
Abstract

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-
throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of
new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these
studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These
essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency,
facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a
simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards
already in use by the life sciences community. The checklist will serve as a common denominator to guide
experimental design, capture important parameters, and be used as a standard format for stand-alone data
publications. The omics metadata checklist and data publications will create efficient linkages between omics data
and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data gener-
ators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the
proposed omics metadata checklist and data publications and provide feedback for their use and improvement.

A Common Omics Metadata
Checklist Proposal

Modern life science technologies enable rapid and efficient

acquisition of omics data. These data comprehensively mea-

sure multilayered molecular networks and provide a snapshot

of biological processes in a cell, organism, or their commu-

nities. Collected on the same sample at the same time, omics

data provide information on the functioning of biomolecules

and their interactions. Omics studies are essential for the
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systemic investigation of biological systems—an endeavor

that is crucial to improve our ability to manage and cure

diseases, identify drug targets, understand regulatory cascades,

and predict ecosystem responses to environmental changes.

Through the pioneering efforts of Drs. Smarr and Snyder,1–4

two powerful multi-omics human datasets were recently

made available. Smarr’s dataset includes a wide variety of

molecular measures and clinical parameters meticulously

collected and cataloged for years, while Snyder’s integrative

personal multi-omics study presents his personal genomics,

transcriptomics, proteomics, metabolomics, and autoanti-

body profiles collected over a 14-month period. Both studies

yielded unique physiological insights not previously possible,

including early indications of vulnerabilities to specific dis-

eases.

In the near future these kinds of personal omics studies will

become routine and will inevitably result in vast and diverse

volumes of omics data. Therefore, the scientific community

must commit to a common format for publishing the design

and analysis of these studies that will ensure the compati-

bility, reproducibility, and reuse of the resulting data.

The use, integration, and reuse of data require accurate and

comprehensive capture of the associated metadata, including

details describing experimental design, sample acquisition

and preparation, instrument protocols, and processing steps.

The data and metadata must be captured together in a rig-

orous and consistent manner to allow the integration of data

across omics experiments. The use of ontologies, naming

conventions, and standards can increase the compatibility

and usability of these diverse data. Fortunately, life sciences

data have certain core similarities. However, combined with

these similarities come the different nuances among various

technology platforms, such as transcriptomics, proteomics,

and metabolomics, as well as application contexts such as

neuroscience and hematology. The differences are com-

pounded by the multiplicity of standards within a field—

transcriptomics alone has at least 15 standards potentially

applicable to the data.5,6 Such complexities not only make

reproducible, integrative, accurate, and comprehensive cap-

ture of data and metadata an intricate challenge that must be

overcome but also place an excessive burden on researchers

trying to convey metadata.5,7

Pioneering attempts in this area were made in 2007 when the

Minimum Information about a Biomedical or Biological

Investigation project brought many of these efforts for the life

sciences together into an umbrella organization: MIBBI.8,9 In

MIBBI, each set of guidelines is developed by a working

group concentrated in a specific field (for example, functional

magnetic resonance imaging [fMRI] or quantitative trait

locus [QTL] and association studies). Other types of data

sharing tools that have also been harmonized in MIBBI in-

clude single omics checklists such as Minimum Information

About a Proteomics Experiment (MIAPE) by the Human

Proteome Organization10 and the Minimum Information

About a Microarray Experiment (MIAME) by the Microarray

Gene Expression Data Society.11 Through this approach,

MIBBI aspires to capture all essential metadata and data that are

necessary to replicate any given experiment within a field. Also,

the framework known as Minimal Information about any Se-

quence (MIxS) expands the breadth of information available
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by integrating the individual genomics checklists developed by

the Genomics Standards Consortium with environmental in-

formation.12 In addition, the NIH’s National Center for Bio-

technology Information developed a format for cataloging

information about samples enabling further metadata avail-

ability.13 While these frameworks are critical to the reuse of

data, they do not fully take into account the interlocking aspects

needed for harmonization of diverse omics data types.

Recently, the Nature Publishing Group implemented a publi-

cation checklist that provides another example of an approach

to improve the transparency and re-

producibility of life sciences publica-

tions.14,15 The checklist requires the

researcher and/or corresponding au-

thor to enter specific information on

experimental design, statistical analy-

sis, and reagents. This checklist is en-

dorsed by the Data-Enabled Life

Sciences Alliance (DELSA Global).16

The unveiling of the Nature publication

initiative brought into focus the need

for a complementary omics checklist

that allows the capture and publication

of critical metadata associated with omics data sets. To this end,

life sciences researchers from DELSA Global17–21 propose a single

common omics metadata checklist as described below. By inte-

grating DELSA researchers’ collective experiences with omics

guidelines and publication requirements, one simplified, yet in-

formative and flexible checklist was created to capture the es-

sential aspects of omics studies.22

Publication of a completed checklist will serve to inform the

life sciences community of the details needed to properly

utilize the given data set. This type of ‘‘resource publication’’

has long been done by Nucleic Acid Research in its annual

database issue. NanoPubs and MicroPubs are two newer

publication avenues that could serve to quickly and accu-

rately share information.23,24 There are also other forms of

data publications including, for example, Investigation,

Study, Assay (ISA) metadata tracking tools and the journal

Scientific Data.25,26

It is worth noting that multi-omics data from a longitudinal

study of a single individual (e.g., the Smarr and Snyder da-

tasets) in their entirety constitute essentially a whole new data

type. Supplied with detailed metadata, these data could be-

come a part of a greater, well-documented collage of data

within a specific domain. Because of the large amount of data

and the complexity of data acquisition, it is exceedingly dif-

ficult to capture, disseminate, and interpret the metadata.

Generally, minimal reporting requirements are aimed at en-

abling replication of an experiment, a concept that is not

easily applied to the longitudinal personal omics studies.

Reuse of data can be enabled with more succinct and concise

reporting.

The checklist we propose, therefore, has a simple structure

covering four concise sections: experiment information, ex-

perimental design, experimental methods, and data proces-

sing. The experiment information section includes details of

the lab, funding sources, data identification, and a brief ab-

stract to address why the experiment was done. The experi-

mental design section is meant to capture the high-level data

about the experiment and its statistical design, including

sample selection, replication, and

randomization. The experimental

methods section contains details

about instrumentation and sample

preparation. The data processing

section captures information re-

garding methods and tools used in

experimental data processing and

data analysis (see Table 1).

The metadata captured by this

checklist will serve as interlocking

bridges for data harmonization.

Therefore the checklist focuses on

details of the experimental design and subsequent data ana-

lyses. In multi-omics studies, the researcher would fill a

checklist for each omics data-type measured. As test cases, two

datasets of the integrative personal multi-omics study were

used.27 The proposed checklist integrates existing ontologies

and standards in order to standardize terminology and sim-

plify data input. In its short, structured form, the checklist

captures important experimental parameters and strikes a

balance between comprehensiveness and ease of use. As such,

the checklist can serve as a guide to the design of omics studies.

Implementation of this checklist will enable efficient portability

and meta-analysis of the data, as well as transparent commu-

nication and greater reproducibility of omics studies. Yet the

checklist is just the first step toward full utilization of the data.

Traditional publication avenues and new data publications, for

example, OMICS Journal of Integrative Biology, Journal of Pro-

teome Research, Big Data, eLife, and Scientific Data, could test

and adopt the format to ensure that the crucial information

needed to allow data to be harmonized for broader usage is

published.28–30 The assessment of the metadata quality and the

data they accompany could be done through community re-

sources like PubMed Commons.31,32

Data submissions to single omics databases such as, for ex-

ample, ArrayExpress and GEO for transcriptomics, or PRIDE

and ProteomeXchange for proteomics, would benefit from

both additional omics metadata within the given database

and robust harmonization with other data-types in other

databases.33–36 The checklist could also aid submissions to

‘‘BECAUSE OF THE LARGE
AMOUNT OF DATA AND THE

COMPLEXITY OF DATA
ACQUISITION, IT IS

EXCEEDINGLY DIFFICULT TO
CAPTURE, DISSEMINATE, AND
INTERPRET THE METADATA.’’

METADATA CHECKLIST FOR OMICS STUDIES AND DATA PUBLICATIONS
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multi-omics databases, data repositories, or data clouds. Ex-

amples include data clouds, such as The Open Science Data

Cloud; data repositories, such as Dryad for raw data; and

MOPED for processed data.37–40 When compatibility and

sharing of data and metadata cease to be an issue, a deeper

understanding of cells, organisms, and their communities

will ensue.

Conclusions

The proposed metadata checklist offers a much-needed and

balanced approach to bring about data harmonization across

omics studies. This is accomplished while also maintaining

the flexibility needed to adapt to complex and ever-evolving

study designs and omics application contexts in the post-

genomics era of the life sciences.
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