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Summary

The dataflow model is gradually becoming the de facto standard for big data appli-
cations. While many popular frameworks are built around this model, very little
research has been done on understanding its inner workings, which in turn has led
to inefficiencies in existing frameworks. It is important to note that understanding
the relationship between dataflow and HPC building blocks allows us to address
and alleviate many of these fundamental inefficiencies by learning from the exten-
sive research literature in the HPC community. In this paper, we present TSet’s, the
dataflow abstraction of Twister2, which is a big data framework designed for high-
performance dataflow and iterative computations. We discuss the dataflow model
adopted by TSet’s and the rationale behind implementing iteration handling at the
worker level. Finally, we evaluate TSet’s to show the performance of the framework
and the importance of the worker level iteration model.
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1 INTRODUCTION

In recent years, the big data domain has seen a massive increase in popularity thanks to the tremendous volume of data that
needs to be processed and analyzed in order to gain valuable information. The ever-increasing number of use cases that emerge
with the wide adoption of big data in both commercial and scientific communities also contributed to this popularity. This has
led to the creation of a wide variety of frameworks that cater to different user requirements. Hadoop1, Spark2, and Flink3 focus
on batch processing; Storm4, Heron5, and Flink3 target stream processing; while TensorFlow6 and PyTorch7 are for machine
learning. In addition frameworks such as Apache Beam8 provide an unified API for both batch and stream processing, and
support many of the above mentioned frameworks as data processing engines underneath. These are just a few popular examples
of such frameworks, which provide various higher-level abstractions andAPI’s for end users to program applicationswhile hiding
the complexities of parallel programs. As the size of data increases tremendously, there is a necessity to adopt the distributed
frameworks for processing and analysing those data. Although each framework has its own abstraction and implementation,
it is observable that most frameworks share a common dataflow programming model. Furthermore, these systems provides
the ability for the user to develop their applications using the dataflow model. Once an application is developed using the
dataflow model, the runtime9 system takes the responsibility of dynamically mapping the dataflow graph into an execution
graph. This graph is then executed on a cluster as a distributed program. Moreover, the users have been exposed to exploit
the implicit parallelism exposed by the dataflow graph while developing applications/programs. Another important observation



2 Pulasthi Wickramasinghe ET AL

is the similarities that data analytics frameworks have with High Performance Computing (HPC) frameworks at the parallel
operator level. For example, most operations supported by big data frameworks can be mapped to operations that are well-
established in HPC frameworks, such as gather, reduce, and partition operations, which will be discussed in more detail in
Section 2. However, these similarities and even the common model are still not very well-defined in the research literature. A
solid understanding of the dataflow model and how each framework has implemented it would help to build more optimized
systems. In10 the authors studied this topic in more detail, and their findings motivated the development of Twister211,12, which
is a data analytics framework for both batch and stream processing. The goal of Twister2 is to provide users with performance
comparable toHPC systemswhile exposing a user-friendly dataflow abstraction for application development. TSet is the dataflow
abstraction of Twister2, as detailed in section 4.
Iterations are one of the core building blocks of parallel applications. Frameworks built around the dataflow model handle

iterations via different approaches. The way iterations are incorporated into a framework has a significant effect on the per-
formance of the framework, especially for more complex algorithms with many iterative elements10. Furthermore, it affects
usability and even the way frameworks handle fault tolerance. Complex machine learning algorithms, written using frameworks
such as OpenMPI using bulk synchronous programming (BSP) model, have much better performance because of their approach
to iterations and local data10. The handling of iterations in Twister2 is a major distinction between it and other popular frame-
works such as Spark2 and Flink3. This distinction also provides Twister2 with great performance advantage over other systems
for complex machine learning algorithms which involve iterative computations. This will be discussed further in section 3.2 and
performance numbers will be presented in section 7.
While iterations and optimized communications patterns are important for developing fine grained dataflow, coarse grained

dataflow which is more commonly known as workflow, provide a different set of requirements. One major requirement is ability
to compose several dependent or independent applications to create a single end to end application. Twister2 introduces a concept
of "Connected Dataflow" to address such coarse grained dataflow requirements, connected dataflow is described in more detail
in section 5.
In this paper, we first examine the generic dataflow model and how different capabilities of the model can be mapped to those

in the HPC domain, using MPI as an example in section 2. This is done to better understand the similarities and differences
between the two domains. Next, we introduce the dataflow model adopted by Twister2 for stream and batch processing and
discuss the rationale behind the model decisions taken in section 3. In section 4 we describe and discuss the TSet API and its
basic building blocks, its compatibility with other dataflow models and showcase its completeness. In section 5 we briefly look
at the concept of connected dataflow and how the TSet API allows Twister2 to support a connected dataflow model. Finally, in
section 7 we present experimental performance results of Twister2. The main contributions of the paper are summarized below:

• An overview of the dataflow model for batch and stream processing in Twister2.

• A more efficient way of handling iterations for dataflow framework with Twister2 TSet API.

• An evaluation of the presented framework to showcase its expressiveness and performance

2 COMPARISON OF DATAFLOW ANDMPI

MPI is a generic messaging standard that can support different programming models. Most MPI programs are written using
the BSP model. MPI operations can be used to build APIs for other programming paradigms such as dataflow. However, most
people will agree that in its pure form, MPI specification is suited for BSP-style programs as the user needs to define higher-
level API’s to make it easily programmable in areas such as graph processing and streaming analysis. Dataflow programming
model is a widely used framework designed for streaming, data analysis, and graph processing.
Collective operations are arguably the major use case of MPI for parallel programs. MPI collectives are generalized versions

of popular communication patterns for parallel programs. We have identified the same collectives with slightly different seman-
tics used for big data computing. MPI collectives in their pure form are hard to use in data applications as their requirements are
slightly different. Twister:Net13 is an attempt to define collective semantics for data analytics jobs and provides an implementa-
tion of various operations both using OpenMPI and TCP sockets. Dataflow collectives are driven by the following requirements
that make them slightly different from MPI specification-based collectives:

1. The collectives are between a set of tasks in an arbitrary task graph.
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2. Collectives handle data that doesn’t fit in memory

3. Dynamic data sizes for operators.

4. Keys are part of the abstraction.

5. Collectives can involve imbalanced data and require termination detection.

The dataflow programming model is different from the BSP model in many respects. Dataflow mostly is an event-driven
model where the user programs a set of event handlers arranged in a graph. The user is hidden from important details of the
parallel program such as threads, parallel operators and data handling. MPI specification-based BSP programs provide the bare
minimum requirements for a parallel program, while the user handles aspects such as thread and data management. It is a
challenge to preserve MPI performance while providing a higher-level of abstraction that can be used for data analytics. As such
TSet’s is an attempt to balance both.

3 TWISTER2 DATAFLOWMODEL

Dataflow is the preferred choice for processing large-scale data as it hides the underlying details of the distributed processing,
coordination, and data management. It also simplifies the process of parallelizing tasks and provides the ability to dynamically
determine the dependency between those tasks. In the dataflow programming model, the application is designed as a dataflow
graph which can be created either statically or dynamically. The nodes in the dataflow graph consist of task vertices and edges,
in which task vertices represent the computational units of an application and edges represent the communication edges between
those computational units. A dataflow graph is made of multiple subtasks which are arranged based on the parent-child rela-
tionship between the tasks. In other words, it describes the details about how the data is consumed between those units. Each
node in the dataflow graph holds the information about the input and its output. The task could be long-running or short-running
depending on the type of application. In a static dataflow graph, the structure of the complete graph is known at compile time,
whereas in a dynamic dataflow graph, the structure is not known at compile time but it is dynamically defined during the run
time of the application. This graph is converted into an execution graph once the actual execution takes place.
It is also important to keep both batch and streaming modes of dataflow in mind when designing the model, focusing on one

or the other may result in non optimal performance for one of the modes. For example, Apache Spark2 was developed as an
batch processing engine and therefore handles streaming using an mini batch model, while Apache Flink3 was developed as a
streaming engine. The Twister2 framework has been developed around the dataflow model such that it supports both streaming
and batch operations as first-class concepts. This distinction between streaming and batch need to be supported throughout all the
layers of the system so that the framework performance equally in both modes of operation. For instance, for a batch application
the framework can schedule tasks that need to be executed one after the other in the same location by reusing the resources
after the first task is completed, to utilize data locality concepts, but for a streaming application such optimization’s will not be
possible since each task within the dataflow needs to be executing simultaneously to process incoming data in the data stream.

3.1 Layered Model
The Twister2 dataflow model can be thought of as a layered structure which consists of 3 layers of abstraction, namely commu-
nication layer13, task layer and the TSet layer (data layer). Each layer has a higher level of abstraction than the previous one.
The most powerful aspect of the Twister2 design is that every layer is clearly defined through a set of API’s which helps users
to compose different implementations for the layers. This structure has two major benefits. First, the end users can choose to
implement their application in any layer. And secondly, the framework has the freedom to create optimized implementations for
each layer to improve performance. At the communication layer, the dataflow model is presented as a set of processes with data
flowing between them through communication channels. At this level, the framework only provides the user with basic dataflow
operations which model communication patterns such as gather, reduce, partition, etc.13, these basic building blocks for the
communication layer are derived from knowledge amassed in the HPC community on optimized communication patterns. At
the task layer, communications are abstracted out, and the users interact with dataflow through a "Task", so the dataflow model
is seen as a set of tasks that pass messages between them. The users model the application as a graph which consists of tasks
and the connections between them.
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FIGURE 1 Different iteration models in Spark, Flink and Twister2

The framework will handle the dataflow between tasks for the defined structure by utilizing the underlying communication
layer. At the highest layer, termed as the TSet layer, the dataflow model is expressed as a set of transformations and actions on
data. TSet’s are similar to RDD’s14 in Spark or DataSets in Flink3. At the TSet layer, the user provides a set of transformations
that need to be performed and actions that need to be executed to achieve the end result. Table 2 lists the basic transormations
and actions that are made available through the TSet API. While the semantics of TSet’s are similar to RDD’s and DataSets,
the difference in the underlying implementation and dataflow model allows TSet’s to produce better performance in most cases.
Details about the communication and task layer are beyond the scope of this paper, this paper will mainly focus on the TSet layer.
However because the TSet layer is directly built on-top of the Task layer some aspects of the Task layer will be discussed.In
section 4 we will look at the TSet layer in more detail to understand how it implements the dataflow model.

3.2 Iterations
How iterations are handled in the Twister2 dataflow model is an important point that distinguishes it from other frameworks.
The ability to handle iterations efficiently is essential for a big data framework in order to support complex parallel applications.
Initially, in Hadoop, the iterative computations needed to be addressed by writing data to disk and reading it back for the next
iteration. This was very inefficient and led to the development of iterative MapReduce frameworks such as Spark2 and Twister15
which allowed in-memory operations, removing the need to write to disk for each iteration. This can be seen as moving the
iterations from the client to the driver or master. However performing iterations at the driver, as in Spark, still creates the issue
of having to gather results to the driver for each iteration and broadcasting them back. For example, if the algorithm needs
to perform a reduce operation at the end of each iteration, the results must be collected at the driver, reduced to generate the
answer, and then broadcast back to be used in the next iteration. This creates a bottleneck which hinders the performance of
more complex iterative algorithms10. In Flink, iterations are embedded into the dataflow graph, the iterations are moved to the
worker, however since the iterations are embedded in the dataflow graph, Flink does not support nested iterations.
Twister2 takes the handling of iterations a step further and manages iterations at the worker level, similar to the BSP model.

Figure 1 summarizes how Spark, Flink, and Twister2 each handle iterations. This move eliminates the need to gather results at
a centralized location before each iteration. Although this does not remove the need for synchronization after each iteration, it
allows the framework and algorithms developed utilizing the framework to employ better communications patterns to achieve
this. For example, at each iteration, the algorithm can perform an AllReduce operation to achieve synchronization rather than it
being handled by a centralized entity such as a driver. The K-Means example discussed in section 7.1 will attest to this.
Implementing this model of iteration handling is straightforward at the communication layer once the BSP model is followed,

however there is one major issue when exposing this model at higher level API’s such as the task API or the TSet API. In
both levels the program is modeled as some dataflow graph so in order to handle iterations the framework needs to embed the
iterations into the graph itself as done in Apache Flink3 or handle iterations within the worker as done in Twister2. This results
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in having to build dataflow graphs defined within the iteration block per iteration. This is because the dataflow graph defined by
the user needs to be converted into an execution graph that can be executed by the task execution layer of the framework. This
can be more clearly understood by looking at the KMeans algorithm in Listing. 1, when line 7 is being executed the dataflow
graph for ’reducedMap’ needs to be built for each iteration, which adds and unwanted overhead to the run-time. This issue is
handled in the iterative execution mode which caches the post-build state of the dataflow graph from the first iteration for the
subsequent iterations. The code change for this mode of execution are listed in Listing. 2. In Listing. 2 the ’cache()’ method takes
in an boolean value that specifies that it is a part of a iterative execution and the call in line 9 is used to clean up the environment
after the execution is complete.

Listing 1: K-Means TSet API pseudo code
1 . CachedTSet p o i n t s = t c . c r e a t e S o u r c e ( . . . ) . c ache ( )
2 . CachedTSet c e n t e r s = t c . c r e a t e S o u r c e ( . . . ) . c ache ( )
3 . ComputeTSet kMapTSet = p o i n t s . d i r e c t ( ) . map ( )
4 . ComputeTSet reducedMap = kMapTSet . a l lR educ e ( . . . ) . map ( . . . )
5 . f o r t = 0 t o I t e r do
6 . kMapTSet . a dd I npu t ( c e n t e r s )
7 . c e n t e r s = reducedMap . cache ( )
8 . end f o r ;

Listing 2: K-Means TSet API pseudo code using iteration optimization
1 . CachedTSet p o i n t s = t c . c r e a t e S o u r c e ( . . . ) . c ache ( )
2 . CachedTSet c e n t e r s = t c . c r e a t e S o u r c e ( . . . ) . c ache ( )
3 . ComputeTSet kMapTSet = p o i n t s . d i r e c t ( ) . map ( )
4 . ComputeTSet reducedMap = kMapTSet . a l lR educ e ( . . . ) . map ( . . . )
5 . f o r t = 0 t o I t e r do
6 . kMapTSet . a dd I npu t ( c e n t e r s )
7 . c e n t e r s = reducedMap . cache ( t r u e )
8 . end f o r ;
9 . r educed . f i n i s h I t e r ( ) ;

The migration of iterations into the workers can be seen as the next logical step; from managing iterations at the client level
as in Hadoop to managing them at a centralized entity as in Spark, and finally at the worker level. Such handling of iterations
has been tested in the HPC community for decades and proven to be efficient, especially in MPI implementations. This claim is
further strengthened in the results that are showcased in section 7 as well as from those in Twister:Net13.

4 TSET’S

TSet API is the highest level of abstraction provided by the Twister2 framework. TSet’s are semantically similar to RDD’s in
Spark and DataSets in Flink. They provide the user with an API that allows them to program applications through a set of
transformations and actions. TSet’s also support both batch and stream processing. The concepts discussed in the following
section apply to both modes; if a topic does not apply to both, it will be specifically noted.
Applications developed using TSet’s are modeled as a graph where vertices represent computations and edges represent

communications. The TSet programming API allows users to simply define the structure of the graph and then execute it.
Underneath, the graph will be converted into a more detailed version in the task layer, which takes into account the parallelism of
each vertex and data dependencies before execution. The main goal of this API is to provide a simpler, convenient and intuitive
interface for users. Certain restrictions have been introduced to the TSet API (compared to Task and Communication APIs) to
preserve the simplicity, while preserving the versatility as much as possible.
The TSet API consists of two main entities; "TSet" and "Link". Table 1 lists the TSet’s and Link’s currently supported by

Twister2. These two entities are the main building blocks of the TSet API, A TSet can be seen as vertices of the graph and Link
maps to an edge in the dataflow graph that is defined.
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TBase

sets
TSet

batch

ComputeTSet
SourceTSet
SinkTSet
CachedTSet

streaming
SComputeTSet
SSourceTSet
SSinkTSet

TupleTSet batch KeyedTSet
streaming SKeyedTSet

links TLink

batch

BSingleTLink AllReduceTLink
ReduceTLink

BIteratorTLink

DirectTLink
ReplicateTLink
PartitionTLink
KeyedGather
KeyedReduce
KeyedPartition
JoinTLink

BBaseGatherTLink AllGatherTLink
GatherTLink

streaming

SSingleTLink

SAllReduceTLink
SReduceTLink
SDirectTLink
SReplicateTLink
SPartitionTLink
SKeyedPartition

SBaseGatherTLink SAllGatherTLink
SGatherTLink

SIteratorTLink -

TABLE 1 Twister2 TSet Organization

4.1 TSet
A TSet represents a vertex in the dataflow graph. All applications start with a SourceTSet which can represent any data source.
The application graph can be then built by connecting other TSet’s with some Link in between them. There are a few restrictions
on the combinations that can be made when creating the graph. For example, a KeyedReduce cannot be directly applied on a
map since the former expects a key-value pair, therefore keyed operations can only be done after a MapToTuple transformation.
These restrictions are embedded into the programming API so that the end user will not have to worry about creating invalid
graphs.
All the TSets are separated into batch and streaming to closely reflect Twister2 Communication semantics. By functionality,

there are two broad categories of TSets.

• TSet - Used for individually typed data

• TupleTSet - Used for keyed data arranged in Tuples

These distinctions allow the API to provide well structured methods for keyed communication operations. They also allow TSets
to follow the lower level Task and Communication APIs more intimately.
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Name Description Is action
Compute Performs basic compute transformation, more general version of map and flatmap false
Map Performs map transformation false

Flatmap Performs flatmap transformation false
MapToTuple Maps Values to a Key-Value pairs false

Join Perform join operations such as inner-joins, outer-joins on the TSet’s false
Union Generates the union of 2 or more TSet’s false
Cache Evaluates the current graph and caches the values in-memory true
ForEach Evaluates the current graph and performs an computation per item true
Sink Evaluates the current graph and stores the results as speficied through the sink function true

TABLE 2 Twister2 TSet Transformations and Action

4.2 Link
A Link represents an edge in the dataflow graph, which is essentially a form of communication. Twister2 supports several types
of Link’s to cover all the basic communication patterns, as listed in Table 1. Each pattern is implemented in the communication
layer using optimized algorithms to gain the best performance (Table 3). For example, the reduce operation is done using an
inverted binary tree pattern to reduce the number of network calls that are made. These optimized communication patterns are
described in more detail in Twister:Net13.
TLinks are synonymous to the TaskAPI communications, and they are designed to reflect Twister2 Communication semantics.

These are elaborated in Table 3. Based on the communication message content, there are three categories of TLinks.

• SingleTLink - For communications that produces a single output

• IteratorTLink - For communications that produces an iterator

• GatherTLink - Specialized TLink for Gather operations (gather, allgather)

Just as its counterpart, TLinks are also separated into batch and streaming, as the communication semantics may change based
on the operation mode.

4.3 Lambdas, Functions and Operations
TSets are aimed to provide a convenient interface to quickly develop data flow logic. One key aspect there is the introduction
of simplified functions to capture user logic. While using Task API, users would have to endure extending Twister2 Compute
interfaces to build the logic, whereas in TSets, they can simply generate the data flow logic using lambda functions. The API
would translate that logic into Compute interfaces in the background. TSet API does not limit the users to just using Lambda
functions. The end users are still free to create compute functions by directly implementing the relevant interfaces, One advantage
of this approach is that user has access to more run-time meta-data as opposed to using Lambda functions because the TSet
Context object is not available to functions written as lambda functions.

4.4 Lazy Evaluation
Applications are evaluated in a lazy manner. That is, the graph will not be evaluated unless special transformation operations
are invoked. Currently, foreach(...), cache() and sink(...) are such action operations that would result in graph execution. Figure
2 depicts an example TSet execution.
When an action is called on a particular TSet, a subgraph will be created, by tracing backwards to determine the lineage of

the corresponding TSet. In the example provided, when the foreach operation is called on the Reduce TLink, a sub-graph will
be created which includes src, direct, map, reduce, and foreach in order.
Alternatively, users can use the TSetEnvironment to execute the entire graph. This would build the entire TSet graph by

traversing breadth-first, starting from the sources of the graph. In the example provided, foreach logic would need to be replaced
bymap TSets and then the graph can be executed entirely. In the streamingmode, this would be the default execution mechanism,
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Mode Communication Message Content Parallelism TLink Representation

Batch

Reduce T m to 1 SingleTLink<T>
Allreduce T m to 1 SingleTLink<T>
Direct Iterator<T> m to m IteratorTLink<T>
Broadcast Iterator<T> 1 to m IteratorTLink<T>
Gather Iterator<Tuple<Integer, T>> m to 1 GatherTLink<T>
Allgather Iterator<Tuple<Integer, T>> m to 1 GatherTLink<T>
KeyedGather Iterator<Tuple<K, Iterator<T>>> m to n IteratorTLink<Tuple<K, Iterator<T>>>
KeyedReduce Iterator<Tuple<K, T>> m to n IteratorTLink<Tuple<K, T>>
Partition Iterator<T> m to n IteratorTLink<T>
KeyedPartition Iterator<Tuple<K, T>> m to n IteratorTLink<Tuple<K, T>>
Join Iterator<JoinedTuple<K, U, V>> m to n IteratorTLink<JoinedTuple<K, U, V>>

Streaming

Reduce T m to 1 SingleTLink<T>
Allreduce T m to 1 SingleTLink<T>
Direct T m to m SingleTLink<T>
Broadcast T 1 to m SingleTLink<T>
Gather Iterator<Tuple<Integer, T>> m to 1 GatherTLink<T>
Allgather Iterator<Tuple<Integer, T>> m to 1 GatherTLink<T>
Partition T m to n SingleTLink<T>
KeyedPartition Tuple<K, T> m to n SingleTLink<Tuple<K, T>>

TABLE 3 Twister2 Communication semantics

FIGURE 2 Example TSet execution

because, in a streaming application, the data flow graph would be executed entirely, and executing a sub-graph is an undefined
mode of operation for the streaming mode.

4.5 Caching
The TSet API allows users to cache intermediate results that need to be used more than once during the computation. This can
specially be beneficial if an iterative computation is involved. Using an cached result would remove the need to evaluate the
graph repeatedly for each iteration. Calling the cache() method on a TSet results in the current graph to be evaluated and the
results cached in-memory as a CachedTSet, which could be utilized in two ways.

1. Treated as a source and build a new graph with the CachedTSet as the starting point

2. Set as an input to a separate TSet so the cached values can be accessed during computation steps
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FIGURE 3 K-Means TSet API dataflow graph

4.6 KMeans Walk through
The concepts in TSet’s can be better understood by analyzing a simple algorithm, to this end we will look at how KMeans
can be implemented using the TSet API. Listing. 1 shows the pseudo-code for implementing the K-Means algorithm using the
TSet API. The first two lines load the points and centers and cache them in memory. The ’createSource’ method takes in an
source function that is responsible of reading the data in. Line 3 calls a map transformation on the cached points TSet. This map
function contains the logic to calculate the new center allocations for each data point. New centers values are all-reduced to
collect results from the parallel map operation (line 4), and finally, the last map operation (line 4) averages the values to generate
the new centers, which are again added as an input for the next iteration (line 6). Both usages of caching mentioned in section
4.5 are used in this example, first the points CachedTSet is used as a starting point for the KMeans dataflow graph and secondly
the centers CachedTSet is used as an input for the Kmeans calculation at line 6. The structure of the dataflow graph for the K-
Means algorithm is shown in Figure 3. It is important to note that non on the transformations are actually evaluated until the
’cache()’ action is invoked at line 7.

4.7 Apache Beam Compatibility
Apache beam8 is an open source framework that provides a unified model for defining both batch and stream data processing
pipelines. Apache Beam8 has gained a lot of attraction and has been widely adopted in both the academia and industry alike.
Once defined using the unified programming model, the application/program which is called a pipeline in the Beam, is executed
using one of themany distributed data-processing back-ends. Apache Spark2, Google CloudDataflow16, Apache Flink3, Apache
Apex17 are some of the popular distributed processing back-ends supported by Beam. In order to support the execution of Beam
pipelines each backend needs to convert the Beam program into a program that is understood by the back-end. For example if
a user executes a Beam pipeline on a Spark back-end the framework will convert this program to a program based on Spark
DataSet’s. Being able to fully support Apache Beam as a distributed back-end opens up data processing frameworks to a larger
audience as well as validates the completeness of the data processing framework.
Twister2 fully supports Apache Beam programs and can run Beam pipelines as a distributed data processing back-end. This

is achieved by converting the Beam pipline into dataflow graphs using the TSet API. In order to fully support Beam pipelines
data-processing back-ends need to support the following five primitives. All these primitives are easily supported using only a
few constructs that are made available in the TSet API. (A PCollection is an unordered bag of elements in Apache Beam)
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FIGURE 4 Connected Dataflow graph example

1. Read - parallel connectors to external systems

2. ParDo - per element processing

3. GroupByKey - aggregating elements per key and window

4. Flatten - union of PCollections

5. Window - set the windowing strategy for a PCollection

5 CONNECTED DATAFLOW

In big data analytics, it is essential to understand the size of the problem which could be further divided into parallelizable tasks.
The coarse-grained parallelism18 divides the larger problem into a small number of tasks and each task may be able to perform
some set of operations which is also an example for task parallelism. However, fine-grained parallelism18 19 divides the process
into a large number of small tasks. However, it is important that the big data frameworks have the support for both coarse-
grained and fine-grained parallelism in order to achieve better performance for the big data analytics process. The existing big
data systems have traditionally adopted the coarse-grain parallelism to represent the computation in terms of Direct Acyclic
Graphs(DAG). In Twister2, we introduced a new term named "Connected Dataflow" to support the coarse-grained parallelism.
Using the connected dataflow, Twister2 is able to compose multiple independent or dependent dataflow graphs into a single
entity. The connected dataflow graph consists of multiple dataflow graphs which are arranged based on the hierarchy of the input
and output data. The data flows from one dataflow graph to another through memory and without using the disk. Internally, each
dataflow graph consists of multiple subtasks which consists of parent-child relationships between the tasks. In other words, a
dataflow graph has multiple task vertices and edges to connect those task vertices. The vertices represent the characteristics of
computations and edges represent the communication between those computations. The representation of connected dataflow
graph is shown in Fig. 4. The structure of dataflow graph 1 (DG1) and dataflow graph 2 (DG2) may or may not be identical in
nature. Each dataflow graph may have a source, compute, and sink tasks. The different dataflow graphs are connected through
communication edges(for example broadcast) in this example.

6 RELATEDWORK

While there is no formal agreed-upon definition for dataflow in the research literature, the term dataflow is used to denote various
versions of the same underlying model. Lee et al20 present dataflow process networks, which can be seen as a formal definition
of the dataflow model to some extent. Misale et al21 introduced a layered dataflow model building on top of20 to represent
big data analytics frameworks which follow the dataflow paradigm. The framework consists of three layers of dataflow models
which describe different levels of abstractions present in modern data analytics frameworks. They also show how several popular
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frameworks map into those three layers. Those three layers can be loosely mapped to the communication, task and data layers
of Twister2. Akidau et al16 describe how Google cloud dataflow adopts the dataflow model in its design and implementation.
Until Apache Spark 2.022 which has implemented with both coarse-grained and fine-grained mode when it is running over the
Mesos. In the coarse-grained mode, each Spark executor runs as a single task. The spark executors are designed based on the
following variables namely executor memory, executor cores, and number of executors.
Timely dataflow is another dataflow model which is implemented in the Naiad23 system for iterative and incremental dis-

tributed computation processing. It works on the principle of stateful dataflow model, in which the dataflow nodes contain the
mutable state and the edges carry the unbounded streams of data. Dryad24 is a high-performance distributed execution engine
for running coarse-grained data parallel applications which are embedded with an acyclic dataflow graph. In general, a Dryad
application combines computational vertices with communication links to form a dataflow graph. In addition, the user has to
program the dataflow graph in Dryad explicitly. Hierarchical Task Graph25 is an intermediate way to expose and exploit the
coarse-grain parallelism of an application. The main objective of the technique is to provide a program dependency representa-
tion without a cyclic dependency. It hides the cyclic dependencies by encapsulating within a super node. Connected Components
in Apache Flink3 is able to identify the larger part of the graph which are connected based on all the task vertices of the graph
with the same component ID. It is an iterative algorithm which is implemented based on the delta iteration. Turbine26 is a dis-
tributed many-task dataflow engine which uses extreme-scale computing to evaluate program overhead and generation of tasks.
The execution model of the system breaks parallel loops and invocation of concurrent functions into fragments for the execution
of tasks in a distributed manner. Using Twister2, the explicit dataflow programming is hidden from the user, which is different
from Dryad and similar to the Turbine model.
The relationship between dataflow and MPI at an operator level is not well-defined within the research literature to our

knowledge. There has been work done in this area which discusses the role of dataflow for parallel programs such as MPI
applications. Strout et al27 discuss the importance of understanding dataflow within MPI programs and introduce a dataflow
analysis framework for anMPI implementation. Pop et al28 introduce OpenStream, a dataflow extension to OpenMP, and discuss
the advantages of such a model.
Frameworks such as Apache Beam8 strive to provide users with a single API which can be used to develop parallel data

processing applications. Apache Beam was developed as the programming model for Google Cloud Dataflow16. Li et al29
discuss the challenges faced when adding IBM streams30 as an distributed data processing backend for Beam.

7 EVALUATION

In order to evaluate the performance of Twister2 at both the Task and TSet layers and to understand the overheads created by each
layer of abstraction, we developed and evaluated a couple of applications. To this end, Twister2 is evaluated against identical
(algorithmically) implemented versions of the same algorithms and applications in OpenMPI (v4.0.1) and Spark (v2.4). This
evaluation focuses more on understanding the performance of Twister2 Task layer and TSet layer. A more detailed evaluation of
Twister2 which involves other frameworks such as Flink, Storm, Heron, etc. can be found at13. The applications implemented
to evaluate the performance are K-Means and Distributed SVM. Additionally, one more test is performed to understand the
overheads created when additional nodes are added to a dataflow graph.
Two compute clusters were used to perform the evaluation. The first cluster had 16 nodes of Intel Platinum processors with

48 cores in each node, 56Gbps InfiniBand and 10Gbps network connections. The second cluster had Intel Haswell processors
with 24 cores in each node with 128GB memory, 56Gbps InfiniBand and 1Gpbs Ethernet connections. 16 nodes of this cluster
were used for the experiments. K-Means and SVM are the algorithms discussed in this paper, considering iterative-based and
ensemble-based designing respectively.

7.1 K-Means
The need to process large amounts of continuously arriving information has led to the exploration and application of big data
analytics techniques. Likewise, the painstaking process of clustering numerous datasets containing large numbers of records
with high dimensions calls for innovative methods. Traditional sequential clustering algorithms are unable to perform such a
task as they are not scalable in relation to larger sizes of data sets and are most often computationally expensive in memory
space and time complexities. Yet the parallelization of data clustering algorithms is paramount when dealing with big data.
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K-Means clustering is an iterative algorithm, hence it requires a large number of iterative steps to find an optimal solution.
This procedure increases the processing time of clustering. Twister2 provides both a dataflow task graph-based and TSet-based
approach to distribute the tasks in a parallel manner and aggregate the results, which reduces the processing time of the K-
Means clustering process. The pseudocode for the K-Means algorithm is given in Listing. 1 and Listing. 2 , the second utlizes
the iteration optimization described in section 3.2.
Figure. 5 shows the total compute time (data loading times are not included) for K-means on a 16-node cluster with a par-

allelism of 128 for OpenMPI, Spark, Twister2 Task and Twister2 TSet layers, The Tset layer has two implementations which
correspond to Listing. 1 (TSet) and Listing. 2 (TSet Iterative). Each run was done with 2 million data points with 2 features and
a varying number of centers starting from 1000 centers and increasing up to 16000 centers for 100 iterations. As seen in the
graph 5 both Task layer implementation and the TSet Iterative implementation perform on the same level as OpenMPI based
implementation. This shows that while the TSet API provides a very high level abstraction for developing complex parallel
applications it adds very little overheads to the program. It can be clearly seen that Apache Spark performs 3-4x slower than both
TSet Iterative and Task implementations of Twister2. The basic TSet based implementation which is based on the algorithm
in Listing. 1 shows the overheads that are added by the repeated build step for the dataflow graphs as discussed in section 3.2.
The efficient handling of iterations in Twister2 is the main reason it is able to outperform Spark for iterative algorithms such
as K-Means. A detailed evaluation of the Twister2 communication framework and how it stacks up against OpenMPI and other
frameworks are presented in Twister:Net13, Twister:Net is the underlying communication framework that is used by the Task
layer, and by the TSet API (through the Task layer).

FIGURE 5 K-Means job execution time on 16 nodes with varying centers, 2 million data points with 128-way parallelism for
100 iterations.

7.2 SVM
Support Vector Machines (SVM) algorithm is one of the prominent machine learning algorithms used by most of the researchers
in vivid domain sciences. SVM can be implemented in various ways. Three major types of implementations on SVM are Matrix
decomposition methods, sequential minimal optimization-based methods, and stochastic gradient descent-based methods. The
latter is proven to be efficient in terms of both computation and communication. Implementation can be done as an itera-
tive or ensemble model. Ensemble method is a very popular type of implementation among domain scientists. Twister2 SVM
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implementation uses SGD-based ensemble model, and the designed model is highly efficient training-wise. Twister2 SVM was
evaluated on a 16-node cluster with variable parallelism with all node usage enabled. In this research, the idea is to showcase
how different implementation methods can be used to train SVM and understand which methods are optimized based on the
purpose of the application programmer. In the ensemble model, the computation takes place using the implicit communication
and computation models in each framework. In the developed model, weight calculation is done in each process until the given
number of iterations are computed (till convergence) and in the final step, a communication is done to synchronize the model
over the parallel workers.
OpenMPI is one of the prominent choices by high performance computing community in application programming. The

programming model in MPI is mainly favorable for bulk synchronous parallel model. Allreduce collective communication has
been used as the main model synchronization tool in OpenMPI to implement the application. Spark implementation based on
RDD uses a basic driver and worker model in Spark. For model synchronization, there is a call from each worker to driver and
model in synchronized in the final stage. In Twister2 framework, we implemented the SVM model in two different ways. One
method resembles to a similar way like Spark as far as programming abstraction is considered. This method is known as TSet
based implementation. The other programming abstraction is a task graph based programming model similar to that of Apache
Storm API. Twister2 underneath uses ISend, IRecv function calls to implement its own communication model based on tree
based optimization. The task level abstraction provides a convenient programming model in writing these applications. From the
conducted experiments it is evident that the Twister2 Task and Twister2 TSet APIs are performing better than the Apache Spark
RDD based computation model. Even though OpenMPI based implementation is much faster than the other implementations.
But the gap in performance time in the MPI-based implementation and Twister2-based implementation is lesser than that of
Twister-based implementations and Spark RDD-based implementations. The results of the experiments are shown in Figure 6.

FIGURE 6 SVM job execution time for 320K data points with 2000 features and 500 iterations, on 16 nodes with varying
parallelism

7.3 Dataflow Node
There are many tests that can be performed to understand the overheads in dataflow systems. One important test would be to
evaluate the increased overhead when a single dataflow node is added to the dataflow graph. The test results will also highlight
the importance of a task execution optimizer that merges consecutive tasks when possible. To test this, we created two dataflow
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graphs with one map vertex that performs no operation. The first graph is "source-map-allreduce" and the second is "source-
map-map-allreduce". The operations were done for 200K data points and 100 iterations in both frameworks. Figure. 7 shows
the results of running these two configurations with parallelisms of 128 and 256 for both Twister2 (Task layer) and Spark.
From the results, we can observe a slight overhead in Twister2 framework. This overhead is not present in Spark because Spark
stages consecutive map operations and runs them as a single pipeline unit, removing the overhead. This is performed through
an optimizer that evaluates the dataflow graph and mergers map operations when possible. Even with the overhead, it can be
observed that Twister2 framework outperforms Spark by a large factor. This is because of the optimized communication patterns
that are employed by Twister2 and its efficient model for iterations. Task execution optimizations such as pipelining will be
introduced into Twister2 in future updates to address these overheads.

FIGURE 7 Execution time for Source-Map-AllReduce (SMA) and Source- Map-Map-AllReduce(SMMA) graph configura-
tions. With 200K data points and 100 iterations

8 CONCLUSION AND FUTUREWORK

This paper presented a hybrid approach for dataflow-based iterative programs. The implementation achieved comparable perfor-
mance compared to OpenMPI and much better performance compared to Apache Spark for K-Means and SVM applications. We
believe there are many aspects of the framework that can be further improved to reduce overhead and draw it closer to OpenMPI
performance.
Twister2 provides a dataflow model that is similar to Spark, where a central scheduler is used for allocating parallel tasks.

Such a design is more suitable for workflow-style applications but unsuitable for parallel applications, as the overhead of the
central scheduler (distributing tasks to workers at each iteration as a "sequential bottleneck") is high. We are actively working
on incorporating checkpointing-based fault tolerance to the system for both streaming and batch applications. While Twister2
supports Apache Beam piplines, The Twister2 distributed processing back-end, also known as a runner, is based on the initial
version of Apache Beam runner, recently Apache Beam has introduced a newer design for the runners named "portable runners"
which allow Beam piplines to be written in any of the supported SDK’s such as Java, Python, GO, etc. We are actively working
on developing a Twister2 portable runner for Apache Beam and integrating the finished runner directly with the Apache Beam
project.
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Twister2 follows a well-defined layered model to handle data flow applications. Currently, the framework is built entirely upon
Java, and development has started on plugging in a C++ Twister2 Communication layer for better performance. The goal is to
manage memory optimally, because Java garbage collection has been a bottleneck for high performance applications. Garbage
collection pauses have been a limiting factor in many data analytics frameworks based on Java, including Apache Spark31.
There is an opportunity for an optimizer in the Twister TSet API. An optimizer would parse the user’s TSet Graph and eliminate

redundant data operations. Furthermore, it would also be possible to merge subsets of operations that could be executed on a
single execution.
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