
 1

VLab: Collaborative Grid Services and Portals to
Support Computational Material Science

Mehmet A. Nacar, Mehmet S. Aktas, and Marlon Pierce
Community Grids Lab

Indiana University
Corresponding Author: mnacar@cs.indiana.edu

Zhenyu Lu and Gordon Erlebacher

School of Computational Science and Information Technology
Florida State University

Corresponding Authors: zhenyulu@cs.fsu.edu, erlebach@csit.fsu.edu

Dan Kigelman, Evan F. Bollig, Cesar De Silva, Benny Sowell, and David A. Yuen
Minnesota Supercomputer Institute

University of Minnesota
Corresponding Author: rao@msi.umn.edu

Abstract: We present the initial architecture and implementation of VLab, a Grid and Web Service-
based system for enabling distributed and collaborative computational chemistry and material science
applications for the study of planetary materials. The requirements of VLab include job preparation and
submission, job monitoring, data storage and analysis, and distributed collaboration. These components
are divided into client entry (input file creation, visualization of data, task requests) and backend services
(storage, analysis, computation). Clients and services communicate through NaradaBrokering, a
publish/subscribe Grid middleware system that identifies specific hardware information with topics rather
than IP addresses. We describe three aspects of VLab in this paper: 1) managing user interfaces and input
data with Java Beans and Java Server Faces; 2) integrating Java Server Faces with the Java CoG Kit; and
3) designing a middleware framework that supports collaboration. To prototype our collaboration and
visualization infrastructure, we have developed a service that transforms a scalar data set into its wavelet
representation. General adaptors are placed between the endpoints and NaradaBrokering, which serve to
isolate the clients/services from the middleware. This permits client and service development
independently of potential changes to the middleware.

1. Introduction: Grid Enabling Material Science Applications
The Virtual Laboratory for Earth and Planetary Materials (VLab) is a National Science
Foundation-funded interdisciplinary research collaboration whose primary objective is to
investigate planetary materials at extreme conditions based on ab-initio computational techniques
to better understand the processes that create earth-like and other planetary objects. Such
calculations typically involve hundreds or thousands of computer runs. These runs occur in
stages, with complex interactions. They are often managed by several researchers. To address
challenges in collaborative and distributed computing, VLab brings together a team that includes
researchers in computational material science, geophysics, scientific visualization, Grid
computing, and information technology. Additional information on VLab is available from [1].
Some of the many problems that VLab must address include the ability to create input files
through portals, submit jobs, store and retrieve the job input and output data on demand, analyze
and visualize the data, and store the data. These tasks must be possible in a distributed

 2

environment and the flow of information must be accessible to multiple collaborating
researchers, although they might not be co-located. An additional constraint on our system is that
it must be robust, i.e., fault tolerant. When working in a complex multi-user environment, it is
inevitable that some components will fail. However, these failures should not affect the work of
an individual researcher. Thus, we have chosen to connect the users of the systems (referred to as
clients) and the various tasks requested by the users (storage, visualization, analysis, job
submission, etc.) as services using NaradaBrokering [2], a middleware system that builds in
many of the required features.
In its initial phase, VLab follows a well-established pattern for building Grids: application codes
on remote machines are accessed securely through Grid services through a browser portal. This
follows the common three-tiered architecture [6]. A user interacts with a portal server through a
Web browser. The portal server in turn connects to remote Grid services that manage resources
on a backend system that provides the computing power for running the codes. The longer term
research goal however is to go beyond these traditional approaches. The distinguishing feature
of our research is the use of the publish/subscribe paradigm, which completely decouples the
clients from the services. Users have no knowledge of the resources allocated to their requests,
although they will have the capability to monitor task progress.
Many of VLab’s workhorse simulation codes are included in the “Quantum Espresso” package
developed by the Democritos group [3]. As a starting point towards developing an automated
web service workflow, we consider PWSCF, the Plane Wave Self Consistent Field [4] code in
the Espresso suite. PWSCF is a parallelized application, often submitted to supercomputing
resources via a batch queuing system. Common Grid technologies such as WS-GRAM, Reliable
File Transfer, GridFTP, and Grid security, from the Globus Toolkit [5], provide the means to
interface external applications with several popular schedulers, such as LSF, Condor, and PBS.
Several additional problems must be addressed and are discussed in this paper: a) managing user
inputs as persistent, archived, hierarchical project metadata (Section 2); b) simplifying and
monitoring complicated, multi-staged job submissions using Grid portal technology (Section 3);
and c) integrating VLab applications with Grid messaging infrastructure [2] to virtualize resource
usage, provide fault tolerance, and enable collaboration (Section 4).

2. Managing User Interfaces and Input Data
Job submission tasks are broken down into the following components: 1) provide a user front
end to input the data to generate a PWSCF input file, 2) move the input file to a backend
resource, usually the computer that will run PWSCF, and 3) run PWSCF. Grid Web portals [6]
are used to manage the collection of processes that define the submission task. This is a classic
Grid portal problem. As detailed in a follow-up issue to [6] (currently in preparation), most
current Java-based portals are developed around the “portlet” approach [7]. Portlets provide a
consistent framework by which Web applications may be packaged and deployed into standard-
compliant portlet containers. A portlet is typically a single, mostly self-contained application,
such as the set of Web forms, Java code, and third party jars needed to submit the PWSCF code.
Portlets are deployed into portlet containers, which are responsible for general purpose tasks,
such as handling user login, providing a layout manager that arranges the portlets on the user’s
display, determining the user’s rights to access particular portlets, and remembering the user’s
customizations (such as page arrangements and skin colors). We follow this approach and adopt
the GridSphere [8] portal container for VLab deployment. By using standard compliant portlets,

 3

we may later adopt other containers (such as uPortal or Jetspeed2), and can share VLab portlets
with other collaborators who may prefer these different containers.
Portlets may be developed using several different Java web technologies. For VLab, we decided
to test portlet development with Java Server Faces (JSF) [16]. JSF is a model-view-controller
style framework for building web applications that provides three very important advantages for
all applications. First, Web developers do not need to explicitly manage HTTP request
parameters. This eliminates the dependency of the backing Java code on specific parameter
names in the HTML <input> tags. Second, the Web form’s business logic is encapsulated in
simple Java Beans. Each HTML <input> parameter in a web form is associated with a property
field in the Java Bean that manages the page. Finally, the scope of the Java Bean (i.e. session,
request, or application) is configurable by the developer and managed by JSF. Developers do
not need to explicitly manage their variables’ life cycle.
One develops JSF applications by developing web pages with HTML and JSF tag libraries. The
code for processing the user input (the "business logic") is implemented using Java Beans, which
are associated with JSF pages in a configuration file (faces-config.xml by default). A full
description of JSF is beyond our current scope, so interested readers should consult [16].
However, the implications of the points to science portals are important. The immediate result is
that we do not need to adopt HTML parameter naming conventions for our Web pages (and thus
break our forms when we change names). More importantly, we can develop our web application
code as Java Beans (“backing beans”), which can be shielded from the Java Servlet specification.
This allows us to reuse Java Bean code in non-JSF applications, take advantage of XML bean
serialization tools, develop simple standalone unit tests, and generally take advantage of Java
Bean-based “Inversion of Control” [14] frameworks.
We have developed PWSCF input pages with JSF to collect the user input needed to create a
PWSCF input page. A sample page is shown in Figure 1. Users must fill out two pages of forms
to describe their problem and have a chance to preview and (if experts) edit the generated input
file manually before submission. Users may also upload additional input data (atomic pseudo-
potentials) from their desktop. The linked input pages and backing Java Bean code together
constitute a portlet. One of the issues we address is the persistent preservation of user input data.
The form of Figure 1 is tedious to fill out, and quite typically a user will want to make minor
modifications to a particular job and resubmit it later. This is part of the larger problem of
metadata management, which has been investigated by projects such as the Storage Resource
Broker [17] and Scientific Annotation Middleware [18]. For VLab, we are evaluating the use
WS-Context [9], a lightweight, Web Services based metadata system. A “context” is simply a
URI-named collection of XML fragments that may be arranged in parent-child relationships [10,
11]. Context servers are normally used as lightweight metadata storage locations that can be
accessed by multiple collaborating web services.
In our current work, the data collected form the user interface input form (Figure 1) is written
into a unique context associated with that user session. This data is stored persistently using a
MySQL database, although this implementation detail is not relevant to the PWSCF developer.
Each user has a base context, which is subdivided into one child context per user session. These
child contexts are used to store specific input parameter values for that particular job submission.
These sessions may then later be browsed and the data recovered for subsequent job
submission—the form in Figure 1 has its values repopulated

 4

Although we may store and recover values one at a time from the context storage, we are
developing a way to more easily store and recover entire pages using Java Bean serialization.

We are developing XML
serialization of the entire input
page using software from the
Castor Project. This will allow
us to serialize entire page
contents, store them into the
WS-Context server, and then
un-serialize them to reconstruct
the input form parameter
values.
A serialized Java Bean object
may be stored and queried in
WS-Context XML metadata
store using following
programming logic. Following
WS-Context specifications, a
Java object may be considered
to be a “context”, i.e., metadata
associated with a session. When
storing a context, we first create
a session in WS-Context store.

Here, a session can be
considered an information

holder; in other words, it is a directory where contexts with similar properties are stored. Similar
to an access control list in a UNIX file system, each session directory may have associated
metadata, called “session directory metadata.” Session directory metadata describes the child and
parent nodes of a session. This enables the system to track the associations between sessions.
One can create a hierarchical session tree where each branch can be used as an information
holder for contexts with similar characteristics. These contexts are labeled with URIs, which give
structured names to tree elements. For example, “vlab://users/jdoe/session1” may refer to a
session directory where contexts are stored and linked to a session name “session1” and user
name “jdoe”. Upon receiving the system response to a request for session creation, the user can
store the context associated to the unique session identifier assigned by the WS-Context Store.
This enables the WS-Context store to be queried for contexts associated to a session under
consideration. Each context is stored with unlimited lifetime as the WS-Context Store is being
used as an archival data store.

3. Task Management
In the previous section we described the use of JSF to create input pages for collecting input data
from the user. These input values are used to create an input file of the form expected by the
PWSCF application. We are now ready to make contact with the Grid. Recall that we are using
a three-tiered model for our system: the portal server manages clients to Grid services, which in
turn provides access to backend computing resources. Our requirements at their simplest are a)

Figure 1 PWSCF input forms are developed with JSF.

 5

transfer the PWSCF input file to the desired backend resource (i. e. one with PWSCF installed on
it), b) invoke the PWSCF application, c) monitor the application, and d) access the data.
Many portals have provided these capabilities, and general purpose portlets for performing these
tasks are available from the Open Grid Computing Environments (OGCE) project [19] and
GridSphere [8]. Java-based Grid portals and portlets quite often are based on the Java CoG Kit
[12], which provides a client programming interface for interacting with standard Grid services
such as GRAM, GridFTP, MyProxy, and Condor. More recently, the Java CoG has been
significantly redesigned to provide abstraction layers for common tasks (job submission and
remote file operations). These abstraction layers mask the differences between different Globus
Toolkit versions and also support alternative tools such as job submission with Condor. The
redesigned Java CoG also provides a way to group these tasks into workflow graphs that can
accomplish sequences of operations. This is more thoroughly reviewed in [13].
Although existing portlets may be adapted to handle VLab tasks such uploading input files to
remote machines and invoking PWSCF, this adaptation still involves a lot of work and does not
reuse code. One of our goals in this project, in collaboration with the OGCE, is to simplify Grid
portlet development by using JSF tag libraries that wrap the Java CoG abstraction classes. This
allows us to associate multiple actions with a single HTML button click. These actions can
furthermore be grouped into composite tasks that correspond directly to Java COG workflow
graphs described in [13].
JSF presents us with a problem, however. It only manages individual session beans, but a user
may need to submit many independent jobs within a single session, each with its own bean. Also,
we must link several beans into compositions of multiple grid tasks—even the simple PWSCF
submission combines file transfer and job submission tasks into a single button click. The Task
Manager and Task Graph Manager described in this section represent our current solution to
these problems.
The Task Manager handles independent user requests, or tasks, from the portlet client in Grid
services. The user request-generating objects are simply Java Bean class instances that wrap
common Grid actions (launching remote commands, transferring data, performing remote file
operations) using Java COG classes. We define a general-purpose interface called
GenericGridBean, which specifies the required get/set methods of the implementing class. These
are data fields such as “host name”, “toolkit provider”, and so forth. GenericGridBean
implementations include JobSubmitBean, FileTransferBean and FileOperationBean. When a
client invokes a particular type of action, it does so indirectly through the Task Manager Bean.
The TaskManager is responsible for passing property values and calling action methods of task
beans. Once a user request is caught, the task manager instantiates a task bean object and its
event listener. It then persistently stores them to a storage service, which in our implementation
is a WS-Context service. The Storage Service has methods that can access these bean instances
with a unique key called “taskname”. A JSF validator guarantees that each “taskname” parameter
is unique within the session scope.
The Task Manager is also responsible for monitoring task beans and managing their lifecycles.
When a task is initially submitted, we store its property values and state in the Storage Service
(Figure 2). Live objects correspond to the COG states “unsubmitted”, “submitted”, and “active”.
When tasks enter “completed” or related states (“failed”, “canceled”), its submission, completion
dates and output file(s) metadata are stored as well. This allows us to recover the submitted job’s
properties (such as input file used and execution host) for later editing and resubmission. One

 6

current drawback to this initial scheme is that live objects will be lost when the session expires.
Globus Toolkit services provide persistence with clients through callback ID handles, but we
must add this capability to the Java COG.

Figure 2 The Task Graph Manager manages Grid submissions with multiple steps.
We are also investigating another solution to the persistence problem. One of the side effects of
the JSF approach is that the Java Bean classes that encapsulate the Grid business logic may be
developed independently of the JSF container. This will potentially allow us to develop a purely
Web Service version of our system, in which our Task Beans run as standalone Web Services.
This approach will simplify the management of user objects that are not directly tied to Tomcat
session objects. To implement this, we are investigating the use of Inversion of Control pattern
implementations like Spring [14]. Under this scenario, the Spring framework will take care of
bean lifecycles and task properties will be injected into Spring through the use of web services.
In addition to managing multiple independent tasks, we must also often manage coupled tasks: a
single button click may require two or more actions that depend on one another. As described in
[13], the Java COG Kit provides the TaskGraph class to handle directed acyclic graph-like
workflows composed of atomic tasks. As with the Task Manager previously, we have defined a
Task Graph Manager class, which is a Java Bean wrapper around the COG TaskGraph class.
The TaskGraph Manager handles multiple-step task submission, as depicted in Figure 2. The
TaskGraph Manager coordinates user requests with TaskGraph backing beans. Each TaskGraph
bean is itself composed of instances of the GenericGridBean implementation (JobSubmit,
FileOperation, and FileTransfer Beans). We express the dependencies using JSF tag library
extensions so that the JSF application developer can encode the composite task graph workflow
out of reusable tags as shown in JSF snippet below. The TaskGraph Manager submits and
monitors TaskGraphs through an action method when the user clicks the submit button. The
TaskGraph Manager has monitoring and event handling mechanisms. The TaskGraph Manager
redirects user inputs into the proper TaskGraph bean instance and manages its lifecycle. We may
also use the Task Graph Manager to retrieve specific TaskGraph instances so that we may, for
example, check the current status of a running job.
<o:taskGraph id="myGraph" binding="#{taskgraph.taskgr}" >

Formatted: Caption, Space Before:
5 pt, After: 5 pt

Deleted: ¶

 7

 <o:task id="task1" method="#{task.create}" type="FileTransferInput" />
 <o:task id="task2" method="#{task.create}" type="JobSubmit" />
 <o:task id="task3" method="#{task.create}" type="FileTransferOutput" />
 <o:taskAdd id="taskadd1" name="task1" depends="task2" />
 <o:taskAdd id="taskadd1" name="task2" depends="task3" />
 <o:contextStore id="context" type="taskgraph" />
</o:taskGraph>

JSF tags represent a multi-staged task submission. In this scenario, the task graph is composed of
three tasks, and each task is dependent on previous one. The first task is to move the input file
from a remote location that corresponds to a GridFTP file transfer call. The second task is to
submit a job that is a GRAM job submission call. The third task is another GridFTP file transfer
to stage output file(s) to a remote archival or file server. taskAdd tags define dependencies
between tasks. The contextStore tag initiates the storage of taskgraph archival data onto the
storage server.

4. Collaborative Web Services
The PWSCF application represents a straightforward Grid application. VLab will also need to
address more challenging problems: determining best available backend resources for scheduling
applications and developing collaborative web services that allow multiple clients to interact
with the same service. For example, the Task Manager and TaskGraph Manager described in
Section 3 specify specific host computers in the current implementation. Virtualizing the
backend connection through proxy services is highly desirable for both load balancing and fault
tolerance. In this section, we explain our use of message oriented middleware (NaradaBrokering)
to investigate solutions to these problems.
The desired functionality ascribed to VLab demands a flexible environment that supports a
variety of services related to computation, storage, visualization, database transactions, and
processing. In addition, system scalability, expandability, and fault tolerance are essential
components. We have chosen NaradaBrokering [2] as a middleware system that already
incorporates many of these elements.
NaradaBrokering [2] is a Grid and Web Service-compatible middleware framework formed by a
cooperating set of brokers whose role is to process messages sent to it, each with a topic tag, and
route them to any subscribers to that topic. The use of a topic tag is the hallmark of
publish/subscribe systems, which make it possible to make requests and receive replies without
regard to the specific system processing the requests. Using NaradaBrokering, we have
developed a prototypical network, geographically distributed to demonstrate the features of a
future VLab system. The components of our architecture are illustrated in Figure 3.
We have developed a wavelet transform service for demonstration purposes. Large-scale datasets
are stored on two servers in Minnesota (implemented) and Indiana (not yet implemented). A
client can request the wavelet transform of a specific dataset, and have a specified number of
wavelet coefficients transmitted to the client. We implement the client as an applet (which can
itself be embedded in a portlet) for acceptable interactivity and image rendering. However, the
approach is general and can be applied also to other Web applications (i.e. JSF portlets described
in Section 2). In our wavelet application, the applet displays the coefficients as spheres centered
at the location occupied by the center of the 3D wavelet. High performance graphics are
obtainedthrough the use of JOGL, an OpenGL API for Java.

 8

Wavelet

Applet

Wavelet

Applet

Wavelet
 Service

Service
 Adaptor
(Wavelet)

Client
 Adaptor

NB
Node

Wavelet

Applet

Wavelet
 Service

Service
 Adaptor
(Wavelet)

Client
 Adaptor

NB
Node

Scheduler
(Sch)

NB
Node

NB Network
Con nect

Co nnect

webis .msi .umn .edu

pamd .csit .fsu.edu

darya .ucs .indiana .edu

boy .msi .umn .edu

Scheduler
(Sch)

SOA P
S

O
AP

SOA P

SOA P

S OA P

Listening Port

Listening Port

Listening Port

Listening Port

NB E vent

NB Event

NB Even t

NB Ev ent

NB Ev ent

NB Even t

Figure 3 A network of three NaradaBrokering brokers is deployed across three sites. Attached to
the network are two wavelet services (with service adaptors), two schedulers, and several client
adaptors. Users access the wavelet service via collaborative applets.
Although we demonstrate our framework with a wavelet transformation service for visual
impact, this service can be replaced with any other service that conforms to the WSDL standard.
The system has several components that work together to isolate the user from the task of finding
available services, finding the servers that support them, and distributing the workload. As
shown in Figure 3, these components are the Broker Network, the schedulers, the services (with
associated adaptors), the clients (with their adaptors), and the service registries (not shown). The
Broker Network encompasses a collection of three NaradaBrokering nodes connected to one
another. Any entity (client or service) publishing to any of these nodes will have its request
propagated through the entire Broker Network towards one or several destinations.
NaradaBrokering is responsible for efficient routing, guaranteed delivery, or in the event of
problems, appropriate error feedback to the sender.
The Schedulers manage the task execution process. There are several schedulers to provide fault
tolerance into the system, in the event that one or more servers that host the scheduler become
unavailable. Different schedulers might also handle different types of requests. When a client
makes a request, a scheduler is identified to handle the request and establish a connection
between service and client. The scheduler is also responsible for splitting larger tasks into sub-
tasks (not implemented), finding the appropriate services and submitting these tasks with due
regard to task order. The Services are responsible for completion of requests initiated either by
the clients or by the schedulers on their behalf. Data generated from these services are either
returned to the clients or to the schedulers who then forward the data to the clients. Each service
adaptor is an interface between a service (which has no knowledge of the NaradaBrokering
middleware and communicates via the SOAP protocol), and NaradaBrokering, which
understands messages labeled with an associated topic. Thus, the adaptors wrap and unwrap
messages received by and sent to the services to make them conform to the NaradaBrokering
protocol. To this end, the adaptors simply add a publishing topic, state whether message refers to
a subscription or a publishing message, and optionally adds some headers to the message, such
as IP addresses. Services are responsible for executing the tasks generated by the clients. Clients

 9

may be applets, either standalone or within a portal environment, or portlets. They communicate
with the middleware through the use of client adaptors, which play the same role with respect to
clients as do the service adaptors with respect to services.
The key concept within our system is that each entity (any one of the system’s components with
the exception of the brokers), has a unique ID, and the entity subscribes to its own ID.
Furthermore, each entity subscribes to a category ID related to the services it can provide. For
example, a scheduler subscribes to the ID “sch”, while the wavelet server might subscribe to the
ID “wav”. A client first sends a message with the topic “sch”. Through the publish/subscribe
mechanisms, all entities that subscribed to “sch” will respond, namely all the schedulers.
Currently, the first scheduler to respond is chosen. If one scheduler is unavailable, the second
scheduler is chosen (both messages reach the requesting client). Included in the return message
from the scheduler, its unique ID is included, so that the client may connect directly to it. The
client then sends its specific task request (in this case, the request to perform the wavelet
transform on a specific file) to the scheduler. The message headers include the name of the
desired service (in this case the service has topic “wav”). The scheduler sends a message out
requesting a wavelet service that has subscribed to the topic “wav”. Once found, the wavelet
service returns a message with its own unique ID. The scheduler can now act as a proxy for the
client, or link the client to the service directly. We note that the original client task has its own
ID associated with it, and any other client that uses that same ID will share its display with the
original client. The registry entities provide the mechanism through which additional clients can
enquire as to existing client interactions (implemented). Whether or not this client can connect to
the ongoing sessions is a function of the authentication model (not yet implemented).

5. Conclusions and Future Work
The work described above represents the first steps in the development of a robust, collaborative
system to provide simple, yet flexible workflows for research scientists interested in conducting
complex scientific computational tasks rather than worry about the intricacies of the underlying
computational frameworks. To this end, we have addressed three important components of this
framework: data entry, job submission, and backend services. Our work is guided by the
principle of ease of use, fault tolerance, collaboration, reusable code, and persistent records. The
use of the PWSCF code serves as a prototypical code, which forms a single cog in a more
complex data entry, job submission, and data analysis cycle. More generally, there are several
codes that must be submitted, often in large numbers, and there is often causality between results
already generated and the codes to be submitted as a result of particular analyses.
Implementation of a system that takes care of these dependencies (quasi-) automatically is an end
objective of this project. To this end, we will focus our attention on several important
components of the system.
Scheduling and Load Balancing: Although we include at least two entities of each type in our
distributed system (2+ schedulers, 2+ wavelet services, etc.), there is as yet no attempt to take
network and server load into account when choosing which units will perform the actual work. It
is currently a first-come, first-chosen approach. We will evaluate existing work and enhance our
schedulers and services to activate themselves based on a more realistic measure of
instantaneous or extended load.
Collaboration: Collaboration is a natural attribute of our system. Two user tasks that subscribe to
identical topics automatically receive the same information. We will investigate approaches to

 10

achieve this collaboration both at the visual level (shared user interfaces and displays), with the
possibility of multiple users controlling the input. Much work has been done in this area, albeit
(to the authors’ knowledge) not within the context of publish/subscribe middleware.
Workflow: Complex workflows are important within VLab. Recent research has shown how to
implement strategies for specifying workflows across multiple services. This work will be
integrated within our system to properly link input, job submission, analysis, feedback to the
user, and finally, automatic (or semi-automatic) decisions regarding the next set of simulations to
submit.
In future work, the Web Service Resource Framework [5] and particularly the WS-Notification
specification family may be used to replace our pre-Web Service topic system. Support for WS-
Notification is currently being developed in NaradaBrokering [15]. When this is available we
will evaluate its use in our system.
This work is supported by the National Science Foundation’s Information Technology Research
(NSF grant ITR-0428774, 0427264, 0426867 VLab) and Middleware Initiative (NSF Grant
0330613) programs.

6. References
[1] Virtual Laboratory for Earth and Planetary Materials Project Web Site: http://www.VLab.msi.umn.edu/.
[2] Shrideep Pallickara and Geoffrey Fox NaradaBrokering: A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids in Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003, Rio Janeiro, Brazil June 2003.
[3] Democritos Scientific Software Web Site: http://www.democritos.it/scientific.php.
[4] Plane-Wave Self Consistent Field Web Site: http://www.pwscf.org/.
[5] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP International Conference on
Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2005.
[6] Hey, A. and Fox, G., eds. Concurrency and Computation: Practice and Experience, Vol. 14, No. 13-15 (2002).
Special issue on Grid Computing Environments.
[7] Abdelnur, A., Chien, E., and Hepper, S., (eds.) (2003), Portlet Specification 1.0. Available from
http://www.jcp.org/en/jsr/detail?id=168.
[8] The GridSphere Portal web site: http://www.gridsphere.org.
[9] Bunting, B., Chapman, M., Hurlery, O., Little M., Mischinkinky, J., Newcomer, E., Webber J, and Swenson, K.,
Web Services Context (WS-Context), available from http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf.
[10] Mehmet S. Aktas, Geoffrey Fox, and Marlon Pierce. Managing Dynamic Metadata as Context. June, 2005.
Available from http://grids.ucs.indiana.edu/ptliupages/publications/maktas_iccse05.pdf.
[11] Fault Tolerant High Performance Information Services Web Site: http://www.opengrids.org
[12] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane, A Java Commodity Grid Kit, Concurrency and
Computation: Practice and Experience, vol. 13, no. 8-9, pp. 643-662, 2001, http:/www.cogkit.org/.
[13] Kaizar Amin and Gregor von Laszewski. Java Cog Kit Abstractions. 2005. Available from
http://www.cogkit.org/release/4_1_2/manual/abstractions.pdf.
[14] Rod Johnson, Expert One-On-One J2EE Design and Development. Wrox, 2003.
[15] Shrideep Pallickara, Harshawardhan Gadgil and Geoffrey Fox On the Discovery of Topics in Distributed
Publish/Subscribe systems. In Proceedings of Grid 2005, Seattle, WA,, Nov 2005.
[16] Craig McClanahan, Ed Burns, and Roger Katain (eds). Java Server Faces Specification 1.1
[17] [Rajasekar, 2003] Rajasekar, A., Wan, M., Moore, R., Schroeder, W., Kremenek, G., Jugatheesan, A., Cowart,
C., Zhu, B., Chen, S.Y., and Olschaowsky, R. “Storage Resource Broker - Managing Distributed Data in a Grid,”
Computer Society of India Journal, Special Issue on SAN, Vol. 33, No. 4, pp. 4254 Oct 2003. Other Storage
Resource Broker publications available from http://www.sdsc.edu/srb/Pappres/Pappres.html.
[18] Jens Schwidder, Tara Talbott, and James D Myers, Bootstrapping to a Semantic Grid, Proceedings of the
Semantic Infrastructure for Grid Computing Applications Workshop at IEEE/ACM International Symposium on
Cluster Computing and the Grid CCGRID 2005 May 9-12, 2005, Cardiff, UK.
[19] The Open Grid Computing Environments Project web site: http://www.colllab-ogce.org.

