
Supporting Cloud Computing with the Virtual Block Store System

Mike Lowe
University Information
Technology Services,
Indiana University

 jomlowe@iupui.edu

Abstract

The fast development of cloud computing systems

stimulate the needs for a standalone block storage
system, which can provide persistent block storage
services to the virtual machines maintained by the
clouds. This paper presents the Virtual Block Store
(VBS) System, a standalone block storage system built
on the basis of LVM, iSCSI, and Xen hypervisor, which
can provide basic block storage services such as
volume creation and attachment. The concept and
functional interface of VBS are based on the Amazon
Elastic Block Store (EBS) service; moreover, VBS can
be used independently with an existing volume server
and Xen nodes, and can be easily extended to support
other virtual machine managers, or integrated with
various cloud computing systems. Preliminary
experiments show that a VBS volume can provide I/O
performance that is similar to an ATA over Ethernet
virtual device, and comparable to a local logical
volume.

1. Introduction

The technology of cloud computing has been
developing very fast, with a number of implementation
systems in both commercial and research areas, such as
Amazon Elastic Compute Cloud (EC2) [1] service,
Eucalyptus [2], and the Nimbus [3] project at the
University of Chicago. Most of these systems provide
implementation of Infrastructure as a Service (IaaS)
based on existing virtual machine managers (VMMs),
such as Xen [4], KVM [5], etc., and fulfill users’
requirements for computing resources through
allocation of virtual machines and construction of
virtual clusters [6]. Research experiences have shown
that cloud computing has successfully supported the
computation requirements of many scientific
computing applications [7] from various fields.

Besides requirements for computing power,
applications have needs for storage services that could
be used in combination with VM instances, especially
in data intensive environments. Distributed file
systems such as Hadoop [8] and Amazon S3[9] can
provide reliable storage services in the form of large
file operations, but these services require VMs to be
clients of their file systems, and only address part of
the applications’ needs. In many cases users need raw
block storage devices which they can use as if they
were local disks inside the VMs, so that they can create
their own file systems and databases. Many existing
computing systems, such as Amazon EC2, can support
a certain type of “instance storage” to their VM
instances by creating disk image files locally on VMM
nodes, but such instance storage services have two
problems:

(1) The storage space is limited. Since disk image
files are created locally on the VMM node, their sizes
are constrained by the amount of physical resources
available on that node. Meanwhile, VM instances
running on the same VMM node have to compete for
available storage space. Moreover, there is no central
and flexible way to extend the storage space of the
whole cloud environment except adding more storage
devices to each VMM node in management;

(2) Data storage is not persistent. The lifetime of the
storage devices is tightly coupled with the life time of
the VM instances they are attached to; once the VM
instances are terminated, their image files are deleted
and so is the data stored on them. There is no way to
back up the storage devices or keep them alive so that
the data could be shared among multiple VM instances
with different lifetimes.

To address these two problems, cloud users need
special services which allow them to create persistent
off-instance block storage devices, whose lifetime is
independent of the VM instances they are attached to.
Further, users should be able to extend their storage
space as needed through the creation of more devices,

Xiaoming Gao
Pervasive Technology

Institute,
Indiana University

gao4@cs.indiana.edu

Marlon Pierce
Pervasive Technology

Institute,
Indiana University

mpierce@cs.indiana.edu

which should not be constrained by the resource limit
of any single VMM node. There are already some
implementations for such services, such as the Amazon
Elastic Block Store (EBS) service [10], and Eucalyptus’
implementation of the EBS interface based on the
technology of ATA over Ethernet (AoE) [11].
However, these services are specially designed for, and
therefore tightly coupled with, their cloud computing
environments. As a result, it is hard to extend them to
support other VMM platforms and could computing
environments; e.g., it is hard to make Eucalyptus’ EBS
implementation work with a Nimbus cloud.

This paper presents the Virtual Block Store (VBS)
System, a standalone block storage system developed
by the Community Grids Lab of Indiana University.
We have built a prototype of VBS based on LVM [12],
iSCSI [13], and Xen hypervisor, which can provide
basic block storage services such as volume and
snapshot creation and deletion, and volume attachment
to a running Xen DomU instance. The concept and
functional interfaces of VBS are based on Amazon
EBS; however, since VBS is designed to work
independently and directly with volume servers and
VMM nodes, it has the following advantages compared
to Amazon EBS and Eucalyptus’ EBS implementation:

(1) VBS is built on the basis of an open web service
architecture, so it can be easily extended to support
other types of volume servers and VMMs;

(2) VBS is not coupled with any specific cloud
computing environment, so it can be flexibly integrated
with any cloud computing systems. For example, we
have successfully integrated it with Nimbus in a simple
approach, as demonstrated in Section 6.

We would like to contribute our prototype of VBS
as an open source framework which demonstrates a
basic way to build EBS-like block storage systems, so
that researchers can either use it as a start point to build
their own storage systems with special purposes, or
integrate it with their cloud computing systems to
provide integrated block storage services.

The rest of this paper is organized as follows.
Section 2 talks about related technologies. Section 3
presents the functional interfaces as well as typical use
cases of VBS. Section 4 and 5 describe the web service
architecture and implementation details of VBS.
Section 6 demonstrates the integration of VBS with
Nimbus. Section 7 discusses the results of our
preliminary performance tests. Section 8 prospects our
future work and concludes.

2. Related technologies

This section introduces related technologies used in
VBS, including LVM [12], iSCSI [13], and Xen

hypervisor [4]; and compares VBS with existing
persistent off-instance block storage services, including
Amazon EBS [10], and Eucalyptus’ EBS
implementation [2] based on AoE[11].

2.1. LVM

LVM is a Logical Volume Manager for the Linux
operating system. Here a “logical volume” refers to a
logically created disk drive or partition; it can be
created from part of a single physical disk, or across
multiple disks, and can be used just like a physical disk
by upper-level applications. LVM is available on most
Linux distributions, such as Debian, Red Hat, Fedora,
Gentoo, openSUSE, Ubuntu, etc., providing a rich set
of logical volume management functions, including
creation and removal of logical volumes and their
snapshots, volume group management, dynamic
volume and volume group resize, logical volume
stripping and mirroring, etc.

Our VBS prototype leverages LVM for volume and
snapshot creation and deletion. For more information
about LVM, please refer to [12].

2.2. The iSCSI protocol

The term “iSCSI” stands for “Internet Small
Computer System Interface”, which is an IP-based
Storage Area Network (SAN) protocol. By carrying
SCSI commands over IP networks, iSCSI enables
remote access to block storage devices as if they were
local SCSI devices. iSCSI uses TCP/IP to transfer data
over network, and there are two types of roles involved
in the transmission process: a “target” located on the
server side and an “initiator” on the client, as shown in
Figure 1. To enable a client’s remote access of a disk
on the server, the disk is first exported by iSCSI as a
target on the server; then the client can use an iSCSI
initiator utility to discover the targets on the server, and
finally log in to the remote target with the discovered
target name. After the log-in is completed, a virtual
iSCSI disk is created on the client, which can be used
just like a local SCSI disk. Once the client completes
its work, it can log out from the target, and finally the
target could be deleted on the server.

Figure 1 iSCSI target and initiator

iSCSI can support sharing of disks with two layers
of multipath. To share an original disk on the server
among multiple clients, the user can either have one

disk exported as multiple targets, or one target
connected to multiple initiators. The iSCSI protocol
takes care of necessary synchronization work on the
block level; e.g., there cannot be two initiators writing
to the same block section on a disk at the same time.

Our VBS prototype leverages iSCSI for remote
access of logical volumes from VMM nodes. Further,
iSCSI’s support for multipath can be utilized for
potential sharing of disk volumes among multiple VM
instances.

2.3. Xen hypervisor

The Xen hypervisor is an open source virtual
machine monitor for x86, x86_64, IA64, PowerPC,
and other CPU architectures. It supports efficient
concurrent execution of multiple guest VM instances,
which could have a wide range of operating systems
running on them, including Windows, Linux, Solaris,
and various versions of the BSD operating systems.
There are two types of “domains” running on a node
managed by Xen hypervisor: Dom0 (or domain zero)
and DomU. Dom0 is the first domain started by Xen
on boot; it has direct access to the hardware, and is
responsible for creating other domains (DomU) and
coordinating their concurrent executions. A DomU is a
domain created by Dom0; it is the actual VM instance
where a guest OS is running. A DomU does not have
direct access to the hardware by default; it must run a
FrontendDriver which communicates with Dom0 to
sent hardware requests.

Xen provides the virtual block device (VBD)
technique, which allows the user to attach a block
device or disk image file in Dom0 to a DomU VM
instance, so that it can be used as a local block device
in DomU. Our VBS prototype utilizes the VBD
technique for attachment and detachment of virtual
disk volumes to/from VM instances.

2.4. Amazon EBS

The Amazon.com Inc. provides the Amazon EBS
service as a part of Amazon EC2 [1]. It supports a full
set of persistent and off-instance disk volume storage
operations that are suitable for use with its EC2 VM
instances, including volume and snapshot creation and
deletion, volume and snapshot description, and volume
attachment and detachment to/from a VM instance. For
more explanation about the web service interface of
Amazon EBS, please refer to [10].

Little has been known about the design and
implementation of Amazon EBS since they are kept as
commercial secrets. The problem with Amazon EBS is
that it is not a standalone system, but tightly coupled

with Amazon EC2. It is impossible to attach a disk
volume created with Amazon EBS to a Nimbus VM
instance. In contrast, our prototype of VBS is designed
as a standalone system which works directly with
VMM nodes, and thus can be easily integrated with
any cloud computing environment.

2.5. Eucalyptus’ EBS implementation

The Eucalyptus cloud computing system has
implemented exactly the same interface as Amazon
EBS based on the AoE technology. However, their
EBS implementation is also tightly coupled with its
cloud management system, which means it is hard to
integrate their implementation with other cloud
computing systems. The use of AoE can help make the
volume operations and data transmission more efficient,
because AoE runs directly over Ethernet and incurs no
TCP/IP overhead. Nonetheless, it also faces two limits
compared with an iSCSI-based solution:

(1) The routability of a AoE based solution is
limited inside an Ethernet environment, which means
that the disk volume server and VMM nodes of
Eucalyptus must be all located in the same LAN, or
VLAN at least;

(2) Sharing of disk volumes is harder in an AoE
environment. AoE provides mechanisms such as
reserve and release command and config string to
coordinate the concurrent access from different clients,
but these are not real native target sharing mechanisms
among multiple clients. For example, if one target is
reserved by one specific client and that client goes
down, there will be no normal way for another client to
come over and resume the use of the target device. The
only way to deal with this type of failure is for the
administrator to force release the target so that it could
be available to other clients.

3. VBS interface and use cases

To address the requirements of a standalone block
storage service as mentioned in Section 1, VBS
provides the following operation methods in its web
service interface:

create-volume <size> <comment> <snapshot id>
delete-volume <volume id>
describe-volumes [<volume id> <volume id> …]
create-snapshot <volume id> <comment>
delete-snapshot <snapshot id>
describe-snapshot [<snapshot id> <snapshot id> …]
attach-volume <volume id> <VMM hostname>

<VM id> <VM device>
detach-volume <volume id>

We designed the VBS interface based on the
interface of Amazon EBS [10], with the following
special differences:

(1) There is no concept of “availability zone” in our
VBS prototype, so the “create-volume” and “create-
snapshot” methods accept a “comment” parameter
instead of “availabilityZone”, which is used in Amazon
EBS;

(2) In Amazon EBS, the “attach-volume” operation
accepts an EC2 VM instance ID besides a volume ID
and a VM device path, while in VBS the EC2 instance
ID is replaced by a VM instance ID and the hostname
of the VMM node where the VM is running, because
VBS is independent of any specific cloud computing
environment, and works directly with VMM nodes;

(3) The “detach-volume” operation accepts only one
parameter: the ID of the volume to be detached. This is
because one disk volume is only allowed to be attached
to one VM instance in current VBS implementation.
More parameter about the volume’s attachment will be
needed once volume sharing is supported in the future.

For more information about the web service
interface of VBS, please refer to [14]. Using the
operations of this interface, the user can apply VBS to
two typical use cases, as shown in Figure 2 and 3. In
Figure 2, users can create multiple logical volumes
(LV) in VBS and attach them to one or more VM
instances; moreover, they can extend their storage
space by just creating new volumes as needed. The
lifetime of VBS volumes is independent of the VM
instances – they are maintained by VBS as long as
“delete-volume” is not called on them. In Figure 3, the
user can first create a snapshot of a volume which
already contains some basic data or software
environment, and then create new volumes based on
the snapshot, and attach them to different VM
instances, so that all VMs can have the same basic data
and software environment, and start doing their own
computations and generate different output results.

Figure 2 Use of VBS: extendable storage

Figure 3 Use of VBS: snapshots

4. VBS web service architecture

Figure 4 VBS web service architecture

To implement the volume operations presented in
Section 3, we built a flexible web service architecture
for VBS, as shown in Figure 4. There are two types of
physical nodes, volume server and VMM nodes, and
three types of web service modules, the VBS Service
module, the Volume Delegate module, and the VMM
Delegate module, in the architecture.

In our current design there could be only one
volume server node, and multiple VMM nodes. All
physical storage devices used by VBS are installed on
the volume server node, and LVM [12] is used to
manage these storage devices, as well as logical
volumes and volume groups. iSCSI [13] is used for
remote access of logical volumes from VMM nodes,
and the “ietadm” utility is used by the volume server
for managing iSCSI targets created from logical
volumes. On VMM nodes, the Xen hypervisor [4] is
used to manage VM instances, the “iscsiadm” utility is
used for controlling iSCSI initiators, and the VBD
technique is used for attaching/detaching a virtual
iSCSI device to/from a DomU VM instance.

The Volume Delegate module is a web service
running on the volume server, responsible for
executing LVM commands for volume and snapshot
creation and deletion, and iSCSI commands for target
creation and deletion based on logical volumes.

The VMM Delegate module is a web service
running on a VMM node, responsible for executing
iSCSI commands for log-in and log-out from initiators
to targets, and Xen VBD commands for attaching and
detaching iSCSI virtual devices to/from VM instances.

The VBS Service module is the frontend web
service which accepts requests from the VBS clients,
and completes their VBS operations by coordinating
the actions of the Volume Delegate and the VMM
Delegate. Details about the coordination are covered in
Section 5.

This web service based architecture is very open
and flexible, and can be easily extended to support
other types of volume servers and VMMs. The main
difference with other volume servers and VMMs is that
they use different sets of commands to complete
logical volume management and VM instance
management. Therefore, one way to support them is to
build new Volume Delegate and VMM Delegate
modules to wrap up the different sets of commands. As
long as the new modules keep the same interfaces, they
can still work with the other VBS modules seamlessly.

Another solution for supporting different volume
servers and VMMs is a technique called “command
line extraction”, which is currently used by the VBS
prototype. The current implementations of Volume
Delegate and VMM Delegate use the Apache Ant
technology [15] to wrap up and execute the LVM and
Xen commands, as shown in the upper part of Figure 5.
The source codes for creating and executing the ant
project are actually constructing an executable
command line from a specific “command line pattern”
by replacing a set of parameters in the pattern. If we
can extract these command line patterns out from the
source codes, and save them in a property file, as
shown in Figure 5, then it will be possible to support
different commands from other volume servers and
VMMs by just modifying the patterns in the property
file, without touching and rebuilding the web service
codes. This solution can work as long as the new
command line pattern accepts the same set of
parameters, which is the normal case for most VBS
operations. For example, the command line pattern in
Xen to attach a block device in Dom0 to a DomU
instance is “xm block-attach <VM ID> phy:<VMM
dev> <VM dev>”; if we want to make the VMM
Delegate work with the proxmox [16] VMM platform
which manages KVM VM instances, all we need to do
is just changing this command line pattern to “qm set
<VM ID> -<VM dev> <VMM dev>”.

Figure 5 Command line extraction

5. VBS implementation

This section explains the implementation details of
VBS, including workflows and mechanisms for
maintaining system consistency.

5.1. Workflows

Figure 6 demonstrates the workflows of main VBS
operations. Due to space limitations the workflows of
“describe-volumes” and “describe-snapshots” are not
included; in brief, these two operations just look up the
metadata of the given volume or snapshot IDs, and
return the corresponding information. Here we just
explain the workflow actions of “create-volume” and
“attach-volume” as an example, and the actions of the
rest operations could be inferred from Figure 6 in a
similar way.

Figure 6 VBS workflows

To handle a client’s request for the “create-volume”
operation, VBS Service invokes Volume Delegate,
which then executes the “lvcreate” command to create
a new logical volume of the size given by the VBS
client. After the new logical volume is created, Volume
Delegate checks if the new volume is required to have
the same data as a specific snapshot. If such a
snapshot’s ID is specified, Volume Delegate will first
return the new volume’s information, along with a
“pending” status, to VBS Service, and then start a new
thread to copy the content from the specified snapshot
to the new volume with the Linux “dd” command, and
finally return an “available” status, which denotes that
the new volume is ready for attachment with a VM
instance, to VBS Service after the copy is completed. If
no snapshot ID is specified, Volume Delegate will just
return the new volume’s information, along with an

“available” status, to VBS Service. Note that the
asynchronous copy operation is necessary for quick
response, since it’s a time consuming job.

For the “attach-volume” operation, VBS Service
first invokes Volume Delegate to export an iSCSI [13]
target based on the given volume ID by executing the
“ietadm new” command. After the new iSCSI target is
created, VBS Service will invoke the VMM Delegate
running on the VMM node specified by the client,
which then carries out the following operations:

(1) Execute the “iscsiadm –discover” command to
discover all targets on the volume server;

(2) Execute the “iscsiadm –login” command to
login to the newly created target. This will result in a
virtual iSCSI device created on the VMM node;

(3) Execute the “xm block-attach” command to
attach the virtual iSCSI device to the VM instance with
the given VM ID.

5.2. Consistency mechanisms

The VBS system need to maintain two levels of
consistency: metadata level consistency and system
level consistency.

We use a small on-disk HSQLDB [17] database to
keep the metadata in our VBS prototype. The database
contains three major tables: the “volumes” table, the
“snapshots” table, and the “attachments” table, and
applies various database techniques to maintain the
metadata consistency, such as dependencies and
transactions. New volume IDs and snapshot IDs are
generated from the hash codes of UUIDs, and
duplicated hashing results are eliminated with the help
of one additional database table, the “ids” table, which
keeps track of all IDs in use.

To maintain the system level consistency, we add a
“roll-back” mechanism to the implementations of VBS
operations which involve multiple action steps. For
example, during the execution of the four steps of
“attach-volume”, if any step fails, the execution of the
previous steps will all be recovered, so that the whole
system can roll-back to a previously consistent status.

6. Integration with Nimbus

We have successfully integrated VBS with the
Nimbus [3] project, and would like to use it as an
example to demonstrate the integration strategy of
VBS with a cloud computing environment.

Nimbus is a cloud computing platform developed
by University of Chicago. It provides services such as
leasing of VM instances and creation of virtual clusters
by manipulating Xen hypervisor [4] nodes. Nimbus
supports both a WRSF [18] web service interface and

an Amazon EC2-compatible web service interface, so
that the user can also use an Amazon EC2 [1] client to
access a Nimbus cloud. However, the support for
Amazon EC2 interface is incomplete, and there is no
EBS-like implementation in Nimbus yet.

To complete the integration, we need to consider
the difference between the integrated version and the
standalone version of VBS. In the integrated version,
the requirements for most VBS operations are similar;
the difference lies in the operation of “attach-volume”:
the integrated version of “attach-volume” should
accept a Nimbus instance ID as the destination of the
attachment, instead of the specific Xen DomU ID and
the hostname of the corresponding VMM node. Since
VBS requires the VM ID and VMM hostname to
complete the attachment on the right node, we need a
mechanism in the integrated version to find out the
corresponding Xen DomU ID and VMM hostname
associated with a given Nimbus instance ID. To
implement this mechanism, we introduce an auxiliary
module, the VBS_Nimbus Service, to the VBS
architecture, as shown in Figure 7.

Figure 7 Integration with Nimbus

In the new architecture, the VBS_Nimbus Service
module is the frontend web service accepting a client’s
request. The client provides a volume ID, a Nimbus
instance ID, and a VM device path when calling the
“attach-volume” operation. Upon receiving the client’s
request, the VBS_Nimbus Service will first make a
resource property query to the workspace web service
of Nimbus to ask for the Xen DomU ID and the
corresponding VMM hostname associated with the
given Nimbus instance ID. After the result is returned,
the VBS_Nimbus Service will be able to invoke the
original VBS Service to complete the operation.

Since the original Nimbus workspace service does
return the information we need, we modified the
implementation of the “Manager” interface of Nimbus
RM API, so that the workspace service will append the
Xen DomU ID and VMM hostname to the network
properties of a Nimbus instance when answering a

resource property query. It takes only one line of Java
source code to complete the necessary modification.

Similarly, we can integrate VBS with other cloud
computing systems by introducing auxiliary modules
and corresponding query mechanisms.

7. Preliminary performance test

To test the performance of VBS, we set up a single
VM and single volume test bed in a private 1Gb
Ethernet LAN of Indiana University (IU). We started
one volume server and one VMM node in the test bed.
The volume server is configured with 4 Intel Xeon
2.8G CPUs and 512MB of memory, and is running
Red Hat Enterprise Linux (RHEL) 5.3 and LVM 2.0.
The VMM node is configured with 2 AMD Opteron
2.52G CPUs and 1.5GB of memory, and is running
RHEL 5.3, Xen [4] 2.0, and LVM [12] 2.0. One DomU
is started on the VMM node, with 1 AMD Opteron
2.52G CPU, 512MB of memory, and a CentOS 5.2
disk image with 2GB of disk space. For comparison
purposes, we tested the performance of 4 different
types of virtual disks on this test bed, with Bonnie++
1.03e [19]. The virtual disk types tested are listed
below:

VBS-LVM: a 5GB VBS volume is created and
attached to the VM instance. An ext2 file system is
created on it.

AoE-LVM: a 5GB logical volume is on the volume
server and exported as an AoE [11] target; the target is
discovered on the VMM node as a virtual AoE device,
which is then attached to the VM instance. An ext2 file
system is created on the volume.

Local-LVM: a 5GB logical volume is created
locally on the VMM node with LVM, and attached to
the VM instance. An ext2 file system is created on it.

Local-Image: the CentOS 5.2 disk image file is also
tested with Bonnie++. It has an ext3 file system and
1.6GB available space.

We also created a Eucalyptus VM instance and an
EBS volume on the Eucalyptus test bed of IU, and
tested its performance with Bonnie++ for comparison
with VBS. The Eucalyptus test bed has a dedicated
1Gb Ethernet LAN. The volume server is configured
with 2 Intel Xeon 5150 2.66GHz dual-core CPUs and
12GB of memory. It is running on RHEL 5.2, and uses
2 300GB 15K SAS disks in a RAID1 configuration for
volume management, instead of LVM. The VMM
node is configured with 2 Intel Xeon L5420 2.50GHz
quad-core CPUs and 32 GB of memory, and is running
RHEL 5.2 and Xen hypervisor 3.0. The VM instance
has 4 Intel Xeon L5420 2.5G/6144KB CPUs and 2GB
of memory, and is running RHEL 5.0. We define the
virtual disk type in this test as:

Euca-AoE: a 5GB EBS volume is created on the
Eucalyptus test bed and attached to a Eucalyptus VM
instance. An ext2 file system is created on it.

According to the default configuration of Bonnie++,
a 4GB file was created for testing the Euca-AoE disk,
and a 512MB file was used for the other disk types.
Each type of disk was tested 10 times, and the average
throughput performances of 5 types of I/O operations
of all disks are given in Table 1. The data unit is
KiloBytes/second. Due to space limit we can just list a
brief definition for each I/O operation here, and for
detailed information please refer to [19].

Per-Ch Write: the file is written using putc().
Block Write: the file is created using write(2).
Rewrite: each BUFSIZ of the file is read with

read(2), dirtied, and rewritten with write(2), requiring
an lseek(2).

Per-Ch Read: The file is read using getc().
Block Read: The file is read using read(2).

Table 1 Throughput test results

There are several notable observations that we can

get from Table 1:
(1) The performance difference between different

disk types is large for block operations, and relatively
small for Per-Ch operations. This is because in Per-Ch
operations there is only one character transferred for
each call, and most time is spent on CPU overhead.

(2) VBS-LVM is faster in write and slower in read
than AoE-LVM, and their overall performance is close.
This indicates that iSCSI is better optimized for write
operations, and could be as efficient as an AoE
solution under the same environment configurations.
Moreover, the performance of VBS-LVM can reach to
as high as 35%-55% of Local-LVM, as further
demonstrated in Figure 8.

(3) The overall performance of VBS-LVM is about
30%-50% percent of Euca-AoE. Since the performance
of VBS-LVM is close to AoE-LVM, this implies that
the difference with Euca-AoE comes from the different
environment configuration. The better hardware,
especially the use of SAS disks in RAID1 instead of
LVM, and the dedicated Ethernet, help provide a high
throughput for EBS in the Eucalyptus test bed.

(4) The performance of Euca-AoE is close to Local-
Image for Per-Ch operations, but not comparable for
block operations, because the 1Gb Ethernet puts a hard
limit on the transmission speed of Euca-AoE. It should
be noticed that the Block Read and Block Write
throughput of Euca-AoE can get close to the Ethernet

wire speed, which is consistent with the testing results
of iSCSI and AoE from VMWare and Coraid [20, 21].

(5) The throughput of Euca-AoE for block
operations is even faster than Local-LVM, which
implies that VBS-LVM also has the potential to exceed
Local-LVM in a properly configured environment.

Figure 8 Throughput comparison

Figure 9 presents the comparison of all disk types
on the operations of sequential file creation, random
file creation, and random file deletion. The data unit of
the vertical axis is files/second. We can see that the
performances of all disk types are similar, because
these operations involve little data transmission.

Figure 9 File creation and deletion comparison

8. Conclusion and future work

This paper presents the VBS system, an open source
standalone block storage system that can provide
persistent and off-instance block storage services to
VM instances maintained in cloud computing
environments. Compared with existing services, such
as Amazon EBS [10] and Eucalyptus’ EBS [2]
implementation, VBS has a similar web interface and
supports similar logical volume operations such as
volume creation and attachment; moreover, based on a
flexible web service architecture, VBS can be easily
extended to support different types of volume servers
and VMMs, or integrated with various cloud
computing systems such as Nimbus. Our preliminary
performance tests show that VBS can provide
throughput that is similar to an AoE-based solution
under the same test bed configuration, and has the

potential to exceed the performance of a local LVM
[12] volume with better hardware support. There are
several directions that we will continue to work on in
the future:

First, sharing of VBS volumes among multiple VM
instances is a potential requirement of many
applications. By leveraging the multipath support in
iSCSI, read-only sharing of volumes can be achieved
with little modification. Furthermore, read-and-write
sharing could be implemented by applying the
technology of shared disk file systems.

Second, user management is not implemented yet in
VBS. In the short run, a “user” table can be added to
the VBS database for recording the ownership of
volumes and snapshots. In the long run, a more
complete user control mechanism is necessary to
handle issues such as access control and space quota.

Third, the single volume server architecture of VBS
is neither reliable nor scalable. We will consider ways
to extend the single volume server to a distributed
network of multiple servers to improve the reliability
and scalability of VBS.

References

[1] Amazon EC2 service, http://aws.amazon.com/ec2/.
[2] Eucalyptus, http://open.eucalyptus.com/.
[3] The Nimbus project, http://workspace.globus.org/.
[4] The Xen hypervisor, http://www.xen.org/.
[5] KVM, http://www.linux-kvm.org/page/Main_Page.
[6] K. Keahey, T. Freeman, “Contextualization: Providing
One-Click Virtual Clusters”, Proceedings of 2008 Fourth
IEEE International Conference on eScience, Indianapolis, IN,
December 2008, pp. 301-308.
[7] K. Keahey, T. Freeman, et al., “Science Clouds: Early
Experiences in Cloud Computing for Scientific Applications”,
Proceedings of Cloud Computing and Its Applications 2008
(CCA-08), Chicago, IL. October 2008.
[8] The Apache Hadoop project, http://hadoop.apache.org/.
[9] Amazon S3 service, http://aws.amazon.com/s3/.
[10] Amazon EBS service, http://aws.amazon.com/ebs/.
[11] S. Hopkins, B. Coile, “The ATA over Ethernet Protocol
Specification”, Technical Report, The Brantley Coile
Company, Inc., February 2009.
[12] LVM, http://tldp.org/HOWTO/LVM-HOWTO/.
[13] The iSCSI protocol, http://tools.ietf.org/html/rfc3720.
[14] VBS web service interface definition,
http://cglc.uits.iu.edu:8080/axis2/services/VbsService?wsdl.
[15] The Apache Ant project, http://ant.apache.org/.
[16] Proxmox VE, http://pve.proxmox.com/wiki/Main_Page.
[17] The HSQLDB database engine, http://hsqldb.org/.
[18] OASIS Web Services Resource Framework (WSRF) TC,
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-
os.pdf.
[19] Bonnie++, http://www.coker.com.au/bonnie++/
[20] “Comparison of Storage Protocol Performance”,
VMwaer Inc., Jan 23, 2008.
[21] “AoE Performance Comparison”, Coraid Inc., 2009.

