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Abstract—The fast development of cloud computing systems 
stimulates the needs for a standalone block storage system to 
provide persistent block storage services to virtual machines 
maintained by clouds. This paper presents the Virtual Block 
Store (VBS) System, a standalone block storage system built 
on the basis of Logical Volume Manager (LVM), Internet 
Small Computer System Interface (iSCSI), and Xen 
hypervisor. VBS can provide basic block storage services 
such as volume creation and attachment. The concept and 
functional interface of VBS are based on Amazon Elastic 
Block Store (EBS) service; moreover, VBS works 
independently with an existing LVM volume server and Xen 
nodes, and thus can be easily extended to support other types 
of volume servers and virtual machine managers, or 
integrated with various cloud computing systems. 
Preliminary I/O benchmark results are presented and 
analyzed, indicating that a VBS volume can provide 
throughput that is similar to an AT Attachment over 
Ethernet (AoE) virtual device. 

I. INTRODUCTION 
Scientific cyberinfrastructures have been focusing on 

high performance computing and supercomputing, and 
treating data collections as byproducts. Demands for 
managing and storing vast datasets collected and generated 
by research communities have kept increasing, yet not 
been sufficiently satisfied at the infrastructure level. Cloud 
computing systems, such as Amazon Elastic Compute 
Cloud (EC2) [1], Eucalyptus [2] and Nimbus [3], have 
emerged as the next generation of cyberinfrastructure to 
provide computing resources in a dynamic way. Most of 
these systems implement Infrastructure as a Service (IaaS) 
based on existing virtual machine managers (VMMs), such 
as Xen [4], Kernel-based Virtual Machine (KVM) [5], etc., 
and fulfill users’ requirements for computing resources 
through allocation of virtual machines (VMs) and 
construction of virtual clusters [6]. Research experiences 
have shown that cloud computing has successfully 
supported the computation requirements of many scientific 
applications [7] from various fields. Correspondingly, 
cloud related storage infrastructures can be a good option 
to address applications’ requirements for data storage. One 
type of such storage infrastructures are distributed file 
systems such as Hadoop [8] and Amazon Simple Storage 
Service (S3) [9]. These systems can provide reliable 
storage services in the form of large file operations, but 
they require VMs to be clients of their file systems, and 
only address part of applications’ needs. In many cases 
users need raw block storage devices which they can use 
as if they were local disks inside VMs, and create their 
own file systems and databases on them. Many existing 
cloud computing systems, such as Amazon EC2, can 
support a certain type of “instance storage” service to their 

VM instances by creating disk image files locally on 
VMM nodes, but such service have two problems: 

First, the storage space is limited. Since disk image 
files are created locally on VMM nodes, their sizes are 
constrained by the amount of physical resources available 
on those nodes. Meanwhile, VM instances running on the 
same VMM node have to compete for available storage 
space. Moreover, there is no central and flexible way to 
extend the storage space of the whole cloud environment 
except adding more storage devices to each VMM node; 

Second, data storage is not persistent. The lifetime of 
the storage devices is tightly coupled with the VM 
instances they are attached to; once the VM instances are 
terminated, their image files are deleted. There is no way 
to back up the storage devices or keep them alive so that 
the data could be shared among multiple VM instances 
with different lifetimes. 

To address these two problems, cloud users need 
special services which allow them to create persistent off-
instance block storage devices, whose lifetime is 
independent of the VM instances they are attached to. 
Further, users should be able to extend their storage space 
as needed through creation of more devices, which should 
not be constrained by the resource limit of any single 
VMM node. There are already some implementations for 
such services, such as Amazon Elastic Block Store (EBS) 
service [10], and Eucalyptus’ implementation of the EBS 
interface based on the technology of AT Attachment over 
Ethernet (AoE) [11]. However, these services are specially 
designed for, and therefore tightly coupled with, their 
cloud computing environments. As a result, it is hard to 
extend them to support other VMM platforms and could 
computing environments; e.g., it is hard to make 
Eucalyptus’ EBS implementation work with a Nimbus 
cloud. 

This paper presents the Virtual Block Store (VBS) 
System, a standalone block storage system developed by 
the Community Grids Lab of Indiana University. We have 
built a prototype of VBS based on Logical Volume 
Manager (LVM) [12], Internet Small Computer System 
Interface (iSCSI) [13], and Xen hypervisor, which can 
provide basic block storage services such as volume and 
snapshot creation and deletion, and volume attachment to a 
running Xen DomU instance. The concept and functional 
interfaces of VBS are based on Amazon EBS; however, 
since VBS is designed to work independently and directly 
with volume servers and VMM nodes, it has the following 
advantages compared to Amazon EBS and Eucalyptus’ 
EBS implementation: 

First, VBS is built on the basis of an open Web 
services architecture, so it can be easily extended to 
support other types of volume servers and VMMs; 



Second, VBS is not coupled with any specific cloud 
computing environment, so it can be flexibly integrated 
with any cloud computing system. For example, we have 
successfully integrated it with Nimbus in a simple 
approach, as demonstrated in Section VI. 

We think of VBS as a right step towards a block 
storage infrastructure for cloud systems, which can not 
only supply flexible and persistent block storages to cloud 
users, but also provide an easy way for users to share and 
access their data collections through the use of logical 
volumes and snapshots, as explained in Section III. We 
would like to contribute our prototype of VBS as an open 
source framework demonstrating a basic way to build 
EBS-like block storage systems, so that researchers can 
either use it as a start point to build their own specialized 
storage systems, or integrate it with their cloud computing 
systems to provide integrated block storage services. 

The rest of this paper is organized as follows. Section 
II talks about related technologies. Section III presents the 
functional interfaces as well as typical use cases of VBS. 
Section IV and V describe the Web services architecture 
and implementation details of VBS. Section VI 
demonstrates the integration of VBS with Nimbus. Section 
VII discusses the results of our preliminary performance 
tests. Section VIII prospects our future work and concludes. 

II. RELATED TECHNOLOGIES 
This section introduces related technologies used in 

VBS, including LVM [12], iSCSI [13], and Xen 
hypervisor [4]; and compares VBS with existing persistent 
off-instance block storage services, including Amazon 
EBS [10], and Eucalyptus’ [2] EBS implementation based 
on AoE [11]. 

A. LVM 
LVM is a logical volume manager for the Linux 

operating system. Here a “logical volume” refers to a 
logically created disk drive or partition. It can be created 
from part of a single physical disk, or across multiple 
disks, and used just like one physical disk by upper-level 
applications. LVM is available on most Linux 
distributions, providing a rich set of logical volume 
management functions. 

Our VBS prototype leverages LVM for volume and 
snapshot creation and deletion. 

B. The iSCSI protocol 
iSCSI is an IP-based Storage Area Network (SAN) 

protocol. By carrying SCSI commands over IP networks, 
iSCSI enables remote access to block storage devices as if 
they were local SCSI disks. iSCSI uses TCP/IP to transfer 
data over network, and there are two types of roles 
involved in the transmission process: a “target” located on 
the server and an “initiator” on the client (Fig. 1). To 
enable a client’s remote access of a disk on the server, the 
disk is first exported by iSCSI as a target on the server, and 
then discovered by an iSCSI initiator utility on the client. 
After discovery, the iSCSI initiator can login to a 
discovered target name. Upon login, a virtual iSCSI disk is 
created on the client, which can be used just like a local 
SCSI disk. 

iSCSI supports sharing of disks with two layers of 
multipath. To share an original disk on the server among 

multiple clients, the user can either have one disk exported 
as multiple targets, or one target connected to multiple 
initiators. The iSCSI protocol takes care of necessary 
synchronization at the block level, e.g., there cannot be 
two initiators writing to the same block section on a disk at 
the same time. 

 
Figure 1.  iSCSI target and initiator. 

Our VBS prototype leverages iSCSI for remote access 
of logical volumes from VMM nodes. Further, iSCSI 
multipath support can be utilized for potential sharing of 
disk volumes among multiple VM instances. 

C. Xen hypervisor 
The Xen hypervisor is an open source virtual machine 

monitor for multiple CPU architectures. It supports 
efficient concurrent execution of multiple guest VM 
instances running a wide range of operating systems. Two 
types of “domains” run on a node managed by Xen 
hypervisor: Dom0 (or domain zero) and DomU. Dom0 is 
the domain started by Xen on boot; it has direct access to 
the hardware, and is responsible for creating other domains 
(DomU) and coordinating their concurrent executions. 
DomU is a domain created by Dom0; it is the actual VM 
instance where a guest OS is running. A DomU does not 
have direct access to the hardware by default, and must run 
a Frontend Driver to communicate with Dom0 for 
hardware requests. 

Xen provides the virtual block device (VBD) 
technique, which allows users to attach a block device or 
disk image file in Dom0 to a DomU VM instance, so that it 
can be used as a local block device in DomU. Our VBS 
prototype utilizes the VBD technique for attachment and 
detachment of virtual disk volumes to/from VM instances. 

D. Amazon EBS 
The Amazon.com Inc. provides Amazon EBS service 

as a part of Amazon EC2 [1]. It supports a full set of 
persistent and off-instance disk volume storage operations 
that are suitable for use with EC2 VM instances, including 
volume and snapshot creation and deletion, volume and 
snapshot description, and volume attachment and 
detachment to/from a VM instance.  

Little has been known about the design and 
implementation of Amazon EBS since they are kept as 
commercial secrets. Amazon EBS is not a standalone 
system; it is tightly coupled with Amazon EC2. For 
example, it is impossible to attach a disk volume created 
with Amazon EBS to a Nimbus VM instance. In contrast, 
our prototype of VBS is designed as a standalone system 
that works directly with VMM nodes, and thus can be 
easily integrated with any cloud computing environment. 

E. Eucalyptus EBS implementation 
Eucalyptus is an open source cloud computing system 

that has implemented exactly the same interface as 
Amazon EBS using the AoE technology. However, their 
EBS implementation is also tightly coupled with the cloud 



management system. The use of AoE can help make 
volume operations and data transmission more efficient, 
because AoE runs directly over Ethernet and thus incurs no 
packaging overhead for IP and TCP. Nonetheless, it also 
faces two limits compared with an iSCSI-based solution: 

First, the routability of an AoE based solution is 
limited inside an Ethernet environment, which means that 
the disk volume server and VMM nodes of Eucalyptus 
must be all located in the same LAN, or VLAN at least; 

Second, sharing of disk volumes is harder in an AoE 
environment. AoE provides mechanisms including 
reserve/release command and config string to coordinate 
concurrent access from different clients, but these are not 
real native target sharing mechanisms. For example, if one 
target is reserved by a specific client and that client goes 
down, there will be no normal way for another client to 
come over and resume the use of the target device. The 
only way to deal with this type of failure is for the 
administrator to force release the target so that it could be 
available to other clients. 

III. VBS INTERFACE AND USE CASES 
To address the requirements of a standalone block 

storage service as mentioned in Section I, VBS provides 
the following operation methods in its Web services 
interface: 

create-volume <size> <comment> <snapshot id> 
delete-volume <volume id> 
describe-volumes [<volume id> <volume id> …] 
create-snapshot <volume id> <comment> 
delete-snapshot <snapshot id> 
describe-snapshot [<snapshot id> <snapshot id> …] 
attach-volume <volume id> <VMM hostname> <VM 

id> <VM device> 
detach-volume <volume id> 
We designed the VBS interface based on the interface 

of Amazon EBS [10], with the following special 
differences: 

First, there is no concept of “availability zone” in our 
VBS prototype, so the “create-volume” and “create-
snapshot” methods accept a “comment” parameter instead 
of “availabilityZone”, which is used in Amazon EBS; 

Second, in Amazon EBS the “attach-volume” method 
accepts an EC2 VM instance ID besides a volume ID and a 
VM device path, while in VBS the EC2 instance ID is 
replaced by a VM instance ID and the hostname of the 
VMM node where the VM is running, because VBS is 
independent of any specific cloud computing environment, 
and works directly with VMM nodes; 

Third, the “detach-volume” operation accepts only one 
parameter: the ID of the volume to be detached. This is 
because one disk volume is only allowed to be attached to 
one VM instance in current VBS implementation. More 
parameter about the volume’s attachment will be needed 
once volume sharing is supported in the future. 

For more information about the Web services interface 
of VBS, please refer to [14]. Using the operations of this 
interface, users can apply VBS to two typical use cases, as 
shown in Fig. 2 and 3. In Fig. 2, users can create multiple 
logical volumes (LV) in VBS and attach them to one or 
more VM instances; moreover, they can extend their 
storage space by just creating new volumes as needed. The 
lifetime of VBS volumes is independent of the VM 

instances – they are maintained by VBS as long as “delete-
volume”  is not called on them. In Fig. 3, the user can first 
create a snapshot of a volume which already contains some 
basic data or software environment, and then create new 
volumes based on the snapshot, and attach them to 
different VM instances, so that all VMs can have the same 
basic data and software environment, and start doing their 
own computations and generate different output results. 

 
Figure 2.  Use of VBS: extendable storage. 

 
Figure 3.  Use of VBS: snapshots. 

IV. VBS WEB SERVICES ARCHITECTURE 
To implement the volume operations presented in 

Section III, we built an open and flexible Web services 
architecture for VBS, as shown in Fig. 4. There are two 
types of physical nodes, volume server and VMM nodes, 
and three types of Web services modules, the VBS Service 
module, the Volume Delegate module, and the VMM 
Delegate module, in the architecture. 

In our current design there could be only one volume 
server node, and multiple VMM nodes. All physical 
storage devices used by VBS are installed on the volume 
server node, and LVM [12] is used to manage these 
storage devices, as well as logical volumes and volume 
groups. iSCSI [13] is used for remote access of logical 
volumes from VMM nodes, and the “ietadm” utility is 
used by the volume server for managing iSCSI targets. On 
VMM nodes, the Xen hypervisor [4] is used to manage 
VM instances, the “iscsiadm” utility is used for controlling 
iSCSI initiators, and the VBD technique is used for 
attaching/detaching a virtual iSCSI device to/from a 
DomU VM instance. We choose iSCSI to connect the 
volume server and VMM nodes for two reasons. First, 
iSCSI runs over TCP/IP and thus has better routability than 
AoE [11], which ensures that VBS can be applied in 
environments with Internet as well as LAN connections. 
Second, the multipath support of iSCSI provides a helpful 
utility to implement sharing of logical volumes among 
different VMs, which will be included in future versions of 
VBS. Users can utilize volume sharing to handle situations 
such as VM failures. For example, the user can safely have 
two VM instances, one as a working node and the other as 
a back-up node, attached to the same VBS volume; once 
the working node fails, the back-up node will be able to 
resume its work on that volume right away. 

The Volume Delegate module is a Web service running 
on the volume server, responsible for executing LVM 
commands for volume and snapshot creation and deletion, 



and iSCSI commands for target creation and deletion 
based on logical volumes. 

 
Figure 4.  VBS Web services architecture. 

The VMM Delegate module is a Web service running 
on a VMM node, responsible for executing iSCSI 
commands for log-in and log-out from initiators to targets, 
and Xen VBD commands for attaching and detaching 
iSCSI virtual devices to/from VM instances. 

The VBS Service module is the frontend Web service 
which accepts requests from the VBS clients, and 
completes their VBS operations by coordinating the 
actions of Volume Delegate and VMM Delegate. Details 
about the coordination are covered in Section V. 

This Web services based architecture can be easily 
extended to support other types of volume servers and 
VMMs. The main difference with other volume servers 
and VMMs is that they use different sets of commands to 
complete logical volume management and VM instance 
management. Therefore, one way to support them is to 
apply the “adapter” design pattern [21] to different volume 
servers and VMMs, and build new Volume Delegate and 
VMM Delegate services to wrap up the different sets of 
commands. As long as the new services keep the same 
interfaces, they can still work with the other VBS modules 
seamlessly. 

Another solution for supporting different volume 
servers and VMMs is a technique we call “command line 
extraction”, which is currently used by the VBS prototype. 
The Volume Delegate and VMM Delegate use Apache Ant 
technology [15] to wrap up and execute the LVM and Xen 
commands. These commands used to be hard coded in the 
program logics in early implementations of VBS, as 
demonstrated in the upper part of Fig. 5. The source codes 
shown here are actually first constructing an executable 
command line in the form of “xm block-attach <vmId> 
phy:<vmmDev> <vmDev> w” by replacing the bracketed 
parameters with dynamic values; and then executing the 
command line as an Ant ExecTask object. We call this 
special form of command line with bracketed parameters a 
“command line pattern”. 

Except for the hard coded implementation, another way 
for doing the same job is to extract these command line 
patterns out from source codes, save them in a property 
file, and then read them in during execution of the services, 
and dynamically create and execute the commands, as 
shown in the lower part of Fig. 5. In this way, we will be 
able to make the services execute different types of 
commands from different volume servers and VMM 

platforms by just modifying the patterns in the property 
file, without touching and rebuilding the Web services’ 
codes. By reading in different command line patterns 
during runtime, the Volume Delegate and VMM Delegate 
services are actually running as “dynamic command 
adapters”. This solution can work as long as the new 
command line pattern accepts the same set of parameters, 
which is the normal case for most VBS operations. For 
example, the command line pattern given above 
corresponds to a Xen command which attaches a block 
device in Dom0 to a DomU instance; if we want the VMM 
Delegate to complete the same job on a proxmox [16] 
VMM platform managing KVM instances, all we need to 
do is just changing this command line pattern to “qm set 
<vmId> -<vmDev> <vmmDev>”. 

 
Figure 5.  Command line extraction. 

V. VBS IMPLEMENTATION 
This section explains the implementation details of 

VBS, including workflows and mechanisms for 
maintaining system consistency. 

A. Workflows 
Fig. 6 demonstrates the workflows of main VBS 

operations. Due to space limitations the workflows of 
“describe-volumes” and “describe-snapshots” are not 
included; in short, these two operations just look up the 
metadata of the given volume or snapshot IDs, and return 
the corresponding information. Here we just explain the 
workflow actions of “create-volume” and “attach-volume” 
as an example, and the actions of the rest operations could 
be inferred from Fig. 6 in a similar way. 

To handle a VBS client’s request for the “create-
volume” operation, VBS Service invokes Volume 
Delegate, which then executes the “lvcreate” command to 
create a new logical volume of the size given by the client. 
After the new logical volume is created, Volume Delegate 
checks if the new volume is required to have the same data 
as a specific snapshot. If such a snapshot’s ID is specified, 
Volume Delegate will first return the new volume’s 
information, along with a “pending” status, to VBS 
Service, and then start a new thread to copy the content 
from the specified snapshot to the new volume with the 
Linux “dd” command, and finally return an “available” 
status, which denotes that the new volume is ready for 
attachment with a VM instance. If no snapshot ID is 
specified, Volume Delegate will just return the new 
volume’s information, along with an “available” status, to 
VBS Service. Note that the asynchronous copy operation is 
necessary for quick response, because it’s a time 
consuming job. 



For the “attach-volume” operation, VBS Service first 
invokes Volume Delegate to export an iSCSI [13] target 
based on the given volume ID by executing the “ietadm 
new” command. After the new iSCSI target is created, 
VBS Service will invoke the VMM Delegate running on 
the VMM node specified by the client, which then carries 
out the following operations: 

First, execute the “iscsiadm –discover” command to 
discover all targets on the volume server; 

Second, execute the “iscsiadm –login” command to 
login to the newly created target. This will result in a 
virtual iSCSI device created on the VMM node; 

Third, execute the “xm block-attach” command to 
attach the virtual iSCSI device to the VM instance with the 
given VM ID. 

 
Figure 6.  VBS workflows. 

B. Consistency mechanisms 
The VBS system need to maintain two levels of 

consistency: metadata level consistency and system level 
consistency. 

We use a small on-disk HSQLDB [17] database to 
keep the metadata in our VBS prototype. The database 
contains three major tables: the “volumes” table, the 
“snapshots” table, and the “attachments” table, and applies 
various database techniques, such as dependencies and 
transactions, to maintain the metadata consistency. New 
volume IDs and snapshot IDs are generated from the hash 
codes of UUIDs, and duplicated hashing results are 
eliminated with the help of one additional database table, 
the “ids” table, which keeps track of all IDs in use. 

For VBS operations involving multiple execution steps, 
such as “attach-volume” and “detach-volume”, failure of 
any intermediate step will leave the whole system in an 
inconsistent status. To maintain the system level 
consistency, a “roll-back” mechanism is added to these 
multi-step VBS operations. For example, during the 

execution of the four steps of “attach-volume”, if any step 
fails, the execution of the previous steps will all be 
recovered, so that the whole system can roll-back to a 
previously consistent status. 

VI. INTEGRATION WITH NIMBUS 
Nimbus [3] is a cloud computing platform developed 

by University of Chicago. It adopts the concept of “virtual 
workspace” to manage VM instances, and provides 
services such as leasing of VMs and creation of virtual 
clusters [6] by manipulating Xen hypervisor [4] nodes. The 
construction of Nimbus components is shown in Fig. 7. At 
the backend, the workspace service implements the details 
of VM management, and is bridged to the frontend 
interfaces with the Resource Management API (RM API). 
At the frontend, Nimbus supports both a WRSF [18] Web 
services interface and an Amazon EC2 compatible Web 
services interface, so that users can also use an Amazon 
EC2 [1] client to access a Nimbus cloud. However, the 
support for Amazon EC2 interface is incomplete, and there 
is no EBS-like implementation in Nimbus yet. Since 
Nimbus is an open source project under continuous 
development and updates, it provides an ideal platform for 
us to explore and test possible ways of integrating VBS 
with existing cloud systems. Our integration work with 
Nimbus has been successful, and we would like to use it as 
an example to demonstrate the strategy of integrating VBS 
with a cloud computing environment. 

 
Figure 7.  Nimbus components [20]. 

To complete the integration, we need to consider the 
difference between the integrated version and the 
standalone version of VBS. In the integrated version, the 
requirements for most VBS operations are similar; the 
difference lies in the operation of “attach-volume”: the 
integrated version of “attach-volume” should accept a 
Nimbus instance ID as the destination of the attachment, 
instead of a specific Xen DomU ID and the hostname of 
the VMM node where the DomU is running. Since VBS 
requires the VM ID and VMM hostname to complete the 
attachment on the right node, we need a mechanism in the 
integrated version to find out the corresponding Xen 
DomU ID and VMM hostname associated with a given 
Nimbus instance ID. To implement this mechanism, we 
introduce an auxiliary module, the VBS_Nimbus Service, 
to the VBS architecture, as shown in Fig. 8. 

The original Nimbus workspace service does not return 
the information we need. Therefore, we modified the 
implementation of the “Manager” interface of Nimbus RM 
API, so that the workspace service will append the Xen 
DomU ID and VMM hostname to the network properties 
of a Nimbus instance when answering a resource property 
query. It takes only one line of Java source code to 
complete the necessary modification. 

Similarly, we can integrate VBS with other cloud 
computing systems by introducing auxiliary modules and 
corresponding query mechanisms. 



 
Figure 8.  Integration with Nimbus. 

VII. PRELIMINARY PERFORMANCE TEST 
To test the performance of VBS, we set up a single VM 

and single volume test bed in a private 1Gb Ethernet LAN 
of Indiana University (IU). We started one volume server 
and one VMM node in the test bed, and their hardware 
configurations are given in Table I. The volume server is 
running Red Hat Enterprise Linux (RHEL) 5.3 and LVM 
[12] 2.0. The 4 147GB disks are grouped into two pairs, 
both in RAID1 configuration. All hard disks are managed 
by LVM, and new logical volumes are created on the 
RAID1s. The VMM node is running RHEL 5.3, Xen [4] 
3.1.2 and LVM 2.0, and the 73GB hard disk is managed by 
LVM. One DomU is started on the VMM node, whose 
hardware configuration is also given in Table I. 

TABLE I.  HARDWARE CONFIGURATIONS OF VOLUME SERVER, 
VMM NODE, AND  VM 

 CPU Memory Disk 
Volume 
server 4*Xeon 2.8G 512MB 4 * Seagate 147G 10K 

RPM SCSI (paired in RAID1) 

VMM 2*Opteron 
2.52G 1.5GB 1 Fujitsu 73G 10K RPM 

SCSI 

VM 1 Operon 
2.52G 256MB 4G disk image file (3.6G 

available) 
For comparison purposes, we tested the performance of 

4 different types of virtual disks on this test bed, as listed 
below: 

VBS-LVM: a 5GB VBS volume is created and 
attached to the VM instance. 

AoE-LVM: a 5GB logical volume is created on the 
volume server and exported as an AoE [11] target; the 
target is discovered on the VMM node as a virtual AoE 
device, which is then attached to the VM instance. 

Local-LVM: a 5GB logical volume is created locally 
on the VMM node with LVM, and attached to the VM 
instance. 

Local-Image: the CentOS 5.2 disk image file is also 
tested. 

An ext2 file system is created on all logical volumes, 
and an ext3 file system is created on the CentOS 5.2 disk 
image file. We used Bonnie++ [19] to complete our 
performance tests, and there were two reasons for this 
choice. First, the various file I/O operations tested by 
Bonnie++ make it possible for us to observe both the 
caching effects at different levels of the system and the 
actual transmission speed of each type of virtual disk. 
Second, Bonnie++ does file creation/deletion tests as well 

as read/write tests, so we can also observe and analyze the 
virtual disks’ performance on file system metadata 
operations. We carried out the tests by mounting different 
disks to different directories in the VM, and running 
Bonnie++ under different directories. Due to the diversity 
of the virtual disk types, multiple levels of caching should 
be considered when choosing the file size used for tests. 
First, file system cache on the VM instance is utilized for 
access to files on all disks. Second, for access to VBS-
LVM, caching is provided by the iSCSI target on the 
volume server. Third, for AoE-LVM, caching is provided 
by both the initiator on the VMM side, and the target on 
the volume server. Finally, Xen does not provide caching 
for physical devices attached to DomUs; but for disk 
image files used by VMs, the file system running in Dom0 
will provide caching support. To avoid the impact from all 
these caching mechanisms, we ran Bonnie++ tests with 
three different file sizes: 512MB to double the memory 
size of the VM, 1GB to double the memory size of the 
volume server, and 3GB to double the memory size of the 
VMM node. Fig. 9-11 presents comparison of the 
transmission speed of VBS-LVM, AoE-LVM, and Local-
LVM on each Bonnie++ operation in case of all file sizes. 
Due to space limit we just list a brief definition for each 
I/O operation here, and for detailed information please 
refer to [19]. 

Per-Ch Write: the file is written using putc(). 
Block Write: the file is created using write(2). 
Rewrite: each BUFSIZ of the file is read with read(2), 

dirtied, and rewritten with write(2), requiring an lseek(2). 
The default value of BUFSIZ is 8KB. 

Per-Ch Read: The file is read using getc(). 
Block Read: The file is read using read(2). 

 
Figure 9.  Performance comparison of VBS-LVM, AoE-LVM, and 

Local-LVM for file size of 512MB 

 

Figure 10.  Performance comparison of VBS-LVM, AoE-LVM, and 
Local-LVM for file size of 1GB 



 

Figure 11.  Performance comparison of VBS-LVM, AoE-LVM, and 
Local-LVM for file size of 3GB 

There are several notable observations in Fig. 9-11. 
First, although the throughput of VBS-LVM is constantly 
less than Local-LVM, it is on the same magnitude. There 
are two reasons for the difference: (1) access to Local-
LVM directly goes to the local disk on the VMM node, 
involving no overhead from the iSCSI protocol or network 
transmission; (2) according to our tests with the hdparm 
[22] utility on Linux, the hard disk on the VMM node can 
provide a faster I/O speed (about 83MB/s) than the 
RAID1s (about 65MB/s) on the volume server. Second, 
the throughput of VBS-LVM is close to AoE-LVM in 
general, indicating that VBS could be as efficient as an 
AoE based solution in the same environment. Specifically, 
it is constantly faster on write, and slower on read than 
AoE-LVM, implying that iSCSI is better optimized for 
write operations. Third, the difference on read operations 
between VBS-LVM and AoE-LVM gets larger when the 
file size goes up. This is because iSCSI only provides 
caching at the target side on the volume server, which has 
512MB of memory. As a result, when file size goes over 
512MB, AoE-LVM can benefit more from the cache at the 
initiator side, because the VMM node has 1.5GB of 
Memory. 

Comparison between Local-LVM and Local-Image 
also uncovers some interesting trends, as shown in Fig. 12-
14. The performance of Local-LVM is consistent, because 
in every test the only cache used is the file system cache 
inside the VM, which is constrained by the memory size of 
256MB. In contrast, the throughput of Local-Image can 
reach to as high as 400-500MB/s when the file size is less 
than 1.5GB, but drops sharply to numbers similar to Local-
LVM after that. This is because of the caching of the file 
system in Dom0. When the file size is less than the amount 
of memory most accesses to the disk image file can be 
handled through the cache; but after that such benefit is 
lost. 

Fig. 15 presents the comparison of all disk types on the 
operations of sequential file creation, random file creation, 
and random file deletion. The data unit of the vertical axis 
is files/second. We can see that the performances of all 
disk types are similar, because these operations involve 
little data transmission. 

 
Figure 12.  Performance comparison of Local-LVM and Local-Image for 

file size of 512MB. 

 

Figure 13.  Performance comparison of Local-LVM and Local-Image for 
file size of 1GB. 

 

Figure 14.  Performance comparison of Local-LVM and Local-Image for 
file size of 3GB. 

 
Figure 15.  File creation and deletion comparison. 



VIII. CONCLUSION AND FUTURE WORK 
This paper presents the VBS system, an open source 

standalone block storage system that can provide persistent 
and off-instance block storage services to VM instances in 
cloud computing environments. Compared with existing 
services, such as Amazon EBS [10] and Eucalyptus’ EBS 
[2] implementation, VBS has a similar web interface and 
supports similar logical volume operations; moreover, 
based on a flexible Web services architecture, VBS can be 
easily extended to support different types of volume 
servers and VMMs, or integrated with various cloud 
computing systems such as Nimbus. Our preliminary 
performance tests show that VBS can provide throughput 
that is similar to an AoE-based solution under the same 
environment configuration, and comparable to a local 
LVM [12] volume for accesses to files with modest sizes. 
There are several directions that we will continue to work 
on in the future: 

First, sharing of VBS volumes among multiple VM 
instances is a potential requirement of many applications. 
By leveraging the multipath support in iSCSI, read-only 
sharing of volumes can be achieved with little 
modification. Furthermore, read-and-write sharing could 
be implemented by applying the technology of shared disk 
file systems. 

Second, a user management component is needed in 
VBS to handle issues such as access control, space quota, 
and integration with cloud computing systems. 

Third, no security mechanism has been applied in 
current VBS prototype yet. In order to protect users’ data 
from various threats, two levels of security will need to be 
implemented: secure access to VBS Web services and 
secure data transmission over iSCSI. 

Forth, the single volume server architecture of VBS is 
neither reliable nor scalable. We will consider ways to 
extend the single volume server to a distributed network of 
multiple servers to improve the reliability and scalability of 
VBS. 

Finally, current VBS implementation keeps only one 
copy for each logical volume. As a result, when the 
volume server and VM instances are deployed across wide 
area networks (WAN), it will be hard to guarantee the 
performance and availability of VBS volumes. To solve 
this problem, mechanisms such as volume duplication and 
synchronization could be considered in the future. 
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