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ABSTRACT
Latent Dirichlet Allocation (LDA) is a widely used ma-
chine learning technique in topic modeling and data anal-
ysis. Training large LDA models on big datasets involves
dynamic and irregular computation and is a major challenge
for both algorithm optimization and system design. In this
paper, we focus on the study of parallel efficiency and con-
duct a comprehensive analysis of state-of-the-art LDA train-
ing systems. They are MPI/C++ based implementations of
LightLDA, F+NomadLDA, WarpLDA and a Hadoop/Java
based implementation of HarpLDA+. We show that our
proposed HarpLDA+ design achieves the best performance,
owing this to synchronized communication with a timer con-
trol for load balance and scaling. The system optimization
in HarpLDA+ effectively reduces the overhead of synchro-
nization and communication, and therefore it outperforms
other approaches.

1. INTRODUCTION
Latent Dirichlet Allocation (LDA) [2] is a standard topic

modeling technique of data analysis. State-of-the-art LDA
trainers are implemented to handle billions of documents,
hundreds of billion tokens, millions of topics and millions
of unique tokens. However, the pros and cons of different
approaches in the existing tools are often hard to explain
because many optimization and implementation aspects im-
pact the performance of LDA training systems. In this pa-
per, we select four LDA trainers with different time com-
plexities of sampling. Note that a LDA algorithm designed
with lower time complexity does not necessarily scale well to
high data volume and cluster size. The overarching question
is how to deploy a sequential algorithm so that it can scale
to large problems.

LDA is a computation that is irregular and the model
size can be huge which changes over iterations during con-
vergence. Meanwhile, parallel workers need to synchronize
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Figure 1: Latent Dirichlet Allocation

the model continually. To investigate the trade-offs between
synchronized and asynchronous algorithms, we explore the
system design space for LDA trainers. Instead of focusing
only on accuracy and execution time, we optimize based
on parallel efficiency and analyze global model partitioning,
consistency and rate of convergence. We further propose
a new mechanism based on a timer control to demonstrate
the idea and implement it with Java HarpLDA+. Our main
contributions can be summarized as follows:

• Review state-of-the-art LDA training systems and sum-
marize their design features.
• Analyze learning algorithms for parallel efficiency, which

is a less explored direction on this topic in the litera-
ture.
• Propose a new mechanism using Timer Control to re-

duce communication overhead and wait time in a syn-
chronized system.
• Implement HarpLDA+ based on Hadoop and demon-

strate excellent performance and scalability.
• Summarize our system design approach and applica-

bility for other machine learning algorithms.

The outline of this paper is as follows: Section 2 intro-
duces the background of the LDA algorithm and related
work, while Section 3 analyzes the architecture and parallel
efficiency of existing solutions. Section 4 describes our sys-
tem design and implementation details of HarpLDA+ and
Section 5 presents experimental results coupled with a per-
formance analysis. Finally, Section 6 draws conclusions and
discusses future work.

2. RELATED WORK

2.1 LDA with Collapsed Gibbs Sampling
LDA is a topic modeling technique to discover latent struc-

tures inside data. When data is represented as a collection
of documents, where each document is a bag of words, LDA



models each document as a mixture of latent topics and each
topic as a multinomial distribution over words. As seen in
Fig. 1, LDA can be viewed as a sparse matrix decomposition
technique on a normalized word-document matrix. But it is
rooted in a probabilistic foundation and has quite different
computation characteristics.

LDA follows a Bayesian approach to predict values with
the full posterior distribution of the latent parameters. Many
algorithms have been proposed to estimate the parameters
for the LDA model. In the original paper, Blei used an EM-
like algorithm to estimate the parameters directly by a lower
bound decomposition. Later, Griffiths proposed CGS (Col-
lapsed Gibbs Sampling) [5], a Markov chain Monte Carlo
(MCMC) algorithm to solve this problem.

In the MCMC framework, samples can be drawn accord-
ing to the unknown posterior distribution by a carefully de-
signed transition function that visits the whole parameter
space. Gibbs sampling is one such design that visits the pa-
rameter space from one dimension to the other. For each
iteration, it fixes all the states of other dimensions and only
updates the current visiting one. It is beneficial to finally
be able to reduce the standard LDA model into a collapsed
version of posterior distribution, in which only the topic as-
signment variables Z need to be visited.

In CGS, instead of keeping the dense matrices φ and θ,
we only keep the sufficient statistics, i.e. the occurrence
count matrices of word-topic (Nwk) and topic-doc (Mkj),
which are sparse and contain integer values. Although CGS
generally requires a large number of iterations to converge,
it is memory efficient and therefore salable for large models.
This is a major reason why the MCMC approach is widely
adopted for large scale LDA training. In this paper, we focus
on the LDA trainers using the CGS algorithm.

Each training data point or token is assigned to a ran-
dom topic denoted as zij at initialization. Then it begins to
reassign topics to each token xij = w by sampling from a
Multinomial distribution of a conditional probability of zij
as shown below:

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

)
(1)

Here superscript ¬ij indicates that the corresponding token
is excluded. V is the vocabulary size, Nwk is the token count
of word w assigned to topic k in K topics, and Mkj is the
token count of topic k assigned in document j. The matrices
Zij , Nwk and Mkj , form the model to be learned. Hyper-
parameters α and β control the topic density in the final
model as output. The model gradually converges during the
process of iterative sampling.

2.2 Related Work on Parallel LDA-CGS
Typically, Gibbs sampling in LDA-CGS is stated as a se-

quential process. AD-LDA (Approximate Distributed LDA)[12]
proposed to relax the requirement of sequential sampling of
topic assignments based on the observation that the depen-
dence between the update of one topic assignment zi,j and
the update of any other topic assignment zi′,j′ is weak. In
AD-LDA, the distributed approach is to partition the train-
ing data for different workers, run local CGS training and
synchronize the model by merging back to a single and con-
sistent set of Nwk. PLDA [16], implemented the AD-LDA

Algorithm 1: LDA Collapsed Gibbs Sampling Algo-
rithm

input : training data X, the number of topics K,
hyperparamters α, β

output: topic assignment matrix Zij , topic-document
matrix Mkj , word-topic matrix Nwk

1 Initialize Mkj , Nwk to zeros // Initialize phase

2 foreach document j ∈ [1, D] do
3 foreach token position i in document j do
4 zi,j = k ∼Mult( 1

K
) // sample topics by

multinomial distribution

5 mk,j += 1;nw,k += 1 // token xi,j is word

w, update the model matrices

// Burn-in and Stationary phase

6 repeat
7 foreach document j ∈ [1, D] do
8 foreach token position i in document j do
9 mk,j −= 1;nw,k −= 1 // decrease counts

10 zi,j = k′ ∼ p(zi,j = k|rest) // sample a new

topic by Equation (1)

11 mk′,j += 1;nw,k′ += 1 // increase counts

for the new topic

12 until convergence;

algorithm in both MPI and MapReduce, where the Allre-
duce operation is used for synchronization.

A synchronized algorithm that requires global synchro-
nization at each iteration sometimes may not seem feasible
or efficient; Therefore, an asynchronous solution becomes
the alternative choice. Async-LDA [15] extended AD-LDA
to an asynchronous solution by a gossip protocol. [14][1]
created the first production level LDA trainer called Yahoo!-
LDA. The mechanism is an asynchronous reconciliation of
the model, one word at a time for all samplers. Furthermore,
[11] introduced Parameter Server as a general framework
that scaled to thousands of servers. Another progression
was presented by [7]. It proposed a “mixed” approach SSP
(Stale Synchronous Parallel), which is a parameter server
that can limit the maximum age of the staleness.

Other researchers have investigated synchronized algorithms.
For instance, [17] proposed a novel data partitioning scheme
to avoid memory access conflicts on GPUs. The basic idea
is to partition the training data into blocks, where all sam-
plers start from the diagonal blocks and then shift to the
right neighbor all together. In contrast, [9][8] extended
this idea to a general machine learning framework, Petuum
Strads, where parameters of the ML program were parti-
tioned for different workers. As the all-to-all communica-
tion observed in the asynchronous trainers is hard to op-
timize, [22] HarpLDA adopted a synchronized design and
proposed collective communication operator with a rotation
pipeline which achieved better performance. Finally, [19]
introduced F+Nomad-LDA based on idea of NOMAD[21],
in which each variable (one column of the model matrix)
becomes the basic unit to be scheduled, and the ownership
of a variable is asynchronously transferred between workers
in a decentralized fashion.

Other research involves optimizations on the sampling al-
gorithm. As shown in Algorithm 1, sampling a topic accord-
ing to the distribution of equation (1) is the kernel com-



putation of CGS. A naive implementation involves draw-
ing a sample from a discrete distribution which contains
two steps: first calculate the probability of each event as
p(zij = k), k ∈ K, secondly generate a random number uni-
formly from [0−1) and search linearly along the array of the
probabilities, stopping when the accumulation of probability
mass is greater than or equal to the random number. The
time complexity is O(K). In equation (1), the probability
calculation p(zij = k) mainly relies on the elements in the
model matrices Mkj and Nwk. The sampling process should
access one column in Mkj and one row in Nwk when calcu-
lating all K probabilities. Whether sampling in the order of
document, i.e., visiting zij by row in Z, or sampling in the
order of the word, i.e., by column, there is always one of the
model matrices M or N which has to be randomly accessed.

Recently, many novel ideas have been proposed to op-
timize the sampling process. [18] SparseLDA decomposed
equation (1) into three parts:

p (zij = k | rest) ∝
N¬ijwk (M¬ijkj + α) + β ∗M¬ijkj + αβ∑

wN
¬ij
wk + V β

(2)

The denominator remains constant when sampling on one
word. Similarly, the third part of the numerator is also a
constant; while the second part is non-zero only when Mkj

is non-zero, and the first part is non-zero only when Nwk is
non-zero. Both the probability calculation and search part
can benefit from utilizing the characteristics of sparseness
pertaining to the model. When using this feature, the com-
putation time complexity drops to O(Kd +Kw), equivalent
to the average non-zero items number in column of Mkj

and row of Nwk, which are typically much smaller than K.
F+Nomad-LDA [19] provides an optimization on the search
part by using a O(logK) binary tree search instead of a
O(K) linear search by a tree data structure.

In fact, an algorithm called Alias Table allows us to draw
subsequent samples from the same distribution inO(1) time.
However, it cannot apply directly to the CGS sampling pro-
cess since the distribution changes after each update. [10]
solved this dilemma by using another sampling algorithm
called Metropolis Hasting (MH) to draw each sample cor-
rectly from the stale alias table. Because the acceptance
rate of MH is very high, and the O(K) cost of building the
alias table can be amortized, it finally finds a O(1) algo-
rithm for sampling. Alias-LDA uses it as part of equation
(1) to achieve O(Kd) complexity. [20] LightLDA extends
the Alias-LDA idea by decomposing equation (1) into two
parts and alternating the proposals into a cycle proposal,
thus achieving O(1) complexity. Also LightLDA is built on
a SSP parameter server framework that implements a mem-
ory efficient system for very large models. [3] WarpLDA
introduces a more aggressive approach based on the idea of
MH to delay all the updates after sampling one pass of Z, by
drawing the proposals for all tokens before computing any
acceptance rates. The delay of updates enable reordering of
the memory access, which changes from random access to a
sequential scan. The intra-node performance of WarpLDA
is impressive, but it relies on accessing the matrix Z by row
and by column alternatively in one iteration, which leads to
a huge data exchange in the distributed mode.

3. ARCHITECTURE AND PARALLEL EF-
FICIENCY

3.1 Parallel Efficiency
Parallelizing a sequential algorithm inevitably introduces

overhead. AD-LDA [13] provides a basic analysis on the par-
allel efficiency of the proposed parallel CGS algorithm. With
N training data points, K topics and P parallel workers, the
time complexity for one epoch of naive CGS is O(NK). P
parallel samplers can improve it to O( 1

P
NK+KW +C), in

which C is the time involving the global sum of the count
difference and KW is the time spent on the communication
of the distributed model Nwk. The overhead comes from the
synchronization operation.

Because of this overhead, adding more parallel workers
does not necessarily lead to better performance. Amdahls
law states that if a portion of a computation f can be par-
allelized with P workers, the other serial portion that cannot
be improved, namely 1 − f , will quickly dominate the per-
formance. Speedup is defined as original sequential perfor-
mance over parallel performance in parallel processing. The
parallel processing speedup in time implied by Amdahls law
is:

Speedup =
Toriginal

Tenhanced
=

1

1− f + f
P

(3)

Parallel efficiency is parallel speedup divided by the par-
allelism.

Parallel Efficiency =
Speedup

P
(4)

The concept of parallel efficiency gives us an analysis tool
to investigate the design of the parallel LDA trainers. Com-
munication overhead comes from the additional cost of mov-
ing data around the parallel workers. In a shared memory
system, this overhead is generally ignored with the assump-
tion of a uniform memory access cost. But recent architec-
tures of manycore machines adopts NUMA (Non-Uniform
Memory Access), which links several small nodes with a
high-performance connection but still provides a shared mem-
ory programming model. Communication overhead across
NUMA nodes cannot be overlooked, similar to the situation
in distributed systems. The notion of overlapping commu-
nication with computation is a key design choice for high
performance systems. In this case, asynchronous communi-
cation and pipelining are two standard solutions. Synchro-
nization overhead comes from the additional cost of coor-
dinating parallel workers that reach the same state in or-
der to finish a task together. Asynchronous trainers, such
as parameter server, try to reduce this type of overhead
by avoiding a global consensus, relaxing the consistency of
the model and working in an independent fashion. Synchro-
nized trainers, however, will face the issue of load imbalance,
which is a major source of synchronization overhead. Im-
balanced workloads lead some workers waiting for the other
busy workers in the synchronization operation, degrading
the parallel efficiency in the system. Some data partition-
ing algorithms have been proposed that aim to improve load
balancing for LDA training. For example, random permu-
tations on the document usually give good results. Some
algorithms partition the word-topic model, whereas random-
ized algorithms do not perform as good as greedy algorithms
[22][3] since the word frequency follows the power-law distri-
bution. Unfortunately, even optimal partitioning algorithms
cannot completely solve the load imbalance problem. Sam-
pling algorithms may perform differently on same number
of tokens with different distributions. In practice, variations



Table 1: Taxonomy of LDA Trainer Design

Trainer Sampler
Time Intra-node Inter-node

Model
Complexity Design Design Comm

PLDA PlainLDA O(K) Allreduce Allreduce collective stale
Yahoo!LDA SparseLDA O(Kd +Kw) Allreduce Asynchronous async stale
StradsLDA SparseLDA O(Kd +Kw) Allreduce Rotation async stale
LightLDA MH O(1) Asynchronous Asynchronous async stale
F+NomadLDA F+Tree O(logKd + logKw) Rotation Rotation async latest
WarpLDA MH O(1) DelayUpdates Rotation collective stale
HarpLDA SparseLDA O(Kd +Kw) Rotation Rotation collective latest

of node performance and stragglers are not uncommon even
in homogeneous HPC clusters.

3.2 System Architecture
Machine learning algorithms can generally tolerate some

kind of staleness in the model. Using stale models in com-
putation can degrade the convergence rate but potentially
boost the system efficiency because it relaxes the constrains
for system design. The trade-off between effectiveness and
efficiency is critical for the parallelization of these algorithms.

For example, the sum of topic count
∑

wNwk in the de-
nominator of equation (1) is hard to keep strict consistency
in a parallel setting. Using locks on data being frequently
accessed will give poor performance. A typical solution is to
remove the locks and keep using a local copy of the model
partition. Furthermore, synchronizing the model at end of
each epoch is an optimization method when the deviations
are small.

The decision of whether to use stale values of Nwk and
Mkj in the numerator of equation (1) leads to different so-
lutions. It is also worth noting that performance is more
sensitive on these two matrices than on the sum of topic
count. Furthermore, the question of how the models are
distributed, how they are updated and synchronized, is im-
portant when investigating solutions. The communication
method to implement synchronization, either Asynchronous
or Collective Communication, is also important as it creates
further differences amongst the designs.

In Fig. 2, we summarize four parallel design patterns of
current CGS trainers in this Model-Centric view:

• Lock Pattern. Using locks to maintain the consis-
tency is a straightforward solution to parallelize an
algorithm, but it is only feasible in a shared memory
setting as the overhead caused by conflicts of locks may
become very large.
• AllReduce Pattern. Working on a stale model and

using collective communication to do synchronization
on distributed model replicas is the first practical par-
allel solution. For instance, PLDA utilizes a MPI Allre-
duce operation to implement the system, which is easy
to use, but the synchronization overhead for such op-
erations is considerably big in case of large scales. Fur-
thermore, an imbalanced workload introduces a large
portion of wait time during this operation. On the
other hand, this operation may have a large burden
on memory if not optimized for it, especially if there
is a need to fit all the model in one worker’s main
memory.
• Asynchronous Pattern. Asynchronous Pattern is

a typical design to relax effectiveness for efficiency. It
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Figure 2: System Design Patterns

works on local replicas and synchronizes them through
a group of parameter servers in a best effort rather
than synchronizing with all other workers globally to
keep models consistent. Hence, the algorithm works in
an asynchronous fashion. Yahoo!LDA and LightLDA
are in this category. Parameter servers remove wait
time overhead (in the SSP version, wait time can ex-
ist), and will naturally use asynchronous communi-
cation to overlap the communication with computa-
tion in order to avoid the overhead of communication.
Moreover, Asynchronous Pattern is a popular frame-
work for large scale machine learning algorithms.
• Rotation Pattern Avoiding update conflicts is the

central idea behind this category. When models are
distributed into partitions, a scheduler is used to ar-
range exchanging the partitions among the workers
while at the same time keeping model updates conflict
free. The model partitions should ‘rotate’ among the
workers, where the name Rotation Pattern is given.
StradsLDA, F+NomadLDA and HarpLDA are in this
category. An asynchronous communication mechanism
is also preferred since it overlaps the communication
time easily. The scheduler in F+Nomad-LDA works
in a decentralized way that has no explicit global syn-
chronization point, by which it wants to remove the
wait time overhead. Strads-LDA is also in this cate-
gory, but it has a global synchronization point and has
performance issues on the wait time overhead. This
approach can also be implemented by collective com-



munication. HarpLDA adopts a collective communica-
tion programming model with a new operation called
‘rotate’. Furthermore, pipelining is used to overlap
communication time with computation, but the wait
time overhead is still an issue. WarpLDA is special as
it is able to avoid update conflicts with a full updates
delay. By delaying all update operations at the end of
an epoch, it decouples not only the read and write, but
also the accessing order of the two matrices. Random
memory access is reordered into a sequential scan on
the two matrices alternatively. This can be viewed as
a kind of rotation approach, and at the same time, it
uses stale models on sampling calculations.

For a concrete trainer implementation, two levels of par-
allelism of intra-node multi-threading, and inter-node dis-
tributed design can adopt different kind of design patterns.
See Table 1.

4. HARPLDA+: DESIGN AND IMPLEMEN-
TATION

HarpLDA+ is an improved design of our previous work
called HarpLDA [22]. It builds upon Harp1, which is a
Java collective communication library released as a plugin
for Hadoop. Harp aims to merge HPC techniques into the
Big Data software stack. In HarpLDA, we focus on commu-
nication optimization and propose new collective communi-
cation operators for LDA trainer design. In this paper, we
focus on reducing the synchronization overhead.

4.1 Programming Model Based on Collective
Communication

Using collective communication within a scheduler design
is easy to program. For each iteration, all workers con-
currently sample on a local training data partition with a
local model split without conflicts in model updates. After-
wards, a call to a collective communication operator ‘rotate’
is made, in order to do global scheduling. (see Algorithm 2)

Algorithm 2: HarpLDA+ Parallel Pseudo Code

input : training data X, P workers, model A0, number of
iterations T

output: AT

1 parallel for worker p ∈ [1, P ] do
2 for t = 1 to T do

// initialize model At0 is At−1P

3 for i = 1 to P do
// update local model split by

sampling on local training data

4 Ati
p′ = Sampling(Xp, A

ti−1

p′ )

// synchronization to exchange model

splits

5 rotate(Ati
p′)

A concrete scheduling strategy is encapsulated inside the
‘rotate’ operator. So long as each model split is owned
by only one worker, the scheduling strategy guarantees to
be conflict free. For instance, when a rotate call returns,

1https://dsc-spidal.github.io/harp/
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Figure 3: Scheduling in Shared Memory and Distributed
Systems

all the workers can continue sampling concurrently without
causing conflicts when updating the model. A default strat-
egy shifts the model splits to their neighbor nodes (see Fig.
2d). Selecting the neighbor on a random permutation of the
node list is also easy to implement. Furthermore, a priority
based scheduler and work load based scheduler can be im-
plemented in this framework without losing the simplicity
of the programming model.

Algorithm 2 presents a general framework for scheduling,
where multi-threading and distributed parallelism can adopt
the same procedure. We can however improve it to reduce
synchronization overhead, leveraging the computation char-
acteristics in these two different environments.

4.2 Dynamic Scheduling in Shared Memory
Systems

In a shared memory system with the assumption of uni-
form memory access, we can ignore the cost of data move-
ment. Specifically, there is no communication cost in con-
sidering the system design, which makes scheduling a much
easier task to accomplish.

Dynamic scheduling provides a low cost solution to re-
move synchronization overhead. To keep the faster workers
busy, it creates a more spare workload in the beginning and
dynamically selects an unoccupied one to feed into the first
finished worker. This is a general and effective solution,
which also occurs in parallel matrix factorization design [4].

As in Fig. 3a, training data is partitioned into blocks, with
the row partition using a random permutation of document
id and the column partition using a greedy algorithm based
on word frequency. Indexes are constructed during the ini-
tialization phase in order to build the map from word id to
the related documents appearing in each block. In this case,
the minimal unit for scheduling is a block. Furthermore, the
partition number is larger than the thread number, which
means that there are always spare rows and columns when
one working thread finishes its current task. In this example,
thread 1 finishes its work in the first place, then the sched-
uler can select a new block randomly from the ‘free’ blocks,
which are the white blocks in the figure. Because thread 2
and thread 3 are still working, the rows and columns are
occupied accordingly as denoted by the gray blocks. In a
shared memory system, the scheduler does not move data
but instead assigns data addresses of the selected free blocks
to the idle threads. The wait time of the working threads
are bounded by the overhead of the scheduler. In case the
thread number is P and the splits number is L, two vectors



of L maintain the occupy status of each row and column,
while another L × L matrix maintains a two level status:
free, or finished (multiple levels can be extended to sup-
port repeat computing on each block and priority of each
block). The scheduler can randomly select a free block by
scanning the matrix with time complexity of no more than
O(L2). The larger the L, the lesser the conflicts and wait
time, but the more overhead introduced by the scheduler
itself. Thus, there is a trade-off. By experimentation, we
found that L =

√
2P is a good choice in most cases.

In distributed systems, the cost of data movement cannot
be omitted, thus the dynamic scheduling approach does not
work anymore. As in Fig. 3b, each worker holds a static row
partition of the training data and corresponding document
related model. Only the word-topic model partitions move
among the workers. To reduce the synchronization over-
head, the first step is to reduce the overhead of the commu-
nication inside the rotate operator. Pipelining is a broadly
used technique to solve this kind of problem, by overlapping
I/O threads with computing threads. First, each block is
split further into two slices horizontally, and the inner loop
of algorithm 2 is modified as a loop on each slice. Conse-
quently, the original rotate call becomes two rotate calls on
each slice. As long as the communication time is less than
the computing time spent on one slice, the pipeline will be
effective in removing the overhead from communication.

4.3 Timer Control in Distributed Systems
Another overhead of a rotate call is the time to wait for

all workers to finish their computation, which is the actual
synchronization overhead. Due to load imbalance, the slow-
est worker will force all other workers to wait for it until
it finishes its computation. Its hard to make the sampling
work in a load balanced way for each parallel worker by data
partitioning only, because even with the same size of data
points, the samplers’ execution times may vary. The wait
time caused by workload imbalance cannot be reduced by
pipelining either.

To solve this problem, we first discuss the sampling or-
der of the Gibbs Sampling Algorithms. We note that LDA
trainers can use two common scan orders: random scan
and deterministic scan. For a Gibbs sampler, the usual
deterministic-scan order proceeds by updating first x1, then
x2, then x3, . . . xd and back to x1, visiting the state space
X by a sequential order. Another random scan version usu-
ally proceeds at each iteration by choosing i uniformly from
1, 2, ..., d. [6] demonstrating that the order really matters
for the convergence rate of different models, although due
to the benefits of locality in hardware, a deterministic scan is
commonly used. This is the situation in current LDA train-
ers, in which sampling occurs over document or over word
on Z, via deterministic scan. Generally, the order with a
better memory cache hit rate gives a better performance.
For large datasets with V << D, word order is better. It
is hard to achieve good performance with a pure random
scan due to the cache miss issues. However, HarpLDA+
uses a quasi-random order by using blocks that fit in cache.
The dynamic scheduler picks a block uniformly from the free
block list. While inside the block, we still keep the word or-
der during sampling. Originally, we intended to investigate
the performance of different sampling orders. But we found
our block based approach provides a simple solution for load
balancing.

Worker1

rotate rotate

Time

rotate_timer

Worker2

Worker3

(a) Timer Control

Figure 4: Timer to Control the Synchronization Point

The overhead comes from the wait time between the com-
putation finishing and the start of synchronization, also known
as the time point call rotate (see Fig. 4). If we adjust the
synchronization point ahead of the finish point, we can re-
move this gap. Under the deterministic scan order, this kind
of adjustment is a little bit difficult due to the housekeeping
work needed and the original scan order lost. For a random
scan, this adjustment does not change the property of the
uniform random selection of blocks. The third rotate call in
Fig. 4 demonstrates this mechanism.

Thus we propose a simple solution for LDA-CGS trainer,
where each sampler just works for the same period of time
and then the samplers do synchronization all together. They
all use a timer to control the synchronization point other
than wait until finish all the blocks.

During the process of convergence, the model size shrinks
and the computation time drops. In HarpLDA+, we design
an auto-tuning mechanism to set the value of the timer for
each iteration. First, the timer works best when the com-
munication can be fully overlapped by computation, which
means that the computation time or the number of the train-
ing data points being processed should have a lower bound
L. Secondly, we need to make certain that all the workers
stop at the same time before any of them finish. This implies
an upper bound H. L and H are set as input parameters.
In normal cases, L = 40%,H = 80% are good choices.

We set up heuristic rules to automatically determine the
values of timer ti based on the L,H settings.

• Rule 1: During the first iteration, we set the timer to
a constant t0, and obtain the processing ratio R0 for
each worker at the end of the iteration.

• Rule 2: When Ri is found to be smaller than L, adjust
ti+1 = ti ∗ 2 in order to quickly catch up. ( In the first
iteration, repeat this step until Ri+1 is in the range of
L and H. )

• Rule 3: When Ri is found to be larger than H, ti+1

will be cut in half.

4.4 Other Implementation Issues
For a high performance parallel LDA trainer, besides the

key factor of the original sampling algorithm and the paral-
lel system design, some implementation details may also be
important.

HarpLDA+ is a Java application, where primitive data
types are used in critical data structures. E.g., we found that
using primitive arrays with array indexing for the model ma-
trix is significantly faster than using a hashmap in HarpLDA+.

Furthermore, minor improvements for SparseLDA are very
helpful. Topic counts are stored in primitive arrays and



sorted from high to low to reduce the linear search time of
sampling on a probability distribution. Caching is also used
to avoid repeat calculations. When sampling multiple tokens
with the same word and document, the topic probabilities
calculated for the first token are reused for the tokens that
ensue.

5. EXPERIMENTS

5.1 Setup of Experiments

Table 2: Datasets for LDA Training, where DocLen repre-
sents mean and std. dev. values of document length

Dataset Docs V ocabulary Tokens DocLen
nytimes 299K 101K 99M 332/178
pubmed2m 2M 126K 149M 74/33
enwiki 3.7M 1M 1B 293/523
bigram 3.8M 20M 1.6B 434/767
clueweb30b 76M 1M 29B 392/532

Five datasets (see Table. 2) are used in the experiments,
which are open datasets that appear in related works fre-
quently. The number of documents of a dataset varies from
300 Thousand to 76 Million, and the vocabulary of a dataset
also varies from 100 Thousand to 20 Million. Finally, the
total number of tokens ranges from 99 Million to 29 Billion.
Thus, these datasets are diverse and representiative for our
thorough experimentation and evaluation.

Table 3: Trainers for LDA Training

trainer language multithreading communication
LightLDA C++ Pthread Zeromq+MPI
NomadLDA C++ Intel TBB MPI
WarpLDA C++ OpenMP MPI
HarpLDA+ Java Java Thread Harp Collective

We select four state-of-the-art CGS trainers for compar-
ison in Table. 3. They represent different system designs
of Section 3.2. StradsLDA and HarpLDA are not selected
because they have a similar distributed design and inferior
performance. Through well-designed control experiments,
we were able to investigate the effectiveness of various sys-
tem designs and draw solid conclusions. To evaluate the
performance of LDA implementations, we use the following
metrics. Firstly, we choose Model log likelihood of the word-
topic model to represent the status of convergence and the
quality of a model, in which a higher likelihood value indi-
cates a higher convergence level and a better model quality.
Secondly, we select three main evaluation metrics as follows:
1) Convergence speed is the standard metric to evaluate a
trainer’s performance, which depicts the relation between
convergence level and training time. 2) Convergence rate
evaluates the effectiveness of the algorithm by depicting the
relationship between convergence level and model update
count. 3) Throughput evaluates the efficiency in a system
perspective view by measuring the model update counts per
second. In regards to hardware configuration, all experi-
ments are conducted on a 128-node Intel Haswell cluster at
Indiana University. Among them, 32 nodes each have two
18-core Xeon E5-2699 v3 processors (36 cores in total), and

96 nodes each have two 12-core Xeon E5-2670 v3 processors
(24 cores in total). All the nodes have 128 GB memory and
are connected by QDR InfiniBand. As for the software con-
figuration, all C++ trainers are compiled with gcc 4.9.2 and
-O3 compilation optimization. HarpLDA+ compiles with
Java 1.8.0 64 bit Server VM and runs in Hadoop 2.6.0. The
MPI runtime is mvapich2 2.3a for NomadLDA and mpich2
3.0.4 for LightLDA. We set the hyper-parameters α = 50/K
and β = 0.01 in all the experiments.

5.2 Experimental Results

5.2.1 Performance of Sequential Algorithm
We first analyze the performance of the sampling algo-

rithm by evaluating the trainers in a single thread setup.
As shown in Fig. 5, each row contains the results of a spe-
cific dataset and topic number K, and column 1 to column
3 are performance results of single a thread on the three
datasets. Nytimes and pubmed2m are relatively small while
enwiki is of medium size. The following conclusions can be
drawn from the experiments:

• Convergence Rate represents the effectiveness of model
updates. Standard SparseLDA sampler, NomadLDA,
is always the fastest. HarpLDA+ is a bit slower due
to the caching of the model for identical words. In the
experimental comparisons without timer control, the
timer itself does not make an observable difference in
convergence rate. Both MH samplers, LightLDA and
WarpLDA are significantly slower because they are an
approximation for the original CGS, while WarpLDA
is the slowest because of its update delay strategy mak-
ing each update much less effective than the other
trainers. The order of convergence rate is constantly
stable in parallel versions of these trainers. Also, due
to the space limitation, this metric is not listed in fu-
ture experimental results.

• Throughput represents the efficiency of model up-
dates. WarpLDA has much better throughput than
the others due to its memory optimization by remov-
ing the random matrix access. Among the others, No-
madLDA performs a little better. Also these figures
show the trend of throughput for CGS training, which
can be slow in the beginning when the models are ran-
domly initialized to be large, and gets faster during
the process of convergence when models shrink. Fi-
nally, the throughput rate reaches stability when the
algorithm convergences. For systems with the O(1)
MH sampling algorithm, the throughput is less sensi-
tive to these changes.

• Convergence Speed represents the overall perfor-
mance resulting from the combination of efficiency and
effectiveness of model updates. WarpLDA is the fastest
trainer due to its successful trade-off between the ef-
ficiency and effectiveness of updates. Furthermore,
F+Nomad-LDA is faster than HarpLDA+ and demon-
strates even better performance than WarpLDA in the
case of large K. LightLDA is constantly the slowest as
is specially designed for very large datasets and limited
memory settings. The algorithm splits the training
data and model into slices and swaps them between
memory and disk by I/O pipelines. The parameter
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Figure 5: Single Node Performance on nytimes (K=1K, 1st row), pubmed2m (K=1K, 2nd row), enwiki (K=1K, 3rd row) and
enwiki (K=10K, 4th row). Column 1 to 3 are results of single thread, column 4 is result of 32 threads.

server architecture also introduces inter-process com-
munication. In single thread experiments, we tune the
slice number to be at least two in order to make the
I/O pipeline effective. This method works well but the
overall performance of LightLDA is still not compara-
tive on this setting.

5.2.2 Intra-node Parallel Efficiency
We test on increasing number of threads and its impact

on performance as seen in Fig. 5. In column 4, the con-
vergence speed at 32 threads shows that the rank of No-
madLDA drops, and HarpLDA+ takes its place while run-
ning as well as WarpLDA and even exceeds at large K, in
which case the effectiveness of WarpLDA gets worse. Fig. 5
column 5 Scalability represents the trend of efficiency under
a multithreading environment. The bar chart shows the av-
erage throughput increasing along with the parallelism, and
the SpeedUp of throughput shows the parallel efficiency of
these increases. HarpLDA+ demonstrates the best scalabil-
ity which explains the boost of its performance from a single
thread to a large number of threads.

In this subsection, we investigate the details of multi-
threading parallelism in an experiment setting: Dataset =
enwiki, K = 1K, Node Number = 1, and Thread Num-
ber = 32, which is 4 less than the physical core number to
guarantee a setting of the largest number of threads with no
computation resources contention. For the experiments, an
advanced profiling tool is utilized to exhibit the time break-
down. Through Concurrency Analysis by VTune Amplifier2,
2https://software.intel.com/en-us/intel-vtune-amplifier-xe

five categories of time spent in the application can be given.
Elapsed time is the total running time, CPU Time is time
during which the CPU is actively executing the application,
Wait Time occurs when software threads are waiting due
to APIs that block or cause synchronization. CPU Time
includes three parts: Effective Time is CPU time spent in
the user code, Spin time is wait time during which the CPU
is busy, and Overhead time is CPU time spent on the over-
head of known synchronization and threading libraries, such
as system synchronization APIs, Intel TBB, and OpenMP.

Table 4: Time Breakdown by VTune Concurrency Analysis

Trainer
CPU Time Wait

Effective Spin Overhead Time
WarpLDA 0.91 0 0 0.09
NomadLDA 0.75 0.24 0 0
LightLDA 0.25 0 0 0.74
HarpLDA+ 0.98 0 0 0.02

After normalization on the Elapsed Time, we get the ex-
periment results in Table. 4. WarpLDA demonstrates excel-
lent efficiency, as it not only decouples the memory access to
the two model matrices but also removes the model update
conflicts, in which all threads are running in a pleasingly
parallel fashion programmed in OpenMP. In this implemen-
tation, load imbalance is observed to contribute to the 9%
wait time. This mainly comes from the default static sched-
uler in OpenMP. NomadLDA has zero wait time, but this



does not necessarily signal efficiency. All threads keep try-
ing to pop a model column from the concurrent queue to
run sampling, and yield when the pop call fails. A large
number of yield calls are observed to give 24% on spin time.
Load imbalance is the main reason behind the inefficiency as
well3. LightLDA shows a very high Wait Time ratio. After
analysis of the hot-spots, a problem is found in the thread
safe queue code. At the end of each iteration, all sampling
threads push the updated model (delta actually) to a shared
queue which will later be pushed to the parameter server by
aggregator threads. High contention for this object causes
reduced parallel efficiency. HarpLDA+ wins in this test to
perform the best with only 2% wait time. When comparing
with other trainers, the overhead in our Java dynamic sched-
uler is much less than what we expected. We also find that
it is critical for parallel efficiency to be careful on the serial
code introduced by optimizations. E.g., sorting the model
is an optimization to make sampling on large K faster and
implemented in the main thread. When the sort is occur-
ring, the wait time ratio increases to 20% in this experiment.
Only when deploying the trainer on a large number of nodes,
can the overhead can be amortized in order to make this op-
timization really useful.
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Figure 6: Load Balance and Overhead Ratio

Within another experiment, we poll these trainers with
thread level logs to record the actual sampling time in each
iteration. VTune profiling is favorable, but it still has some
limitations. For instance, it can give details of spin time and
wait time for known libraries, but is limited for unknown
ones, including Java. And even in the effective cases, fur-
ther breakdown to get the actual working ratio for specific
applications is beyond its capability. With the real working
time of each thread, we can check the status of load balance
among threads and also the overhead of parallelism includ-
ing the non-parallel part of the code and synchronization
overhead.

Thread level logs are not included in WarpLDA as it is
implemented with multithreading by OpenMP. Large task
granularity enables HarpLDA and LightLDA to add these
logs easily, as synchronization occurs after the sampling
on a block or a slice of data. F+NomadLDA has much
smaller task granularity where each thread assigns the up-
dated model to another thread after sampling on one word.
In this case, using the high performance clock gettime func-
tion is adopted to record the time, which makes the overhead
tolerable.

CV (coefficient of variation) is a metric to evaluate load
balance among the threads. On the vector of the sampling
3F+NomadLDA supports different kinds of schedulers, but
in our test, the default Shift version and the Load Balance
version do not show much differences.

time of threads, it calculates the ratio of the standard devi-
ation to the mean. See Fig. 6a, F+NomadLDA has a very
large CV level depicting serious problems with load imbal-
ance. Fig. 6b is an error bar chart elucidating the over-
head time ratio for each iteration. Overhead time for each
thread is the iteration time excluding the actual sampling
time spent. F+NomadLDA again shows a high overhead
ratio and variance. LightLDA is better but still larger than
10%. In contrast, HarpLDA+ presents a relatively large
overhead ratio in the first iteration because a fixed timer of
1 second is set in the beginning, while constant overheads of
hundreds of milliseconds make the ratio value appear high.
As seen in the charts, HarpLDA+ demonstrates the best
load balance and a small overhead.

5.2.3 Distributed Parallel Efficiency
In this section, we run LDA trainers in distributed mode

to investigate their capability of scaling-out. WarpLDA is
not included because the official source code release does not
support distributed mode. Moreover, we expect that the dis-
tributed design presented in its paper might not scale well
because of the need to exchange the whole training data-
set in each iteration among all the workers. The data vol-
ume is at least 10 times larger when compared with the
other systems. F+NomadLDA runs on an InfiniBand net-
work directly supported by mvapich2, but lightlda runs on
IPoIB (TCP/IP protocol on InfiniBand network) supported
by mpich2, and as a Java application, HarpLDA+ runs on
IPoIB too. This means F+NomadLDA can potentially uti-
lize a bandwidth which is at least two times larger in these
experiments and be easier to scale. LightLDA adopts a pa-
rameter server approach so that each node trains on its own
local model replica. When it scales to more nodes, some
low frequency words may not appear in all the partitions of
the training set, i.e., the vocabulary size of a local model
replica will become smaller than that of the global model.
According to the equation to calculate model likelihood, the
value contributed by the ‘missing’ low frequency words is
approximately constant. As LightLDA reports model likeli-
hood on behalf of each local model, the actual likelihood of
the global model can only be estimated by a re-calibration
of its reported value with the constant gap. Two versions
of HarpLDA+, harp-timer and harp-notimer, are included
based on whether to use timer control or not.

We test different LDA trainers as seen in Fig. 7. The first
experiment runs on enwiki with K=[1K,10K] and clueweb30b
with K=5K (nomadlda fails due to out-of-memory problems
in 10K experiments). Because LightLDA and NomadLDA
do not have a good parallel efficiency under large thread
number, we set it to 16 instead of the physical core number.

As for the chart, column one represents convergence speed,
where harp-timer has the best overall performance. In col-
umn two, called speedup of time, harp-timer is used as the
base to calculate its speedup over other trainers, which is
the ratio of the training time to reach the same convergence
level. HarpLDA+ is more than 6x faster than LightLDA, 2x
faster than NomadLDA and about 50% slower when timer
control is not used. Note that harp results on enwiki will
be updated later. Load Balance of Computation and Over-
head in distributed mode are similar to those in the multi-
threading mode, here, the vectors of the average compu-
tation time and overhead time of all the threads on each
node are used. harp-timer demonstrates significant differ-
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Figure 7: Distribute Performance. enwiki with [2,4,8]x16 (K=1K, 1st row, K=10K, 2nd row), clueweb30b with [20,30,40]x16
(K=5K, 3rd row). The first four columns are the results of 8x16 and 40x16 respectively.

ences from harp-notimer under these two metrics, which is
the factor behind the boost in performance.

LightLDA, as an asynchronous approach, has less prob-
lems of load imbalance than the synchronized approaches.
A general random partition works well in normal cases. The
default staleness is set to one which can tolerate any perfor-
mance undulations only if the lag of the local model replica
is less than two iterations. This mechanism is effective in
order to provide stability and good scalability for different
cluster configurations. This is showcased in the scalability
column. On the other hand, LightLDA has a lower con-
vergence rate root from its asynchronous design and is less
efficient during the multi-threading parallel implementation.

NomadLDA is observed to have the most load imbalance
problems and also upholds a very high overhead ratio. In
the ewniki 10K experiment, the overhead even reaches 90%,
i.e., most of the workers are waiting for data. When using
a scheduler approach and running directly on the InifiBand
network for our experiments, this result is not expected.
One possible reason is the task granularity. It takes very
small granularity to schedule on each column of the word-
topic model, which seems to have a large overhead, espe-
cially when K increases to a large number.

5.2.4 Communication Intensive Case Study
The following experiment runs on the bigram data-set,

which has a 20M vocabulary size that is used to test the spe-
cial communication intensive case in the distributed mode.
When the communication time dominates in the training
process, all kinds of system designs have a large overhead
time ratio. In scheduler approach systems, most of the time
is spent on exchanging the model partitions. Moreover, in
standard parameter server approach systems, the overhead
can be small as the system continuously samples on the stale
local model replicas. However, in LightLDA, as SSP forces

the workers to keep the staleness of the local model within
a range, the overhead of the wait time problem comes back.
The HarpLDA+ timer control with the default parameter
of low bound 40%, and high bound 80% will also fail in this
test because even the computation time subsuming 100%
of the training points cannot overlap the large communica-
tion time. We extend the bound to [150%, 350%] to over-
lap the communication time in this special case, i.e., the
dynamic scheduler keeps assigning those sampled blocks to
free threads until the timer timeout. This trainer is named
Harp-repeat.
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Figure 8: Distributed Performance on bigram with 10x8
K=500



As in Fig. 8d, all the trainers have a large overhead ra-
tio. Harp-repeat significantly decreases the overhead and
increases the throughput, but at the same time, the effec-
tiveness drops, as in 8b, to be worse than LightLDA. Hence,
harp-repeat does not gain in the final overall performance.
In contrast, harp-notimer retains the best overall perfor-
mance, thus, further optimizations should focus on how to
decrease the size of the model that needs to be exchanged.

5.2.5 Straggler Case Study
The notion of a straggler is a normal situation in cloud

computations, where some nodes are significantly slower than
others in a job for many different reasons. In our exper-
iment HPC cluster, we also encounter the stragglers more
often than expected. Furthermore, by unknown reasons,
the performance of some nodes deteriorate while the job is
running. Their computation capacity sometimes drops to
10% of the normal capacity. We now show test results when
stragglers are encountered. In Fig. 9. All the trainers ex-
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Figure 9: Straggler Test on clueweb30b with 40x16 K=5K

cept harp-timer are severely affected by the emergence of
a straggler. When, the CV value increases up to around
1.0, the overhead ratio increases more than 80%, through-
put drops sharply, and as a result the overall performance
drops sharply. For instance, the task does not even con-
verge in 60,000(s) time where a normal run needs about
10,000(s). LightLDA benefits by its SSP design to repre-
sent a stable and scaleable trainer in a cluster with minor
variances. However, it cannot endure in the case of large
variances such as the straggler, in this case it stalls. In
contrast, NomadLDA has a load balance scheduler which is
designed to deal with these kinds of situations. When some
nodes are detected to be slow and the number of tasks in its
task queue is too large, the scheduler will decrease the prob-
ability of the new model to be sent to it. The design should
work better than what this experiment shows. harp-timer
shows a robust performance in the case of the straggler. The
speedup on the convergence speed of a normal run is about
1.25, which means it lost about 25% performance when a
straggler was encountered.

5.2.6 Large Model Case Study

Finally, we test the trainers on very large models, with K
set to 100K and 1M respectively. NomadLDA fails in such
settings with out-of-memory errors.
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Figure 10: Big Model Convergence Speed clueweb30b with
30x30

In Fig. 10b, when K increases to 1M , LightLDA runs
much faster than HarpLDA+ due to time complexity of
O(1) in the MH sampling algorithm. However this only
happens at the beginning of the training phase, and then
it slows down and is surpassed by HarpLDA+ because of
its ineffectiveness of communication, despite using a very
large MH step parameter such as 128 in Fig. 10b. In this
big model experiment, HarpLDA+ demonstrates impressive
performance, given that its time complexity is O(Kd +Kw)
and LightLDA is O(1).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigate the system design of large

scale LDA trainers with a focus on parallel efficiency. We
have identified four general design patterns from investigat-
ing the state-of-the-art systems. They are Locking, Allre-
duce, Asynchronous, and Rotation. Based on these, we
introduce HarpLDA+, selecting the model Rotation pat-
tern and proposing a new synchronized LDA training sys-
tem with timer control. This entails a two level parallelism
design, in which a dynamic scheduler is used for multi-
threading, while model rotation with timer control is used
for distributed parallelism. Through extensive experiments,
we demonstrate that the HarpLDA+ outperforms the other
state-of-the-art LDA trainers surveyed in this paper. The
timer control minimizes synchronization and communication
overhead in HarpLDA+ and improves the performance by
50%.

From HarpLDA+, we’ve gained useful insights in design-
ing a large scale Machine Learning system.

• Optimization of a sequential algorithm is critical but
does not necessarily lead to high performance parallel
systems. The trade-offs between effectiveness and effi-
ciency are the key factors in optimizing a distributed
Machine Learning system.
• The choices of data structures and parallel system de-

sign are critical for good performance in our Java HarpLDA+.
Implementation details including programming languages
and high performance out-of-the-shelf libraries do not
always guarantee good performance as shown in Table
3, Figures 5 and 7.



• Asynchronous parallel designs are favorable for scala-
bility and robustness. However, with increasing par-
allelism and computation capacity provided by many-
core and GPU servers, synchronized parallel designs
can achieve better performance on a moderate sized
cluster for big data problems in Table 2.

Incorporating more parallelism, such as vectorization, into
LDA trainers can be further explored in future work. Also,
the similar characteristics of two large families of Machine
Learning algorithms CGS (MCMC algorithm) and SGD (Nu-
merical Optimization algorithm) are interesting topics for
building a learning system.
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