point in stack with 
a complexity that makes friendly usability difficult.  We furthermore observe that 
Grids (as envisioned c. 2001) are being pressured by both emerging new computing 
resources (multicore, cell processors, GPUs, reconfigurable computing, etc) and 
alternative approaches to service architectures (collectively, Web 2.0).  We thus 
believe it is time to reappraise Grids—both the nature of the resources that they 
aggregate and the middleware that glues these resources together.  
 
 In spite of the unclear technology directions, e-Science and more generally e-
moreorlessanything are thriving with the advantages of distributed enablement of 
many fields very clear. 
Abstracted from http://grids.ucs.indiana.edu/ptliupages/publications/GridSandwich.pdf    
 
 
1. Too much Computing 
 
Over the last 20 years we have seen an increase in the power of computers by roughly 
a factor of a million and this has enabled computational science to become a major 
force in an ever increasing number of academic fields. This has been nurtured by 
substantial institutional investment in computational infrastructure spanning campus, 
laboratory and national scale. This investment involves the use of both grids and 
parallel computing to increase computing capabilities by aggregating computers 
together in a distributed or local fashion respectively. Different problem classes are 
suited to different aggregation architectures; closely coupled problems are suited to 
closely coupled (i.e. low communication latency) parallel computer systems, loosely 
coupled problems are suited to loosely coupled (i.e. high communication latency) 
distributed computer systems. This hybrid strategy ensures an e-infrastructure 
(Cyberinfrastructure) of broad applicability. This capability must support simulations, 
the fusion analysis and analysis of data from repositories, instruments and sensors, the 
distributed users as well as their integration. Such a scenario supports e-



moreorlessanything including e-Science, e-Research, e-Business and even e-
digitalmedia and e-OpenSocial for the Net-Gens (or more appropriately for this article 
the e-Gens).  
 
The USA Federal HPCC (High Performance Computing and Communication) 
initiative started in 1991 was a major driver for both technologies and applications for 
computational science with parallel computing and simulation as the focus. Following 
HPCC, Grids and Cyberinfrastructure/e-Infrastructure blossomed and there was a 
growing recognition of the importance of data which was not stressed with HPCC. In 
spite of these changes, the community was obsessed with performance shown in 
many ways. The well known Top500 list measures the stature of your institution by 
the performance of its supercomputer on matrix algebra. Much of Grid technology 
aims at linking computers across multiple administrative domains leading to increased 
total performance but at the cost of significant security challenges that translates into 
complex Grid virtual organization technology. Further there has been great interest 
recently in harnessing the potential of graphics boards to deliver very high 
performance on cluster nodes. When we started this (say around 1980 with the Cray-1 
and XMP), we definitely had too little computing as only unrealistic 2D simulations 
were possible and this motivated much of the early parallel computing research. 
However the situation is changed and perhaps now most applications have the 
opposite problem – there is in fact Too much Computing. 
 
Some fields can still use essentially unlimited (petascale) parallelized computing; a 
few examples are stewardship of the nuclear stockpile for national security and 
Quantum Chromodynamics or globular cluster simulations in fundamental science. 
However even in e-Research these are probably the exception; the common (average) 
case of computational science does not need petaflop computers. In particular the 
“new sciences” such as life science and social science definitely need e-Science but 
typically modest peak performance. Similarly, the digital humanities have a growing 
need for distributed computing infrastructure (mass storage, networking, middleware, 
and some processing) generally but no need for very high end computation.  A field 
needs to be quite mature to develop algorithms and accurate phenomenology needed 
for useful petaflop computing. We have already enough computing in many parts of 
e-Research; we need to develop other aspects of Cyberinfrastructure. The situation is 
even clearer for mass market systems whose CPU chips will be 32-128way parallel in 
5 years time, but we currently have little idea how to use them on commodity systems 
– especially on clients. There are perhaps at most 2 releases of standard software 
(such as Windows or Microsoft Office) in this time span and we need to find value in 
these new chips for the broad market so that the multicore instantiation of Moore’s 
law (roughly constant clock speed, increasing core density) will lead to improved 
performance. We need to address Too much Computing here with approaches that can 
be implemented in next 3-5 years. 



 
2. Too much Data 

 
The deluge of increasing data is a clearly recognized feature of e-moreorlessanything  
including 30 billion web pages with an increasing number of two-way interactive 
pages from sites like Flickr and YouTube. In e-Science, there are many observatories, 
satellites, sensors, high throughput screens and instruments whose data products also 
track Moore’s law with the LHC soon to generate 10 petabytes of data per year.   
These data sources of course feed repositories that support scientific discovery which 
also itself produces further auxiliary data adding to the Too much Data scenario. 
However there are interesting differences between the Data and Compute Deluges. 
Data is intrinsically distributed as both sources and the managing organizations are 
distributed. Further multidisciplinary research and commodity mashups link 
information of different kinds at different places. The data challenges involve its 
management, federation, access and analysis. This involves computing but 
architecturally the data and computing are naturally co-located to avoid large 

Figure 1: Information architecture combining Web 2.0 and Grid Concepts. Wisdom 
is obtained by fusing and transforming data that comes from sensors, instruments, 
services, Grids and Clouds. Data is transformed by filters that perform data 
analysis, transformation, assimilation or production from simulations. Traditional 
Grids expose constituent services as illustrated by Filter Service surrounded by 
other (fluff services fs) services in dashed rectangles. Compute, Storage and Filter 
clouds hide this detail and expose data interfaces. Discovery is needed for both 
Clouds and Grid services and all components are linked by messages
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communication costs. Intel proposed the RMS (Recognition Mining Synthesis) class 
of applications corresponding to data-mining and gaming as enabled by future 
multicore chips. It is clear how this works for servers and especially servers near data 
sources/repositories but Internet Clouds, Supercomputer centers and Clients are not 
clearly co-located near relevant data. Clients could host data from local (say video 
and environmental) sensors plus data fetched from the network (Intranet and Internet). 
The latter might be mined automatically by the client to provide an “intelligent 
environment” for user sessions. Most data mining algorithms can be efficiently 
parallelized as long as the datasets are large enough. Thus we imagine that data-
mining of this “Too much data” will use up the “Too much computing” on client-side  
PC’s.   
 
Internet storage and computing clouds as well classic supercomputer centers can be 
used as shown in figure 1 where the data deluge flows through the computing deluge 
leading to wisdom and effective decisions. We term the Clouds through which data, 
information and knowledge flows as Filter Clouds to indicate that they input and 
output streams of data. Clouds have an attractive interface defining the input and 
output data but how they and traditional computer centers cope with Too much 
nonlocal data is not clear. Perhaps this will drive the deployment of networks of even 
higher performance; this could be practical as its bandwidth not latency that is 
relevant in costs scenarios represented by figure 1 
 
3. Never Too much Simplicity 
There is no precise definition of Web 2.0, but it is operationally defined by a set of 
technologies (JSON, AJAX, etc) and a wide range of Web sites supporting user 
interaction among themselves (social networking) and with resources such as images and 
video. Media sharing and bookmarking are structured to allow communities (i.e. virtual 
organizations) to grow up around resources. Similarly peer production sites allow users 
(people in communities) to select and rate presented information. There are also very 
popular capabilities like Blogs and Wikis supporting communication either broadly or 
within an organization. These capabilities provide attractive tools enhancing 
collaboration in all areas of e-moreorlessanything. 
 
Google maps illustrate the power of Web 2.0 deployment of important capabilities – in 
this case geographic information systems.  Google Maps and related systems have 
transformed GIS technologies not just through their interactivity (enabled through 
innovative uses of AJAX, JSON, and image tile caching), but also through the simplicity 
they bring to development.  As we will discuss later, Google Maps is by far the most 
popular API for mash-up building.  Its sophistication and power are accessible through 
simple APIs and data models (KML) that can be manipulated by anyone with basic 
programming skills. 
 
Web 2.0 has also encroached on more traditional territory of cyberinfrastructure. Web 2.0, 
with consequences that may be as transformational as Google Maps has been to GIS. 
Start Pages challenge portals for access to services and Web 2.0 mashups challenge 



workflows for integration of services. Further Web 2.0 cloud systems such as Amazon 
web services directly support the distributed storage, data management, and computing 
that were up to now the distinctive feature of Grids.  
 
These clouds address “commodity usage” and do not currently provide massively parallel 
systems for the high end users.   However, they do make the important distinction 
(missing in, for example, the OGSA use cases) between deployment and development.  
Deployment has very sophisticated challenges, and the Global/Open Grid Forum has 
attempted to define a standard set of use cases for this.  Unfortunately the deployment 
scenarios often overlap with the Grid development process—that is, building a Grid and 
developing for a Grid are not adequately distinguished.  In contrast, cloud systems, while 
at least as sophisticated as conventional Grid deployments, do a much better job at 
defining simple developer interfaces.  Resource allocation, data replication, and security 
are all sophisticated capabilities in computing clouds, but they are hidden from the typical 
application developer.  
 
Web 2.0 capabilities and technologies are simpler than their Grid counterparts and are 
user friendly for developers and users. For example as shown in figure 1, Cloud systems 
are “Grid islands” which only expose the key interface to input and output data and 
control information. Grids adopt the Web service philosophy where all services are 
exposed allowing greater power but at greater complexity. Originally we expected that 
Web Services would dominate a new generation of Enterprise software and that 
distributed systems would leverage commercial investment in this field and be built in 
terms of Web Services. However this is not what happened. There is general agreement 
on service architectures but Web Services were characterized by very specific 
specification of operating environment through WSDL Interfaces and SOAP header 
elements. This leads as shown in figure 1 to Grids where individual services are visible 
and potentially interoperable; as discussed above Clouds have a more limited but 
friendlier interface. Grid services tend to expose even more detail than Web services. 
Web 2.0 systems may consider such information important but leave such details to the 
application allowing a much simpler hosting environment. Rather than Web services 
dominating practical distributed systems, they will have some use but their complexity 
and Grid refinements are likely to be ignored as they are accessed by a sea of Web 2.0 
services and mashups; Web 2.0 achieves interoperability by simplicity rather than the 
detailed WS-* specifications. Web 2.0 teaches us that we only need interoperability at a 
few sweet spots; user data formats at cloud interfaces and the lowest level protocols 
typified by HTTP transport. Web 2.0 teaches to re-use wherever possible; scripting rather 
BPEL for workflow for example. Web 2.0 teaches us the power of distributed simple 
specification; developer uploads of API’s to http://programmableweb.com rather than the 
stultified UDDI; use of microformats rather than large ontologies; rapid deployment of 
modules rather than lengthy development of universal systems. 
 
There is still substantial uncertainty but history teaches us that simplicity is often a 
winning principle. Grids and e-infrastructure should examine its implications for both 
low level protocol and the high level user and user data interfaces. Too much computing 
and Too much data have nontrivial implications for computer and networking hardware 



as well associated software and standards. Perhaps five years ago, we settled on software 
and decided on needed standards too quickly; we should expect change and mix research 
with robust deployment this time around. 
 
4. Reappraising Grids 
 
We will use the term “Grid” here to mean both deployed infrastructure (such as TeraGrid 
and OSG) and the binding middleware (Globus, Condor, SRB, etc).   
 
Arguably, Grid middleware (the TeraGrid CTSS and OSG VDT) represent the successful 
culmination of more than a decade’s worth of investment in Grid technologies.  Although 
there is room for improvement (both GRAM and WS-GRAM have scaling limitations 
and information services vary widely between TeraGrid, OSG, and EGEE, for example), 
Grid software is stable, well-packaged, relatively easy to install, and widely deployed on 
production systems.  The infrastructure problems of data and computing time allocations, 
account management, and wide-area single sign-on have all been addressed.  Interesting 
new services (such as the batch queue wait-time prediction service, QBETS) add value to 
Grids. Workflow tools (Kepler, Taverna, XBaya) all provide visual interfaces for 
integrating Grid and Web Services into composite tasks.  There is still work to do to 
integrate all of these capabilities into tools that are useful for the end user.  
 
From a different perspective, however, one can also argue that the major trends of Grid 
research and development have reached dead-ends, or at least rapidly diminishing returns.   
 
Converting Users into Developers: A key problem with Grid middleware and Web 
services is the complication. It is very difficult for computational scientists to use, extend, 
and customize Grid software because the available tools and programming libraries are 
too complicated.  Consequently, Grid development is largely in the hands of computer 
scientists and systems experts rather than domain scientists.   The poor scientist is too 
often treated as a “customer” of the Grid development team.  He or she may be the source 
of requirements and use cases, and may be drafted as a beta tester for the wonderful Grid 
infrastructure but will not be involved in the day-to-day development.  This is an 
unnecessary waste of human resources.   
 
This state of affairs is not by accident: most Grid developers (including the authors) have 
in the past advocated the adoption of “Enterprise” technologies (particularly Web 
Services and server-side portal technologies) for building Grids.  As we have argued 
above, it is not clear at all that Enterprise technologies are developing along the most 
promising paths.   
 
One of the many attractive aspects of Web 2.0 is the simplicity of its programming 
interfaces: anyone with general programming expertise can build a mashup.  There really 
needs to be an equivalent mind set in the Grid development world. 
 
To do this, organizations like the Open Grid Forum should change their focus.  The 
problem (in our view) is that the OGF has concentrated too much on infrastructure 



deployment use cases (see OGSA Use Case documents for example) and not on 
developer use cases.  
 
Virtual Organizations or Social Networks:  Grids have been primarily focused on PKI-
derived virtual organizations that are used to connect real organizations with existing 
bureaucracy, managements, etc.  From the user’s point of view, this mainly is useful for 
unifying accounts and providing single sign on. While useful and perhaps time-saving, 
this is not extremely compelling.   
 
Going forward, Grids should instead take a lesson from Web 2.0 social networks.  Unlike 
Grid VO’s, these are user driven and focus on users sharing information, data, and 
services.  
 
Multiscale Grids: Within 5 years, it will be possible to buy servers and workstations 
with dozens of cores.  Parallel computing, displaced by Grid (wide area distributed) 
computing for the last decade, is enjoying a renaissance.  On the other hand, scaling 
algorithms for most scientific domains are much further away.  Thus, we can argue that 
the “sweet spot” for many parallel computing jobs in the next decade will be about the 
same size as a single multicore server.  Only very mature parallel computing fields will 
be able to utilize petascale computing.   
 
Thus we foresee the need for Grid software itself to be much more scalable, integrating 
desktops and servers and individual cores.  Most of today’s Grid services do not really 
add value until one attempts to integrate entire computing centers.    
 
Application Services, not Infrastructure Service: Grid services provide job 
management, treating the underlying science code as an abstract job (typically in a 
queuing system) needing to be managed.  This should be inverted.  The goal should be 
making computational science services with simple, self-contained service APIs that can 
be programmed to.  These application services can then be bound to underlying Grid 
services as necessary.   
 
Cyberinfrastructure for Data Centric eScience and the Social Sciences and 
Humanities:  The current cyberinfrastructure deployments are largely aimed at 
traditional computational users (i.e. scientists with codes to run on parallel machines and 
data to store on UNIX-like data archives) for obvious reasons.  Unfortunately, this does 
not meet the needs of social sciences, humanities, and other academic research fields.  
These groups have some computing requirements (image processing, data mining), but 
they are more data-centric.  They furthermore are probably in greater need of a simple to 
use, national scale IT infrastructure.   
 


