
Supporting Cloud Computing with the Virtual Block Store System

Xiaoming Gao, Mike Lowe, Yu Ma, and Marlon Pierce
Indiana University

Bloomington, Indiana, USA
gao4@indiana.edu, jomlowe@iupui.edu, yuma@indiana.edu, mpierce@indiana.edu

Abstract—The fast development of cloud computing systems
stimulates the needs for a standalone block storage system to
provide persistent block storage services to virtual machines
maintained by clouds. This paper presents the Virtual Block
Store (VBS) System, a standalone block storage system built
on the basis of Logical Volume Manager (LVM), Internet
Small Computer System Interface (iSCSI), and Xen
hypervisor. VBS can provide basic block storage services
such as volume creation and attachment. The concept and
functional interface of VBS are based on Amazon Elastic
Block Store (EBS) service; moreover, VBS works
independently with an existing LVM volume server and Xen
nodes, and thus can be easily extended to support other types
of volume servers and virtual machine managers, or
integrated with various cloud computing systems.
Preliminary I/O benchmark results are presented and
analyzed, indicating that a VBS volume can provide
throughput that is similar to an AT Attachment over
Ethernet (AoE) virtual device.

I. INTRODUCTION
Scientific cyberinfrastructures have been focusing on

high performance computing and supercomputing, and
treating data collections as byproducts. Demands for
managing and storing vast datasets collected and generated
by research communities have kept increasing, yet not
been sufficiently satisfied at the infrastructure level. Cloud
computing systems, such as Amazon Elastic Compute
Cloud (EC2) [1], Eucalyptus [2] and Nimbus [3], have
emerged as the next generation of cyberinfrastructure to
provide computing resources in a dynamic way. Most of
these systems implement Infrastructure as a Service (IaaS)
based on existing virtual machine managers (VMMs), such
as Xen [4], Kernel-based Virtual Machine (KVM) [5], etc.,
and fulfill users’ requirements for computing resources
through allocation of virtual machines (VMs) and
construction of virtual clusters [6]. Research experiences
have shown that cloud computing has successfully
supported the computation requirements of many scientific
applications [7] from various fields. Correspondingly,
cloud related storage infrastructures can be a good option
to address applications’ requirements for data storage. One
type of such storage infrastructures are distributed file
systems such as Hadoop [8] and Amazon Simple Storage
Service (S3) [9]. These systems can provide reliable
storage services in the form of large file operations, but
they require VMs to be clients of their file systems, and
only address part of applications’ needs. In many cases
users need raw block storage devices which they can use
as if they were local disks inside VMs, and create their
own file systems and databases on them. Many existing
cloud computing systems, such as Amazon EC2, can
support a certain type of “instance storage” service to their

VM instances by creating disk image files locally on
VMM nodes, but such service have two problems:

First, the storage space is limited. Since disk image
files are created locally on VMM nodes, their sizes are
constrained by the amount of physical resources available
on those nodes. Meanwhile, VM instances running on the
same VMM node have to compete for available storage
space. Moreover, there is no central and flexible way to
extend the storage space of the whole cloud environment
except adding more storage devices to each VMM node;

Second, data storage is not persistent. The lifetime of
the storage devices is tightly coupled with the VM
instances they are attached to; once the VM instances are
terminated, their image files are deleted. There is no way
to back up the storage devices or keep them alive so that
the data could be shared among multiple VM instances
with different lifetimes.

To address these two problems, cloud users need
special services which allow them to create persistent off-
instance block storage devices, whose lifetime is
independent of the VM instances they are attached to.
Further, users should be able to extend their storage space
as needed through creation of more devices, which should
not be constrained by the resource limit of any single
VMM node. There are already some implementations for
such services, such as Amazon Elastic Block Store (EBS)
service [10], and Eucalyptus’ implementation of the EBS
interface based on the technology of AT Attachment over
Ethernet (AoE) [11]. However, these services are specially
designed for, and therefore tightly coupled with, their
cloud computing environments. As a result, it is hard to
extend them to support other VMM platforms and could
computing environments; e.g., it is hard to make
Eucalyptus’ EBS implementation work with a Nimbus
cloud.

This paper presents the Virtual Block Store (VBS)
System, a standalone block storage system developed by
the Community Grids Lab of Indiana University. We have
built a prototype of VBS based on Logical Volume
Manager (LVM) [12], Internet Small Computer System
Interface (iSCSI) [13], and Xen hypervisor, which can
provide basic block storage services such as volume and
snapshot creation and deletion, and volume attachment to a
running Xen DomU instance. The concept and functional
interfaces of VBS are based on Amazon EBS; however,
since VBS is designed to work independently and directly
with volume servers and VMM nodes, it has the following
advantages compared to Amazon EBS and Eucalyptus’
EBS implementation:

First, VBS is built on the basis of an open Web
services architecture, so it can be easily extended to
support other types of volume servers and VMMs;

Second, VBS is not coupled with any specific cloud
computing environment, so it can be flexibly integrated
with any cloud computing system. For example, we have
successfully integrated it with Nimbus in a simple
approach, as demonstrated in Section VI.

We think of VBS as a right step towards a block
storage infrastructure for cloud systems, which can not
only supply flexible and persistent block storages to cloud
users, but also provide an easy way for users to share and
access their data collections through the use of logical
volumes and snapshots, as explained in Section III. We
would like to contribute our prototype of VBS as an open
source framework demonstrating a basic way to build
EBS-like block storage systems, so that researchers can
either use it as a start point to build their own specialized
storage systems, or integrate it with their cloud computing
systems to provide integrated block storage services.

The rest of this paper is organized as follows. Section
II talks about related technologies. Section III presents the
functional interfaces as well as typical use cases of VBS.
Section IV and V describe the Web services architecture
and implementation details of VBS. Section VI
demonstrates the integration of VBS with Nimbus. Section
VII discusses the results of our preliminary performance
tests. Section VIII prospects our future work and concludes.

II. RELATED TECHNOLOGIES
This section introduces related technologies used in

VBS, including LVM [12], iSCSI [13], and Xen
hypervisor [4]; and compares VBS with existing persistent
off-instance block storage services, including Amazon
EBS [10], and Eucalyptus’ [2] EBS implementation based
on AoE [11].

A. LVM
LVM is a logical volume manager for the Linux

operating system. Here a “logical volume” refers to a
logically created disk drive or partition. It can be created
from part of a single physical disk, or across multiple
disks, and used just like one physical disk by upper-level
applications. LVM is available on most Linux
distributions, providing a rich set of logical volume
management functions.

Our VBS prototype leverages LVM for volume and
snapshot creation and deletion.

B. The iSCSI protocol
iSCSI is an IP-based Storage Area Network (SAN)

protocol. By carrying SCSI commands over IP networks,
iSCSI enables remote access to block storage devices as if
they were local SCSI disks. iSCSI uses TCP/IP to transfer
data over network, and there are two types of roles
involved in the transmission process: a “target” located on
the server and an “initiator” on the client (Fig. 1). To
enable a client’s remote access of a disk on the server, the
disk is first exported by iSCSI as a target on the server, and
then discovered by an iSCSI initiator utility on the client.
After discovery, the iSCSI initiator can login to a
discovered target name. Upon login, a virtual iSCSI disk is
created on the client, which can be used just like a local
SCSI disk.

iSCSI supports sharing of disks with two layers of
multipath. To share an original disk on the server among

multiple clients, the user can either have one disk exported
as multiple targets, or one target connected to multiple
initiators. The iSCSI protocol takes care of necessary
synchronization at the block level, e.g., there cannot be
two initiators writing to the same block section on a disk at
the same time.

Figure 1. iSCSI target and initiator.

Our VBS prototype leverages iSCSI for remote access
of logical volumes from VMM nodes. Further, iSCSI
multipath support can be utilized for potential sharing of
disk volumes among multiple VM instances.

C. Xen hypervisor
The Xen hypervisor is an open source virtual machine

monitor for multiple CPU architectures. It supports
efficient concurrent execution of multiple guest VM
instances running a wide range of operating systems. Two
types of “domains” run on a node managed by Xen
hypervisor: Dom0 (or domain zero) and DomU. Dom0 is
the domain started by Xen on boot; it has direct access to
the hardware, and is responsible for creating other domains
(DomU) and coordinating their concurrent executions.
DomU is a domain created by Dom0; it is the actual VM
instance where a guest OS is running. A DomU does not
have direct access to the hardware by default, and must run
a Frontend Driver to communicate with Dom0 for
hardware requests.

Xen provides the virtual block device (VBD)
technique, which allows users to attach a block device or
disk image file in Dom0 to a DomU VM instance, so that it
can be used as a local block device in DomU. Our VBS
prototype utilizes the VBD technique for attachment and
detachment of virtual disk volumes to/from VM instances.

D. Amazon EBS
The Amazon.com Inc. provides Amazon EBS service

as a part of Amazon EC2 [1]. It supports a full set of
persistent and off-instance disk volume storage operations
that are suitable for use with EC2 VM instances, including
volume and snapshot creation and deletion, volume and
snapshot description, and volume attachment and
detachment to/from a VM instance.

Little has been known about the design and
implementation of Amazon EBS since they are kept as
commercial secrets. Amazon EBS is not a standalone
system; it is tightly coupled with Amazon EC2. For
example, it is impossible to attach a disk volume created
with Amazon EBS to a Nimbus VM instance. In contrast,
our prototype of VBS is designed as a standalone system
that works directly with VMM nodes, and thus can be
easily integrated with any cloud computing environment.

E. Eucalyptus EBS implementation
Eucalyptus is an open source cloud computing system

that has implemented exactly the same interface as
Amazon EBS using the AoE technology. However, their
EBS implementation is also tightly coupled with the cloud

management system. The use of AoE can help make
volume operations and data transmission more efficient,
because AoE runs directly over Ethernet and thus incurs no
packaging overhead for IP and TCP. Nonetheless, it also
faces two limits compared with an iSCSI-based solution:

First, the routability of an AoE based solution is
limited inside an Ethernet environment, which means that
the disk volume server and VMM nodes of Eucalyptus
must be all located in the same LAN, or VLAN at least;

Second, sharing of disk volumes is harder in an AoE
environment. AoE provides mechanisms including
reserve/release command and config string to coordinate
concurrent access from different clients, but these are not
real native target sharing mechanisms. For example, if one
target is reserved by a specific client and that client goes
down, there will be no normal way for another client to
come over and resume the use of the target device. The
only way to deal with this type of failure is for the
administrator to force release the target so that it could be
available to other clients.

III. VBS INTERFACE AND USE CASES
To address the requirements of a standalone block

storage service as mentioned in Section I, VBS provides
the following operation methods in its Web services
interface:

create-volume <size> <comment> <snapshot id>
delete-volume <volume id>
describe-volumes [<volume id> <volume id> …]
create-snapshot <volume id> <comment>
delete-snapshot <snapshot id>
describe-snapshot [<snapshot id> <snapshot id> …]
attach-volume <volume id> <VMM hostname> <VM

id> <VM device>
detach-volume <volume id>
We designed the VBS interface based on the interface

of Amazon EBS [10], with the following special
differences:

First, there is no concept of “availability zone” in our
VBS prototype, so the “create-volume” and “create-
snapshot” methods accept a “comment” parameter instead
of “availabilityZone”, which is used in Amazon EBS;

Second, in Amazon EBS the “attach-volume” method
accepts an EC2 VM instance ID besides a volume ID and a
VM device path, while in VBS the EC2 instance ID is
replaced by a VM instance ID and the hostname of the
VMM node where the VM is running, because VBS is
independent of any specific cloud computing environment,
and works directly with VMM nodes;

Third, the “detach-volume” operation accepts only one
parameter: the ID of the volume to be detached. This is
because one disk volume is only allowed to be attached to
one VM instance in current VBS implementation. More
parameter about the volume’s attachment will be needed
once volume sharing is supported in the future.

For more information about the Web services interface
of VBS, please refer to [14]. Using the operations of this
interface, users can apply VBS to two typical use cases, as
shown in Fig. 2 and 3. In Fig. 2, users can create multiple
logical volumes (LV) in VBS and attach them to one or
more VM instances; moreover, they can extend their
storage space by just creating new volumes as needed. The
lifetime of VBS volumes is independent of the VM

instances – they are maintained by VBS as long as “delete-
volume” is not called on them. In Fig. 3, the user can first
create a snapshot of a volume which already contains some
basic data or software environment, and then create new
volumes based on the snapshot, and attach them to
different VM instances, so that all VMs can have the same
basic data and software environment, and start doing their
own computations and generate different output results.

Figure 2. Use of VBS: extendable storage.

Figure 3. Use of VBS: snapshots.

IV. VBS WEB SERVICES ARCHITECTURE
To implement the volume operations presented in

Section III, we built an open and flexible Web services
architecture for VBS, as shown in Fig. 4. There are two
types of physical nodes, volume server and VMM nodes,
and three types of Web services modules, the VBS Service
module, the Volume Delegate module, and the VMM
Delegate module, in the architecture.

In our current design there could be only one volume
server node, and multiple VMM nodes. All physical
storage devices used by VBS are installed on the volume
server node, and LVM [12] is used to manage these
storage devices, as well as logical volumes and volume
groups. iSCSI [13] is used for remote access of logical
volumes from VMM nodes, and the “ietadm” utility is
used by the volume server for managing iSCSI targets. On
VMM nodes, the Xen hypervisor [4] is used to manage
VM instances, the “iscsiadm” utility is used for controlling
iSCSI initiators, and the VBD technique is used for
attaching/detaching a virtual iSCSI device to/from a
DomU VM instance. We choose iSCSI to connect the
volume server and VMM nodes for two reasons. First,
iSCSI runs over TCP/IP and thus has better routability than
AoE [11], which ensures that VBS can be applied in
environments with Internet as well as LAN connections.
Second, the multipath support of iSCSI provides a helpful
utility to implement sharing of logical volumes among
different VMs, which will be included in future versions of
VBS. Users can utilize volume sharing to handle situations
such as VM failures. For example, the user can safely have
two VM instances, one as a working node and the other as
a back-up node, attached to the same VBS volume; once
the working node fails, the back-up node will be able to
resume its work on that volume right away.

The Volume Delegate module is a Web service running
on the volume server, responsible for executing LVM
commands for volume and snapshot creation and deletion,

and iSCSI commands for target creation and deletion
based on logical volumes.

Figure 4. VBS Web services architecture.

The VMM Delegate module is a Web service running
on a VMM node, responsible for executing iSCSI
commands for log-in and log-out from initiators to targets,
and Xen VBD commands for attaching and detaching
iSCSI virtual devices to/from VM instances.

The VBS Service module is the frontend Web service
which accepts requests from the VBS clients, and
completes their VBS operations by coordinating the
actions of Volume Delegate and VMM Delegate. Details
about the coordination are covered in Section V.

This Web services based architecture can be easily
extended to support other types of volume servers and
VMMs. The main difference with other volume servers
and VMMs is that they use different sets of commands to
complete logical volume management and VM instance
management. Therefore, one way to support them is to
apply the “adapter” design pattern [21] to different volume
servers and VMMs, and build new Volume Delegate and
VMM Delegate services to wrap up the different sets of
commands. As long as the new services keep the same
interfaces, they can still work with the other VBS modules
seamlessly.

Another solution for supporting different volume
servers and VMMs is a technique we call “command line
extraction”, which is currently used by the VBS prototype.
The Volume Delegate and VMM Delegate use Apache Ant
technology [15] to wrap up and execute the LVM and Xen
commands. These commands used to be hard coded in the
program logics in early implementations of VBS, as
demonstrated in the upper part of Fig. 5. The source codes
shown here are actually first constructing an executable
command line in the form of “xm block-attach <vmId>
phy:<vmmDev> <vmDev> w” by replacing the bracketed
parameters with dynamic values; and then executing the
command line as an Ant ExecTask object. We call this
special form of command line with bracketed parameters a
“command line pattern”.

Except for the hard coded implementation, another way
for doing the same job is to extract these command line
patterns out from source codes, save them in a property
file, and then read them in during execution of the services,
and dynamically create and execute the commands, as
shown in the lower part of Fig. 5. In this way, we will be
able to make the services execute different types of
commands from different volume servers and VMM

platforms by just modifying the patterns in the property
file, without touching and rebuilding the Web services’
codes. By reading in different command line patterns
during runtime, the Volume Delegate and VMM Delegate
services are actually running as “dynamic command
adapters”. This solution can work as long as the new
command line pattern accepts the same set of parameters,
which is the normal case for most VBS operations. For
example, the command line pattern given above
corresponds to a Xen command which attaches a block
device in Dom0 to a DomU instance; if we want the VMM
Delegate to complete the same job on a proxmox [16]
VMM platform managing KVM instances, all we need to
do is just changing this command line pattern to “qm set
<vmId> -<vmDev> <vmmDev>”.

Figure 5. Command line extraction.

V. VBS IMPLEMENTATION
This section explains the implementation details of

VBS, including workflows and mechanisms for
maintaining system consistency.

A. Workflows
Fig. 6 demonstrates the workflows of main VBS

operations. Due to space limitations the workflows of
“describe-volumes” and “describe-snapshots” are not
included; in short, these two operations just look up the
metadata of the given volume or snapshot IDs, and return
the corresponding information. Here we just explain the
workflow actions of “create-volume” and “attach-volume”
as an example, and the actions of the rest operations could
be inferred from Fig. 6 in a similar way.

To handle a VBS client’s request for the “create-
volume” operation, VBS Service invokes Volume
Delegate, which then executes the “lvcreate” command to
create a new logical volume of the size given by the client.
After the new logical volume is created, Volume Delegate
checks if the new volume is required to have the same data
as a specific snapshot. If such a snapshot’s ID is specified,
Volume Delegate will first return the new volume’s
information, along with a “pending” status, to VBS
Service, and then start a new thread to copy the content
from the specified snapshot to the new volume with the
Linux “dd” command, and finally return an “available”
status, which denotes that the new volume is ready for
attachment with a VM instance. If no snapshot ID is
specified, Volume Delegate will just return the new
volume’s information, along with an “available” status, to
VBS Service. Note that the asynchronous copy operation is
necessary for quick response, because it’s a time
consuming job.

For the “attach-volume” operation, VBS Service first
invokes Volume Delegate to export an iSCSI [13] target
based on the given volume ID by executing the “ietadm
new” command. After the new iSCSI target is created,
VBS Service will invoke the VMM Delegate running on
the VMM node specified by the client, which then carries
out the following operations:

First, execute the “iscsiadm –discover” command to
discover all targets on the volume server;

Second, execute the “iscsiadm –login” command to
login to the newly created target. This will result in a
virtual iSCSI device created on the VMM node;

Third, execute the “xm block-attach” command to
attach the virtual iSCSI device to the VM instance with the
given VM ID.

Figure 6. VBS workflows.

B. Consistency mechanisms
The VBS system need to maintain two levels of

consistency: metadata level consistency and system level
consistency.

We use a small on-disk HSQLDB [17] database to
keep the metadata in our VBS prototype. The database
contains three major tables: the “volumes” table, the
“snapshots” table, and the “attachments” table, and applies
various database techniques, such as dependencies and
transactions, to maintain the metadata consistency. New
volume IDs and snapshot IDs are generated from the hash
codes of UUIDs, and duplicated hashing results are
eliminated with the help of one additional database table,
the “ids” table, which keeps track of all IDs in use.

For VBS operations involving multiple execution steps,
such as “attach-volume” and “detach-volume”, failure of
any intermediate step will leave the whole system in an
inconsistent status. To maintain the system level
consistency, a “roll-back” mechanism is added to these
multi-step VBS operations. For example, during the

execution of the four steps of “attach-volume”, if any step
fails, the execution of the previous steps will all be
recovered, so that the whole system can roll-back to a
previously consistent status.

VI. INTEGRATION WITH NIMBUS
Nimbus [3] is a cloud computing platform developed

by University of Chicago. It adopts the concept of “virtual
workspace” to manage VM instances, and provides
services such as leasing of VMs and creation of virtual
clusters [6] by manipulating Xen hypervisor [4] nodes. The
construction of Nimbus components is shown in Fig. 7. At
the backend, the workspace service implements the details
of VM management, and is bridged to the frontend
interfaces with the Resource Management API (RM API).
At the frontend, Nimbus supports both a WRSF [18] Web
services interface and an Amazon EC2 compatible Web
services interface, so that users can also use an Amazon
EC2 [1] client to access a Nimbus cloud. However, the
support for Amazon EC2 interface is incomplete, and there
is no EBS-like implementation in Nimbus yet. Since
Nimbus is an open source project under continuous
development and updates, it provides an ideal platform for
us to explore and test possible ways of integrating VBS
with existing cloud systems. Our integration work with
Nimbus has been successful, and we would like to use it as
an example to demonstrate the strategy of integrating VBS
with a cloud computing environment.

Figure 7. Nimbus components [20].

To complete the integration, we need to consider the
difference between the integrated version and the
standalone version of VBS. In the integrated version, the
requirements for most VBS operations are similar; the
difference lies in the operation of “attach-volume”: the
integrated version of “attach-volume” should accept a
Nimbus instance ID as the destination of the attachment,
instead of a specific Xen DomU ID and the hostname of
the VMM node where the DomU is running. Since VBS
requires the VM ID and VMM hostname to complete the
attachment on the right node, we need a mechanism in the
integrated version to find out the corresponding Xen
DomU ID and VMM hostname associated with a given
Nimbus instance ID. To implement this mechanism, we
introduce an auxiliary module, the VBS_Nimbus Service,
to the VBS architecture, as shown in Fig. 8.

The original Nimbus workspace service does not return
the information we need. Therefore, we modified the
implementation of the “Manager” interface of Nimbus RM
API, so that the workspace service will append the Xen
DomU ID and VMM hostname to the network properties
of a Nimbus instance when answering a resource property
query. It takes only one line of Java source code to
complete the necessary modification.

Similarly, we can integrate VBS with other cloud
computing systems by introducing auxiliary modules and
corresponding query mechanisms.

Figure 8. Integration with Nimbus.

VII. PRELIMINARY PERFORMANCE TEST
To test the performance of VBS, we set up a single VM

and single volume test bed in a private 1Gb Ethernet LAN
of Indiana University (IU). We started one volume server
and one VMM node in the test bed, and their hardware
configurations are given in Table I. The volume server is
running Red Hat Enterprise Linux (RHEL) 5.3 and LVM
[12] 2.0. The 4 147GB disks are grouped into two pairs,
both in RAID1 configuration. All hard disks are managed
by LVM, and new logical volumes are created on the
RAID1s. The VMM node is running RHEL 5.3, Xen [4]
3.1.2 and LVM 2.0, and the 73GB hard disk is managed by
LVM. One DomU is started on the VMM node, whose
hardware configuration is also given in Table I.

TABLE I. HARDWARE CONFIGURATIONS OF VOLUME SERVER,
VMM NODE, AND VM

 CPU Memory Disk
Volume
server 4*Xeon 2.8G 512MB 4 * Seagate 147G 10K

RPM SCSI (paired in RAID1)

VMM 2*Opteron
2.52G 1.5GB 1 Fujitsu 73G 10K RPM

SCSI

VM 1 Operon
2.52G 256MB 4G disk image file (3.6G

available)
For comparison purposes, we tested the performance of

4 different types of virtual disks on this test bed, as listed
below:

VBS-LVM: a 5GB VBS volume is created and
attached to the VM instance.

AoE-LVM: a 5GB logical volume is created on the
volume server and exported as an AoE [11] target; the
target is discovered on the VMM node as a virtual AoE
device, which is then attached to the VM instance.

Local-LVM: a 5GB logical volume is created locally
on the VMM node with LVM, and attached to the VM
instance.

Local-Image: the CentOS 5.2 disk image file is also
tested.

An ext2 file system is created on all logical volumes,
and an ext3 file system is created on the CentOS 5.2 disk
image file. We used Bonnie++ [19] to complete our
performance tests, and there were two reasons for this
choice. First, the various file I/O operations tested by
Bonnie++ make it possible for us to observe both the
caching effects at different levels of the system and the
actual transmission speed of each type of virtual disk.
Second, Bonnie++ does file creation/deletion tests as well

as read/write tests, so we can also observe and analyze the
virtual disks’ performance on file system metadata
operations. We carried out the tests by mounting different
disks to different directories in the VM, and running
Bonnie++ under different directories. Due to the diversity
of the virtual disk types, multiple levels of caching should
be considered when choosing the file size used for tests.
First, file system cache on the VM instance is utilized for
access to files on all disks. Second, for access to VBS-
LVM, caching is provided by the iSCSI target on the
volume server. Third, for AoE-LVM, caching is provided
by both the initiator on the VMM side, and the target on
the volume server. Finally, Xen does not provide caching
for physical devices attached to DomUs; but for disk
image files used by VMs, the file system running in Dom0
will provide caching support. To avoid the impact from all
these caching mechanisms, we ran Bonnie++ tests with
three different file sizes: 512MB to double the memory
size of the VM, 1GB to double the memory size of the
volume server, and 3GB to double the memory size of the
VMM node. Fig. 9-11 presents comparison of the
transmission speed of VBS-LVM, AoE-LVM, and Local-
LVM on each Bonnie++ operation in case of all file sizes.
Due to space limit we just list a brief definition for each
I/O operation here, and for detailed information please
refer to [19].

Per-Ch Write: the file is written using putc().
Block Write: the file is created using write(2).
Rewrite: each BUFSIZ of the file is read with read(2),

dirtied, and rewritten with write(2), requiring an lseek(2).
The default value of BUFSIZ is 8KB.

Per-Ch Read: The file is read using getc().
Block Read: The file is read using read(2).

Figure 9. Performance comparison of VBS-LVM, AoE-LVM, and

Local-LVM for file size of 512MB

Figure 10. Performance comparison of VBS-LVM, AoE-LVM, and
Local-LVM for file size of 1GB

Figure 11. Performance comparison of VBS-LVM, AoE-LVM, and
Local-LVM for file size of 3GB

There are several notable observations in Fig. 9-11.
First, although the throughput of VBS-LVM is constantly
less than Local-LVM, it is on the same magnitude. There
are two reasons for the difference: (1) access to Local-
LVM directly goes to the local disk on the VMM node,
involving no overhead from the iSCSI protocol or network
transmission; (2) according to our tests with the hdparm
[22] utility on Linux, the hard disk on the VMM node can
provide a faster I/O speed (about 83MB/s) than the
RAID1s (about 65MB/s) on the volume server. Second,
the throughput of VBS-LVM is close to AoE-LVM in
general, indicating that VBS could be as efficient as an
AoE based solution in the same environment. Specifically,
it is constantly faster on write, and slower on read than
AoE-LVM, implying that iSCSI is better optimized for
write operations. Third, the difference on read operations
between VBS-LVM and AoE-LVM gets larger when the
file size goes up. This is because iSCSI only provides
caching at the target side on the volume server, which has
512MB of memory. As a result, when file size goes over
512MB, AoE-LVM can benefit more from the cache at the
initiator side, because the VMM node has 1.5GB of
Memory.

Comparison between Local-LVM and Local-Image
also uncovers some interesting trends, as shown in Fig. 12-
14. The performance of Local-LVM is consistent, because
in every test the only cache used is the file system cache
inside the VM, which is constrained by the memory size of
256MB. In contrast, the throughput of Local-Image can
reach to as high as 400-500MB/s when the file size is less
than 1.5GB, but drops sharply to numbers similar to Local-
LVM after that. This is because of the caching of the file
system in Dom0. When the file size is less than the amount
of memory most accesses to the disk image file can be
handled through the cache; but after that such benefit is
lost.

Fig. 15 presents the comparison of all disk types on the
operations of sequential file creation, random file creation,
and random file deletion. The data unit of the vertical axis
is files/second. We can see that the performances of all
disk types are similar, because these operations involve
little data transmission.

Figure 12. Performance comparison of Local-LVM and Local-Image for

file size of 512MB.

Figure 13. Performance comparison of Local-LVM and Local-Image for
file size of 1GB.

Figure 14. Performance comparison of Local-LVM and Local-Image for
file size of 3GB.

Figure 15. File creation and deletion comparison.

VIII. CONCLUSION AND FUTURE WORK
This paper presents the VBS system, an open source

standalone block storage system that can provide persistent
and off-instance block storage services to VM instances in
cloud computing environments. Compared with existing
services, such as Amazon EBS [10] and Eucalyptus’ EBS
[2] implementation, VBS has a similar web interface and
supports similar logical volume operations; moreover,
based on a flexible Web services architecture, VBS can be
easily extended to support different types of volume
servers and VMMs, or integrated with various cloud
computing systems such as Nimbus. Our preliminary
performance tests show that VBS can provide throughput
that is similar to an AoE-based solution under the same
environment configuration, and comparable to a local
LVM [12] volume for accesses to files with modest sizes.
There are several directions that we will continue to work
on in the future:

First, sharing of VBS volumes among multiple VM
instances is a potential requirement of many applications.
By leveraging the multipath support in iSCSI, read-only
sharing of volumes can be achieved with little
modification. Furthermore, read-and-write sharing could
be implemented by applying the technology of shared disk
file systems.

Second, a user management component is needed in
VBS to handle issues such as access control, space quota,
and integration with cloud computing systems.

Third, no security mechanism has been applied in
current VBS prototype yet. In order to protect users’ data
from various threats, two levels of security will need to be
implemented: secure access to VBS Web services and
secure data transmission over iSCSI.

Forth, the single volume server architecture of VBS is
neither reliable nor scalable. We will consider ways to
extend the single volume server to a distributed network of
multiple servers to improve the reliability and scalability of
VBS.

Finally, current VBS implementation keeps only one
copy for each logical volume. As a result, when the
volume server and VM instances are deployed across wide
area networks (WAN), it will be hard to guarantee the
performance and availability of VBS volumes. To solve
this problem, mechanisms such as volume duplication and
synchronization could be considered in the future.

ACKNOWLEDGMENT

We would like to thank Prof. Geoffrey Fox for his
guidance and comments about VBS use cases and other
aspects; thank Kate Keahey, Jan-Philip Gehrcke, and the
Nimbus group at University of Chicago for their help with
the integration of VBS with Nimbus; thank Joe Rinkovsky
for his help with the test bed configuration; thank Jun
Wang for his help with the organization of test results. We
also would like to thank all reviewers for their advice on
the content and organization of this paper, and thank the
program chairs of e-Science 2009, Paul Roe and David
Wallom, for their help with our question about the reviews.
Finally, many thanks to all of our colleagues at the
Community Grids Lab of Indiana University.

REFERENCES
[1] Amazon EC2 service, http://aws.amazon.com/ec2/.
[2] Eucalyptus, http://open.eucalyptus.com/.
[3] The Nimbus project, http://workspace.globus.org/.
[4] The Xen hypervisor, http://www.xen.org/.
[5] KVM, http://www.linux-kvm.org/page/Main_Page.
[6] K. Keahey, T. Freeman, “Contextualization: Providing One-Click

Virtual Clusters”, Proceedings of 2008 Fourth IEEE International
Conference on eScience, Indianapolis, IN, December 2008, pp.
301-308.

[7] K. Keahey, T. Freeman, et al., “Science Clouds: Early Experiences
in Cloud Computing for Scientific Applications”, Proceedings of
Cloud Computing and Its Applications 2008 (CCA-08), Chicago,
IL. October 2008.

[8] The Apache Hadoop project, http://hadoop.apache.org/.
[9] Amazon S3 service, http://aws.amazon.com/s3/.
[10] Amazon EBS service, http://aws.amazon.com/ebs/.
[11] S. Hopkins, B. Coile, “The ATA over Ethernet Protocol

Specification”, Technical Report, The Brantley Coile Company,
Inc., February 2009.

[12] LVM, http://tldp.org/HOWTO/LVM-HOWTO/.
[13] The iSCSI protocol, http://tools.ietf.org/html/rfc3720.
[14] VBS Web services interface definition,

http://cglc.uits.iu.edu:8080/axis2/services/VbsService?wsdl.
[15] The Apache Ant project, http://ant.apache.org/.
[16] Proxmox VE, http://pve.proxmox.com/wiki/Main_Page.
[17] The HSQLDB database engine, http://hsqldb.org/.
[18] OASIS Web Services Resource Framework (WSRF) TC,

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf.
[19] Bonnie++, http://www.coker.com.au/bonnie++/
[20] Nimbus components, http://workspace.globus.org/vm/faq.html
[21] Adapter pattern, http://en.wikipedia.org/wiki/Adapter_pattern
[22] hdparm manual page, http://linux.die.net/man/8/hdparm

	I. Introduction
	II. Related technologies
	A. LVM
	B. The iSCSI protocol
	C. Xen hypervisor
	D. Amazon EBS
	E. Eucalyptus EBS implementation

	III. VBS interface and use cases
	IV. VBS web services architecture
	V. VBS implementation
	A. Workflows
	B. Consistency mechanisms

	VI. Integration with Nimbus
	VII. Preliminary performance test
	VIII. Conclusion and future work
	Acknowledgment
	References

