
Building a Distributed Block Storage System for Cloud Infrastructure

Abstract

The development of cloud infrastructures has
stimulated interest in virtualized block storage systems,
exemplified by Amazon Elastic Block Store (EBS),
Eucalyptus’ EBS implementation, and the Virtual
Block Store (VBS) system. Compared with other
solutions, VBS is designed for flexibility, and can be
extended to support various Virtual Machine
Managers and Cloud platforms. However, due to its
single-volume-server architecture, VBS has the
problem of single point of failure and low scalability.
This paper presents our latest improvements to VBS for
solving these problems, including a new distributed
architecture based on the Lustre file system, new
workflows, better reliability and scalability, and read-
only volume sharing. We call this improved
implementation VBS-Lustre. Preliminary tests show
that VBS-Lustre can provide both better throughput
and higher scalability in multiple attachment scenarios
than VBS. VBS-Lustre could potentially be applied to
solve some challenges for current cluster file systems,
such as metadata management and small file access.

1. Introduction

The area of cloud computing has been a popular
topic in both industry and academia in recent years,
resulting in products such as Amazon Elastic Compute
Cloud (EC2) [1], Eucalyptus [2], Nimbus [3],
OpenNebula [4], and OpenStack [5]. These systems
typically implement Infrastructure as a Service (IaaS)
in the form of Web services, and dynamically allocate
computing resources to users in the form of virtual
machines (VM). In this paper we call software
implementations of these cloud computing systems
"cloud platforms", and corresponding physical
deployments "cloud infrastructures". The development
of cloud infrastructures stimulates researchers' interests

in cloud storage systems, including Storage as a
Service such as Amazon Simple Storage Service (S3)
[6], distributed file systems such as Hadoop
Distributed File System (HDFS) [7], and block storage
systems, such as Amazon Elastic Block Store (EBS)
[8], the EBS implementation in Eucalyptus, which we
will call “Eucalyptus EBS” for short, and the Virtual
Block Store (VBS) [9] system developed by the
Community Grids Lab of Indiana University.

Our research in this paper focuses on block storage
systems and specifically on our VBS system. VBS
implements similar Web service (WSDL) interfaces to
EBS, and provides persistent virtual block volumes to
cloud users. Users can attach their volumes to VM
instances created in cloud infrastructures, and then use
the volumes as if they were local disks installed on
their VMs.

Different from S3, VBS does not transport data
through Web service invocations. Web services are
only used for creating and attaching virtual volumes,
and data storage is completed in the form of file
systems or databases created on the volumes.
Compared with HDFS, VBS is different in the sense
that it gives users direct control over virtual block
devices, which can be utilized in various ways – e.g.,
users can deploy a HDFS on a virtual cluster of VMs
that are using VBS volumes as their storage devices.
Finally, compared with the storage provided by VM
instance images, virtual volumes have the advantages
of persistency and extendibility. Volumes have life
times that are independent of VM instances, and thus
can be repeatedly detached from terminated VMs and
attached to new VMs. Users can create more volumes
on demand, not limited by the resources of the VM
images or Virtual Machine Manager (VMM) nodes.

Going Beyond VBS: VBS is designed to work
directly with VMMs, with the goal of more flexibility,
meaning that it can be readily extended to support
various VMM and cloud platforms. However, due to

Xiaoming Gao
Indiana University
gao4@indiana.edu

Yu Ma
Indiana University
yuma@indiana.edu

Marlon Pierce
Indiana University

mpierce@cs.indiana.edu

Mike Lowe
Indiana University

jomlowe@iupui.edu

Geoffrey Fox
Indiana University
gcf@indiana.edu

its single-volume-server architecture, VBS has the
problems of single point of failure and low scalability.
To solve these problems, we need to build a new
distributed storage architecture for VBS, either by
extending its current architecture with multiple volume
servers and implementing proper mechanisms for
integrated storage management and high reliability, or
by utilizing existing distributed storage technologies
such as distributed file systems. We find the latter way
preferable, since it allows us to take advantage of the
storage management and reliability mechanisms
provided by existing systems, and concentrate on the
block storage service implementations. We choose to
build a new distributed architecture for VBS based on
the Lustre file system [10], because: (1) it has been
successfully deployed on many top supercomputers in
the world, providing high I/O performance and
excellent scalability and reliability; (2) it is an open
source project, and thus we can make necessary
modifications to it to support the functionality of VBS.
We call the system built on the new architecture “VBS-
Lustre”. By leveraging Lustre’s distributed storage
solution and fail-over mechanism, VBS-Lustre is able
to achieve simpler implementation, as well as higher
reliability, scalability, and I/O throughput than VBS.
We also have added a set of new features to VBS-
Lustre, including secure access to services, volume
ownership management, and read-only volume sharing.
This paper will present the design and implementation
of VBS-Lustre, compare it with VBS, and discuss its
merits and shortcomings.

2. Previous work and related technologies

2.1. VBS

VBS was our initial approach to building a block-
level cloud storage system. It provides a set of block
volume operations to cloud users, including
volume/snapshot creation and deletion, volume
attachment and detachment, and volume/snapshot
description. Fig. 1 shows a typical use case of VBS.
After creating VM instances in a cloud infrastructure
such as Nimbus, users can create virtual block volumes
in VBS, and attach them to their (usually Xen-based)
VMs. After the attachment is complete, they will be
able to access the volumes from their VMs as if the
volumes were local disks. Moreover, users can create
snapshots of their volumes, which are static "copies" of
the volumes at a certain time point, and then create
new volumes based on the snapshots, so that they will
all have the same initial state and data as the snapshots.
Users can then attach the new volumes to different
VMs, launch different processes of computation and

generate different results. Storage on volumes is off-
instance and persistent, because volumes have different
life times from VM instances, and will be maintained
by VBS even after VM images are destroyed.

Figure 1. Use of VBS: volumes and snapshots [9]

VBS is designed to work directly with VMMs, and
is not coupled with any specific cloud platform. Fig. 2
shows its Web service architecture. There are two
types of nodes – one volume server and one or more
VMM nodes, and three types of Web services – VBS
Web service, Volume Delegate Web service, and
VMM Delegate Web service, in the architecture. On
the volume server, Logical Volume Manager (LVM)
[11] is used to manage volumes. On VMM nodes, Xen
[12] is used to manage VM instances, and the
technique of Virtual Block Device (VBD) is used to
attach a block device in Dom0 to DomU instances. The
iSCSI [13] protocol is used for enabling remote access
from VMM nodes to logical volumes created on the
volume server. The Volume Delegate service is located
on the volume server, responsible for completing LVM
and iSCSI operations. A VMM Delegate service is
deployed on each VMM node, responsible for
completing iSCSI and Xen VBD operations. The VBS
Web service sits in the front end and answers VBS
clients' requests, and satisfies them by coordinating the
operations of Volume Delegate service and VMM
Delegate service.

Figure 2. VBS web service architecture [9]

This architecture is simple, and can be readily
extended to support other types of VMMs and various
cloud platforms [9]. However, the single volume server
can result in problems of single point of failure and
low scalability. The failure of the volume server will
take the whole system down and cause constant disk

access errors on related VM instances. The bandwidth
of the volume server is shared among all volume
attachments; as a result, the I/O throughput of the
volumes could degrade fast as the number of
attachments increases.

To solve these problems, we have built a new
distributed architecture with better reliability and
scalability for VBS, as will be discussed in Section 3.

2.2. Eucalyptus EBS

Eucalyptus is a private cloud platform that
implements the same interfaces as Amazon EC2, S3,
and EBS. Similar to VBS, Eucalyptus EBS is also built
on a single-volume-server architecture, and the main
difference is that Eucalyptus uses ATA over Ethernet
[14] to enable remote access to volumes, which limits
its usability within Ethernet networks. Therefore, it
also suffers from the problems of single point failure
and low scalability. For example, [15] reports EBS
performance degradation in Eucalyptus in cases of
multiple volume attachments, and [16] presents low
performance results even in single attachment
configurations. Based on the application scale of
Amazon EBS, we hypothesize that it is built on a
distributed architecture, but little is known about its
actual design and implementation.

2.3. The Lustre file system

The Lustre file system is a well-known open source
cluster file system currently owned by Oracle. Lustre
has been deployed on many of the world’s largest and
fastest high performance computing (HPC) clusters
and supercomputers, such as the Jaguar supercomputer
at Oak Ridge National Laboratory (ORNL), and Big
Red at Indiana University.

Lustre uses a highly scalable distributed storage
architecture, as shown in Fig. 3, and can support up to
tens of thousands of client systems, scale to petabytes
(PB) of storage, and provide an aggregate I/O
throughput of hundreds of gigabytes per second
(GB/sec). There are four types of roles in this
architecture: clients, Metadata Server (MDS), Object
Storage Servers (OSS), and Object Storage Targets
(OST). MDS manages the metadata of all files in the
file system, and answer all clients’ namespace
operation requests. OSSs are responsible for storing the
actual data of files, and OSTs are storage devices
connected to OSSs, such as disk arrays or storage area
networks. A file system can have one MDS and one or
more OSSs, and each OSS can be connected to one or
more OSTs. The networking layer of Luster can

support various network connections, including Elan,
Myrinet, InfiniBand, and TCP/IP.

Figure 3. Lustre architecture [10]

The following features of Lustre make it attractive
for being used as the basis for building a distributed
architecture for VBS:

(1) Distributed file storage: Lustre uses an object-
based storage model, and stores data in the form of
objects on OSTs. File data is striped across objects on
different OSTs, and users can configure parameters
such as stripe size and stripe count to achieve best
performance. The capacity of a Lustre file system
equals the sum of the capacities of OSTs, and the
aggregate available bandwidth equals the sum of the
bandwidth offered by OSSs to clients. Users can
extend storage capacity by dynamically adding more
OSSs and OSTs. Data striping balances work load
among OSSs, leading to high I/O throughput and
excellent scalability as the number of client increases;

(2) High reliability mechanisms: as shown in Fig. 3,
MDSs and OSSs can both be configured into failover
pairs with shared storage, so that when one node in a
pair fails, the other one will take over its work load
until it recovers. OSTs can be configured as RAID to
handle disk failures better. These mechanisms can be
utilized to improve the reliability of VBS.

3. VBS-Lustre architecture: a new approach

Leveraging the advantages of Lustre, we have built
the distributed architecture as shown in Fig. 4 to solve
the problems of VBS. We call the new system "VBS-
Lustre". In this architecture, a Lustre file system is
used as the backend for storing all the volumes, and
each volume or snapshot is implemented as a file. We
call the file corresponding to a volume or snapshot a
“volume file” or a “snapshot file”. Therefore, all OSSs
in Lustre are volume servers for VBS-Lustre, and there
can be multiple Volume Delegate services deployed.
However, Volume Delegate services don't have to be

located on OSSs; they can be running on any Lustre
client node. Every VMM node is configured as a
Lustre client, and still has one VMM Delegate service
running on it. The iSCSI protocol is no longer used,
since VMM nodes can directly access volumes through
file system interfaces. We change the name of the
frontend Web service in VBS-Lustre to "VBSLustre
service", and this service can be deployed anywhere, as
long as it can communicate with Volume Delegate
services and VMM Delegate services. A database is
used to manage volume metadata, including the
mapping between volume IDs and Lustre file paths,
attachment information, etc. It is only accessed by the
VBSLustre service. As in VBS, the VBSLustre service
completes clients' volume operation requests by
coordinating the actions of Volume Delegate services
and VMM Delegate services. Details about how the
coordination happens will be covered in Section 4.

Figure 4. VBS-Lustre architecture

Compared with the architecture of VBS, this
architecture has the following advantages:

(1) Since volumes are implemented as files, volume
data is striped across objects stored on different OSTs.
Therefore, the maximum volume size is not limited to
the capacity of any single OST or OSS. Moreover,
since Lustre is optimized for I/O access to large files,
and volume sizes are usually on the level of tens or
hundreds of gigabytes, VBS-Lustre can get better
volume throughput than VBS, as will be shown in
Section 5;

(2) Accesses to volumes are now distributed across
all OSSs, so the aggregate throughput is not limited to
any single volume server, and the whole system is
much more scalable than VBS;

(3) Leveraging Lustre's high availability mechanism,
volume servers (i.e., OSSs) can be configured into
failover pairs with shared storages, so that the failure
of any single volume server does not have a significant
impact on the whole system. Moreover, since volume

storage is distributed across different OSSs, even the
failure of a pair of volume servers is not necessarily a
fatal problem for the whole system. To avoid a single
point of failure of the VBSLustre service, multiple
service instances can be deployed on different nodes,
and they can share the same database. The reliability of
the database can be guaranteed by utilizing mature
database reliability technologies in industry.

4. VBS-Lustre implementation

4.1. Workflows

Figure 5. VBS-Lustre workflows

Workflows define the coordination between Web
services in VBS-Lustre for competing clients' volume
operation requests. The Web service APIs provided by
VBS-Lustre are exactly the same as VBS, but due to
the new architecture, the implementations of most
operations are different, as shown in Fig. 5. Most

workflows in VBS-Lustre are simpler, as explained in
the following:

(1) Create-volume and describe-volume: after
receiving a client’s request for creating a new volume
of a given size, the VBSLustre service will first
generate a new volume ID and a path for the
corresponding volume file, and then invoke a Volume
Delegate service to create the new volume file. The
Volume Delegate service will first check if there is
enough space in the Lustre file system for the new file.
If the answer is yes, the Volume Delegate service will
first return a temporary success message, and then start
a new thread to complete the creation of the new file.

Upon receiving the success message, the
VBSLustre service will create a new record of
metadata for the new volume with a status of
“pending”, and return this record to the client. If there
is not enough space for the new volume, the Volume
Delegate service will return a failure message to the
VBSLustre service, which will then return a failure
result to the client.

When starting the new file creation thread, the
Volume Delegate service checks if the new volume
should be created based on a snapshot. If the path of a
snapshot is given, the thread will execute the “cp”
command to copy the snapshot file to the volume file
path; otherwise, the thread will execute the “dd”
command to fill the new volume file with zeroes until
the file size reaches the requested volume size. After
the thread finishes, the Volume Delegate service will
invoke the VBSLustre service to update the status of
the new volume. If the command succeeds, the status
will be set to “available”; otherwise to “failure : cmd
error”, and a detailed error message will be sent to
VBSLustre service and logged. After the creation of a
volume, the client can call the describe-volume
operation on it, and the VBSLustre service will return
related metadata.

 (2) Create-snapshot and describe-snapshot: the
workflows for snapshot creation and description are
similar to those of volumes. The main difference is that
the new file creation thread always executes the “cp”
command to copy the volume file to the path of the
new snapshot file.

(3) Attach-volume: an attach-volume request
specifies which volume should be attached to which
VM, and which VMM is hosting the VM. Upon
receiving a request, the VBSLustre service will invoke
the corresponding VMM Delegate service to execute
the “xm block-attach” command to attach the volume
file as a block device onto the requested VM. If the
command succeeds, the VBSLustre service will add an
attachment metadata record for the volume, and return
the attachment information to the client; otherwise a
failure message is returned. After a volume is attached,

the response to a describe-volume operation on it will
contain its attachment information.

(4) Detach-volume: the workflow of the detach-
volume operation is similar to attach-volume. The
main difference is that the command executed by the
Volume Delegate service is “xm block-detach”.

(5) Delete-volume and delete-snapshot: the
workflows of the delete-volumes and delete-snapshot
operations are similar. Upon receiving a request, the
VBSLustre service will invoke a Volume Delegate
service to execute the “rm –f” command to delete the
corresponding volume or snapshot file. If the command
succeeds, the VBSLustre service will delete the
metadata of the volume or snapshot and return success
to the client; otherwise a failure message is returned.

4.2. Security and access control

In VBS-Lustre, Web service accesses are protected
with HTTPS channels; users are authenticated through
public key authentication and are only authorized to
take operations on volumes and snapshots they created.

Web services in VBS-Lustre are deployed with the
Apache Axis2 [17] technology, and public key
authentication is implemented by applying the Apache
Rampart module. New accounts are created by adding
users’ certificates to the trusted certificate store of the
VBS-Lustre service, and the subject names contained
in the certificates are added as user IDs. When the
VBSLustre service is invoked by a client, it will first
get the certificate of the client through the “Message
Context” provided by Axis2, find the subject name as
the user ID, and then check if the volume or snapshot
that the client is trying to operate on is created by the
same user ID. If not, an error message will be returned
to the client.

4.3. Read-only volume sharing

Here by “read-only volume sharing”, we mean
attaching a volume to multiple VM instances at the
same time. This is not supported in either Amazon
EBS or Eucalyptus EBS, but is potentially a very
useful feature in many cases, especially when the
shared volume is large, and it takes a significant
amount of time and space to duplicate it. For example,
in the QuakeSim [18] project, there are situations
where we have a large set of Global Positioning
System (GPS) data and want to perform different types
of analysis on it. In this case, we can deploy the
processes for different analysis on different VMs,
which share a common volume containing the data set
in read-only mode, and attach a separate volume in
writable mode to each VM. After the attachment is

done, we can start the processes on different VMs at
the same time, and direct their output to the writable
volumes.

VBS-Lustre supports read-only volume sharing by
adding an “attach-mode” parameter to the attach-
volume operation, and adding this information to
attachment metadata. When a client tries to attach an
already attached volume to another VM, the
VBSLustre service will check if the attach-modes of
both the existing attachment(s) and the new operation
are read-only, and will only allow the operation to
continue if the check is passed. On the VMM node, the
VMM Delegate service completes a read-only
attachment by executing the “xm block-attach”
command with an argument of “r”, instead of “w”. The
distributed volume storage architecture of VBS-Lustre
can provide good throughput to concurrent reads from
multiple VM instances.

5. Preliminary performance test

To complete initial validation of VBS-Lustre and
compare it with VBS, we set up the test beds as shown
in Fig. 6. In the VBS-Lustre test bed, Lustre 1.8 is
installed on 1 MDS and 4 OSSs. The MDS has 4 Intel
Xeon 2.8G CPUs, 512MB of memory, 1 Lsi Logic
40GB Ultra320 SCSI hard disk, and 2 Seagate 147GB
10K RPM Ultra320 SCSI hard disks. Each OSS has 2
AMD Opteron 2.52G CPUs, 2GB of memory, and 1
IBM 73GB 10K RPM Ultra320 SCSI hard disk. Each
VMM has the same hardware configuration as an OSS,
except the memory size is 1.6GB. All machines are
running Red Hat Enterprise Linux (RHEL) 5.3 and
using LVM 2.0 to manage the disks. A 20GB logical
volume is created on the MDS and used for metadata
storage. A 25GB logical volume is created on each
OSS and used as an OST, leading to an aggregate
storage space of 100GB. A stripe size of 4MB is used
in Lustre, and each volume file is striped across 2
OSTs. Xen 3.1 is installed on both VMM nodes, and 1
VM is created on each VMM, which has 1 AMD
Opteron 2.52G CPU, 256MB of memory, and a 4GB
CentOS 5.2 disk image. The same VMMs and VMs are
used in the VBS test bed and local volume test bed.
The volume server in the VBS test bed has the same
configurations as an OSS in the VBS-Lustre test bed.
All nodes are connected to a 1Gb Ethernet LAN.

We created two 5GB volumes in VBS, two 5GB
volumes in VBS-Lustre, and one 5GB LVM volume
on the local disk of each VMM node – we call it a
"local volume". An ext2 file system is created on each
volume, and we tested the performance of VBS, VBS-
Lustre, and local volumes in both single-volume and
two-volume situations. In single-volume situations,

one VBS volume, one VBS-Lustre volume, and one
local volume were tested respectively by being
attached to a VM. In two-volume situations, two VBS
volumes, two VBS-Lustre volumes, and two local
volumes were tested respectively by being attached to
two VMs. Bonnie++ 1.03e [19] was used to complete
the tests, and a file size of 4GB was used in each test to
exceed the memory cache size at all possible layers,
including on VM, on VMM, on the VBS volume
server, and on Lustre OSSs. A block size of 4KB is
used in the block read/write tests. In each test, the
testing process was repeated 10 times to alleviate the
impact of accidental interruptions. In two-volume
situations, the testing processes on two VMs were
started at the same time.

Figure 6. Test bed configurations

Fig. 7 shows the throughput difference between
VBS, VBS-Lustre, and local volumes. Numbers are
average values of 10 test runs. The average values of
two-volume tests are computed by dividing the average
aggregate throughput by 2. As can be seen, leveraging
the distributed volume storage architecture, VBS-
Lustre out-performs VBS on all kinds of operations in
the single-volume test. VBS-Lustre also performs
better than local volumes on block operations, although
not as good on per-char operations, mainly because
these operations are CPU-intensive, and the overhead
of VBS-Lustre on them exceeds the benefits of
distributed volume storage. Moreover, while VBS
experiences a performance degradation of ~50% or

even more in the two-volume test, VBS-Lustre is able
to make use of the bandwidth and disks on all related
nodes in an aggregated way, and provide both
consistent per-volume performance and aggregate
throughput that is not limited by any single server.
VBS-Lustre has a slight throughput degradation on
block operations in the two-volume tests, but mainly
due to different hardware performance on OSS nodes.

Figure 7. Throughput Comparison

Since a major use case of VBS-Lustre volumes is to
host file systems, file system metadata operation
performance is an important concern in our tests. Table
1 presents the metadata performance of VBS-Lustre in
both single-volume and two-volume tests. The
numbers are average values of 10 runs. As can be seen,
the difference between the two situations is trivial, and
the aggregate metadata operation throughputs in the
two-volume tests are almost twice as high as in the
single-volume tests.
Table 1. VBS-Lustre metadata performance (files/s)
Test type Sequential

create
Random
create

Random
delete

single-volume 6629 6654 23211
two-volume VM1 6510 6724 23312
two-volume VM2 6565 6771 23274
two-volume Agg. 13075 13495 46586

6. Conclusion and future work

The primary contribution of this paper is the
description and initial evaluation of VBS-Lustre, an
extension of our previous VBS system. Compared with
VBS, the most significant difference with VBS-Lustre
is its distributed architecture based on the Lustre file
system. Leveraging Lustre's distributed storage and
high availability mechanisms, VBS-Lustre avoids the
problem of single point of failure, and provides higher
I/O throughput and better scalability than VBS. VBS-
Lustre also has simpler workflow implementations and
many new features, including Web service security,
user access control, and read-only volume sharing. Our
preliminary performance tests show that VBS-Lustre

can provide higher throughput than VBS in both single
attachment and multiple attachments scenarios.

There are two directions that we will continue to
work on in the future. On one hand, we will keep
improving VBS-Lustre for better performance and
more features. On the other hand, we will consider
applying VBS-Lustre in other fields, such as
distributed file systems.

6.1. Future improvements to VBS-Lustre

First, the tests in Section 5 are carried out for just
validating the implementation of VBS-Lustre, and thus
not large in scale. We plan to use FutureGrid [22]
resources to test VBS-Lustre on larger scales in the
next step.

Second, the creation of new volumes and snapshots
are completed with the “dd” and “cp” command, which
could be a long process for large volumes. We will
consider modifying Lustre to invent faster solutions.

Third, new users are now created by directly adding
their self-signed certificates to the services’ trusted
certificate store. We will add a certificate authority
(CA) to VBS-Lustre and implement user creation by
signing new user’s certificate with this CA.

Fourth, although Lustre supports commodity
hardware as OSSs and OSTs, it does not provide
solutions for their reliability. Therefore, we need to
find a good reliability mechanism for commodity
hardware in order to use them in VBS-Lustre.

6.2. Applying VBS-Lustre to build a new type
of distributed file system

Figure 8. VBS File System

In the previous sections we reviewed the advantages
of adopting Lustre as a substrate technology for VBS.
In this section we review potential contributions of
VBS-Lustre to Lustre. Traditional cluster file systems
are facing many challenges, such as metadata
maintenance, small file access, and performance
degradation when the number of concurrent processes
increases. For example, currently there is only one

active MDS in a Lustre file system, which could finish
3000-15000 metadata operations per second [10].
When the number of concurrent processes gets large,
the MDS could become a performance bottleneck of
the whole cluster. Based on VBS-Lustre, it is possible
to build a new type of distributed file system as shown
in Fig. 8, which we call "VBS File System" (VBSFS).
VBSFS can provide the same functionalities as cluster
file systems in certain use cases, and help solve these
challenges by limiting the scope of competition for
resources to a smaller number of concurrent processes.

In VBSFS, all nodes can be attached to volumes in
VBS-Lustre. Each user of VBSFS is provided with a
private volume, which is used to create a file system as
the user's home directory. VBSFS also provides a
public volume containing a file system where all public
software and data are installed. The public volume is
attached to all nodes in read-only mode, and updated
by system administrators during maintenance time.
When a user tries to run a process on a node, that node
will first be attached to the user's private volume, so
that the process can access all the files in his/her home
directory. Since VBS-Lustre only supports read-only
sharing on the volume level, VBSFS cannot handle the
situations where processes on different nodes are trying
to write to the same home directory. But for the other
cases that VBSFS can handle, it has the following
advantages:

(1) The workload of Lustre MDS is tremendously
relieved, since it only needs to maintain the volume
files' metadata, which are mostly stable;

(2) User processes' metadata operations happen
within their private virtual volumes, which are actually
translated to I/O operations to volume files in Lustre.
Lustre’s caching and parallel I/O mechanisms can
make these operations much more efficient than the
metadata operations taken on Lustre MDS. Therefore,
VBSFS can potentially achieve a much larger
aggregate metadata throughput than Lustre. Table 1 in
Section 5 shows an example of this merit;

(3) I/O operations to small files in VBSFS are
translated to I/O’s to sections of big volume files in
Lustre, and thus can benefit from the caching and
parallel I/O mechanisms of Lustre, which are specially
optimized for access to large files;

(4) In Lustre, every process has to go through the
MDS for synchronization, so the concurrency domain
is the whole cluster. In VBSFS, the concurrency
domains of users' processes are separated by the scope
of the virtual volumes they access, mostly only the
users' private volumes. Processes only compete with
other processes that are accessing the same virtual
volumes, and the synchronization is handled by the
driver modules of the on-volume file systems, which
are running on client nodes.

While traditional distributed file systems are trying
to separate concurrency domains by namespace
partitions or server nodes [10][20][21], VBSFS is
actually trying to separate concurrency domains by
users. We believe these ideas of VBSFS are valuable
for solving various challenges to current cluster file
systems, and we look forward to combining them with
traditional systems in our future efforts for conquering
the challenges.

References

[1] Amazon EC2, http://aws.amazon.com/ec2/.
[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, D. Zagorodnov, "The Eucalyptus Open-
Source Cloud-Computing System", Proceedings of CCGRID
2009, Shanghai, China, May 2009.
[3] The Nimbus project, http://www.nimbusproject.org/.
[4] B. Sotomayor, R. S. Montero, I.M. Llorente, I. Foster, "
Virtual Infrastructure Management in Private and Hybrid
Clouds", J. IEEE Internet Computing, vol. 13, no. 5, Sept.-
Oct. 2009.
[5] OpenStack, http://openstack.org/.
[6] Amazon S3, http://aws.amazon.com/s3/.
[7] K. Shvachko, H. Kuang, S. Radia, R. Chansler, " The
Hadoop Distributed File System", Proceedings of IEEE
MSST 2010, Incline Village, NV, USA, May 2010.
[8] Amazon EBS service, http://aws.amazon.com/ebs/.
[9] X. Gao, M. Lowe, Y. Ma, M. Pierce, "Supporting Cloud
Computing with the Virtual Block Store System",
Proceedings of e-Science 2009, Oxford, UK, Dec. 2009.
[10] Lustre file system white paper, Oct. 2008.
[11] LVM, http://tldp.org/HOWTO/LVM-HOWTO/.
[12] The Xen hypervisor, http://www.xen.org/.
[13] The iSCSI protocol, http://tools.ietf.org/html/rfc3720.
[14] S. Hopkins, B. Coile, “The ATA over Ethernet Protocol
Specification”, Technical Report, The Brantley Coile
Company, Inc., Feb. 2009.
[15] http://open.eucalyptus.com/forum/poor-performance-ebs.
[16] Jeffrey Shafer, "I/O Virtualization Bottlenecks in Cloud
Computing Today", Proceedings of the Second Workshop on
I/O Virtualization, Pittsburgh, PA, USA, Mar. 2010.
[17] Apache Axis2, http://ws.apache.org/axis2/.
[18] A. Donnellan, J. Rundle, G. Fox, D. McLeod, L. Grant,
T. Tullis, M. Pierce, J. Parker, G. Lyzenga, R. Granat, M.
Glasscoe, " QuakeSim and the Solid Earth Research Virtual
Observatory", Pure and Applied Geophysics, Vol. 163, 2006.
[19] Bonnie++, http://www.coker.com.au/bonnie++/.
[20] F. Schmuck, R. Haskin, "GPFS: A Shared-Disk File
System for Large Computing Clusters", Proceedings of the
1st USENIX Conference on File and Storage Technologies,
Monterey, CA, USA, Jan. 2002.
[21] J. Xing, J. Xiong, N. Sun, J. Ma, "Adaptive and Scalable
Metadata Management to Support A Trillion Files",
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Portland, OR,
USA, Nov. 2009.
[22] FutureGrid, http://futuregrid.org/

	1. Introduction
	2. Previous work and related technologies
	2.1. VBS
	2.2. Eucalyptus EBS
	2.3. The Lustre file system

	3. VBS-Lustre architecture: a new approach
	4. VBS-Lustre implementation
	4.1. Workflows
	4.2. Security and access control
	4.3. Read-only volume sharing

	5. Preliminary performance test
	6. Conclusion and future work
	6.1. Future improvements to VBS-Lustre
	6.2. Applying VBS-Lustre to build a new type of distributed file system

	References

