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Abstract— Advances in modern bio-sequencing techniques 
have led to a proliferation of raw genomic data that enables an 
unprecedented opportunity for data mining. To analyze such 
large volume and high-dimensional scientific data, many high 
performance dimension reduction and clustering algorithms have 
been developed. Among the known algorithms, we use 
Multidimensional Scaling (MDS) to reduce the dimension of 
original data and Pairwise Clustering, and to classify the data. 
We have shown that interpolative MDS, which is an online 
technique for real-time streaming in Big Data, can be applied to 
get better performance on massive data. However, SMACOF 
MDS approach is only directly applicable to cases where all 
pairwise distances are used and where weight is one for each 
term. In this paper, we proposed a robust and scalable MDS and 
interpolation algorithm using Deterministic Annealing technique, 
to solve problems with either missing distances or a non-trivial 
weight function. We compared our method to three state-of-art 
techniques. By experimenting on three common types of 
bioinformatics dataset, the results illustrate that the precision of 
our algorithms are better than other algorithms, and the 
weighted solutions has a lower computational time cost as well. 
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I. INTRODUCTION 

The speed of data collections by modern instruments in 

every scientific and technical field is accelerating rapidly with 

the advancement of science technologies. As this massive 

amount of data can easily overwhelm a single computer, 

traditional data analysis technologies needs to be modified and 

upgraded to adapt to high performance computational 

environment for acceptable performance. Many data mining 

and machine learning algorithms have been developed to solve 

these big data problems. Among those algorithms, dimension 

reduction has been proved to be useful in data clustering and 

visualization field [1] [2]. This technique enables the 

investigation of unknown structures from high dimensional 

space into visualization in 2D or 3D space. 

 Multidimensional Scaling (MDS) is one set of techniques 

among many existing dimension reduction methods, such as 

Principal Component Analysis (PCA) [3], Generative 

Topographic Mapping (GTM) [4], and Self-Organizing Maps 

(SOM) [5]. Different from them, which focus on using the 

feature vector information in original dimension to construct a 

configuration in low dimension space, MDS focuses on using 

the proximity data, which is represented as pairwise 

dissimilarity values generated from high dimensional space. As 

in bioinformatics data, one needs to deal with sequences 

generated from sequencing technology, where the feature 

vectors are very difficult to be retrieved because of various 

sequence lengths. It is not suitable to use technologies other 

than MDS for their dimension reduction.  

DACIDR [6] is an application that can generate robust 

clustering and visualization results on millions of sequences by 

using MDS technique. In DACIDR, the pairwise dissimilarities 

can be calculated by pairwise sequence alignment. Then MDS 

uses the result from it as input. Furthermore, to deal with large-

scale data, DACIDR uses an interpolation algorithm called 

Majorizing Iterative MDS (MI-MDS) [7] to reduce the 

memory usage. It has been proven that DACIDR could 

visualize and cluster over millions of sequences with limited 

computing power. But in our recent study, we found out that 

pairwise sequence alignment could generate very low quality 

dissimilarity values in some cases, where these values could 

cause inaccuracy in clustering and visualization. So in MDS or 

interpolation, these values should be considered missing. 

Therefore, in this paper, we propose a robust solution for input 

data with missing values by adding a weight function to both 

MDS and interpolation. And we have reduced the time 

complexity of weighted MDS from cubic to quadratic so that 

its processing capability could be scaled up. Furthermore, as 

the MI-MDS uses iterative majorization to solve the non-linear 

problem of interpolation, it could suffer from local optima 

problem [8]. So we apply a robust optimization method called 

Deterministic Annealing [9] [10] (DA) in order to find the 

global optima for interpolation problem. 

The structure of the paper is organized as following: 

Section II discusses existing methods for MDS and 

interpolation problems; Section III introduces and explains the 

weighted solution for MDS; The proposed weighted and DA 

solution for interpolation is introduced in Section IV; In 

Section V, we present our experiment results on 3 types of 

sequence dataset and compare our proposed solutions to other 

existing methods; Followed by our conclusion and future work 

in Section VI. 

II. RELATED WORK 

Many MDS algorithms have been proposed in the past few 

decades.  Newton's method is used by [11] as a solution to 

minimize the STRESS in (1) and SSTRESS in (2). This 



method used the Hessian to form a basic Newton iteration, and 
then iterated through it until convergence. Although the time 
complexity of its conversion is quadratic, both Hessian 
construction and inversion require cubic time complexity. 
Quasi-Newton [12] method is proposed to solve this problem 
by using an approximation of inverse Hessian at each iteration. 
This significantly reduced the time complexity of Newton 
method to sub-cubic. [13] has proposed an Multi-Grid MDS 
(MG-MDS) to solve the isometric embedding problems. As a 
parallel solution, it shows the dramatic increase in performance 
compared to other existing methods. Scaling by Majorizing a 
Complicated Object Function (SMACOF) [14] is a gradient-
decent-type of algorithm which is widely used for large-scale 
MDS problems. However, it involves full matrix inversion 
before the calculation with weighting, which always has cubic 
time complexity. Additionally, as this method is an 
Expectation Maximization (EM) like problem, it is suffered 
from local optima problem. [15] has added a DA solution to 
SMACOF, so called DA-SMACOF, where it increased 
mapping quality and decreased the sensitivity with respect to 
initial configuration.  Simulated Annealing and Genetic 
Algorithm have also been used to avoid the local optima in 
MDS [16] [17]. However, they suffered from long running 
time due to their Monte Carlo approach. 

As MDS requires quadratic memory to compute, it 
becomes a limitation for large-scale data, e.g. millions of 
sequences while the computing power is limited. To address 
this issue, many algorithms have been developed to extend the 
capability of various dimension reduction algorithms by 
embedding new points with respect to previously configured 
points, or known as out-of-sample problem. A generalized out-
of-sample solution has been provided by [18] that uses 
coordinate propagation for non-linear dimension reduction, 
such as MDS. [19] has proposed a solution as an out-of-sample 
extension for the algorithms based on the latent variable model. 
In MDS, the out-of-sample problem could also be considered 
as unfolding problem since only pairwise dissimilarities 
between in-sample sequences and out-of-sample sequences are 
observed [20]. An out-of-sample extension for the Classical 
Multidimensional Scaling (CMDS) has been proposed in [21]. 
It has applied linear discriminant analysis to the labeled objects 
in the representation space. In contrast to them, [7] has 
proposed an EM-like optimization solution, called MI-MDS to 
solve the problem with STRESS criteria in (26), which found 
embedding of approximating to the distance rather than the 
inner product as in CMDS. In addition to that, [6] has proposed 
a heuristic method, called HE-MI, to lower the time cost of MI-
MDS. An Oct-Tree structure called Sample Sequence Partition 
Tree is used in HE-MI to partition the in-sample 3D space, and 
then interpolated the out-of-sample data hierarchically to avoid 
additional time cost. However, both of the methods suffer from 
local optima problem as same as in SMACOF, and could only 
process non-weighted data.  

III. WEIGHTED SOLUTION FOR DA-SMACOF 
In this section, we propose a weighted solution for DA-

SMACOF, a DA and weighted solution for MI-MDS. MDS 
and DA will be briefly discussed first, followed by introduction 
of WDA-SMACOF and WDA-MI-MDS.  

A. Multidimensional Scaling 
MDS is a set of statistic techniques used in dimension 

reduction. It is a general term for these techniques to apply on 
original high dimensional data and reduce their dimensions to 
target dimension space while preserving the correlations, 
which is usually Euclidean distance calculated from the 
original dimension space from the dataset, between each pair 
of data points as much as possible. It is a non-linear 
optimization problem in terms of reducing the difference 
between the mapping of original dimension space and target 
dimension space. In bioinformatics data visualization, each 
sequence in the original dataset is considered as a point in both 
original and target dimension space. The dissimilarity between 
each pair of sequences is considered as Euclidean distance used 
in MDS. 

Given a data set of ܰ points in original space, a pairwise 
distance matrix ߂ can be given from these data points (߂� ൌ
�ሾߜ௜௝ሿ) where ߜ௜௝ is the dissimilarity between point ݅ and point ݆ 
in original dimension space which follows the rules: (1) 
Symmetric: ߜ௜௝ ൌ � ௝௜ߜ . (2) Positivity: ߜ௜௝ ൐ Ͳ . (3) Zero 
Diagnosal: ߜ௜௜ ൌ Ͳ. Given a target dimension ܮ, the mapping 
of points in target dimension can be given by an ܰ ൈ  matrix ܮ
ܺ , where each point is denoted as ݔ௜  from original space is 
represented as ݅th row in ܺ. 

The object function represents the proximity data for MDS 
to construct lower dimension space is called STRESS or 
SSTRESS, which are given in (1) and (2): 

ሺܺሻߪ  ൌ σ ௜௝௜ழ௝ஸேݓ ሺ݀௜௝ሺܺሻ െ  ௜௝ሻଶ  (1)ߜ

ሺܺሻߪ  ൌ σ ௜௝௜ழ௝ஸேݓ ሺ݀௜௝ଶ ሺܺሻ െ ௜௝ଶߜ ሻଶ  (2) 

where ݓ௜௝  denotes the possible weight from each pair of points 
that ݓ௜௝ ൒ Ͳǡܹ ൌ ሾݓ௜௝ሿ , ݀௜௝  denotes the Euclidean distance 
between point ݅  and ݆  in target dimension. Due to the non-
linear property of MDS problem, an EM-like optimization 
method called SMACOF is proposed to minimize the STRESS 
value in (1). And to overcome the local optima problem 
mentioned previously, [15] added a computational temperature 
to the SMACOF function, called DA-SMACOF. It has been 
proved to be reliable, fast, and robust without weighting. 

B. Deterministic Annealing 
DA is an annealing process that finds global optima of an 

optimization process instead of local optima by adding a 
computational temperature to the target object function. By 
lowering the temperature during the annealing process, the 
problem space gradually reveals to the original object function. 
Different from Simulated Annealing, which is based on 
Metropolis algorithm for atomic simulations, it neither rely on 
the random sampling process nor random decisions based on 
current state. DA uses an effective energy function, which is 
derived through expectation and is deterministically optimized 
at successively reduced temperatures. 

In DA-SMACOF, the STRESS function in (1) is used as 
object function. We denote the ࣢ெ஽ௌ as the cost function for 
SMACOF, and ࣢଴ as a simple Gaussian distribution: 

 ࣢ெ஽ௌ ൌ σ ௜௝௜ழ௝ஸேݓ ሺ݀௜௝ሺܺሻ െ  ௜௝ሻଶ  (3)ߜ



Algorithm 1 WDA-SMACOF algorithm 
Input: ο, ܺ, ߝ and ߙ 
Generate random initial mapping ܺ. 
݇ ൌ Ͳ; 
while ௞ܶ ุ ௠ܶ௜௡  do  
  Compute ௞ܶ and ο෨௞ using (12). 
ݐ   ൌ Ͳ; 
  while ߪሺܺȁ௧ȁሻ െ ሺܺȁ௧ାଵȁሻߪ ൐  ߝ
    Use CG defined from (26) to (30) to solve (23). 
ݐ     ൌ ݐ ൅ ͳ; 
  end while 
  Cool down computational temperature ௞ܶାଵ �ൌ �ߙ� ௞ܶ; 
  ݇ ൌ ݇ ൅ ͳ 
end while 
ܺ ൌoutput of SMACOF based on ௞ܶ 
return ܺ 

 ࣢଴ ൌ σ ሺݔ௜ െ ௜ሻଶݑ ʹΤ௜ழ௝ஸே   (4) 

where ݑ௜ is the average of simple Gaussian distribution of ݅th 
point in target dimension ܮ. Also, the probability distribution 
଴࣪ and free energy ࣠଴ are defined as following: 

 ଴࣪ ൌ ����ሺെ࣢଴ ܶΤ ൅ ࣠଴ ܶΤ ሻ  (5)

 ࣠଴ ൌ െ݈ܶ݊ ׬ ����ሺെ࣢଴ሺܺሻ ܶሻ݀ܺΤ   (6) 

 ൌ�െ݈ܶ݊ሺʹܶߨሻ௅Ȁଶ�������������������  (7) 

where T is the computational temperature used in DA. 

C. Weighted DA-SMACOF 
The goal of DA in SMACOF is to minimize ࣠௠ௗ௦ሺ ଴ܲሻ ൌ

൏ ࣢௠ௗ௦ െ࣢଴ ൐଴൅�࣠଴ሺ ଴࣪ሻ  with respect to parameters ݑ௜ is 
independent of ൏ ࣢଴ ൐଴൅�࣠଴ሺ ଴࣪ሻǡ  so the problem can be 
simplified to minimize �൏ ௠ௗ௦ܪ ൐  if we ignore the terms 
independent of ݑ௜. By differentiating (7), we can get 

 ൏ ሺݔ௜ െ ௝ሻଶݔ ൐ൌ � ሺݑ௜ െ ௝ሻଶݑ ൅  (8)  ܮܶʹ

where ݔ௜ is the ݅th point in the target dimension ܮ, as same as 
݅th line in matrix ܺ. 

Take (8) into (3), finally the ࣢ெ஽ௌ  became  

 ࣢ெ஽ௌ ൌ ෍ ௜௝ݓ
௜ழ௝ஸே

ሺටሺݑ௜ െ ௝ሻଶݑ ൅ ܮܶʹ െ  ௜௝ሻଶ (9)ߜ

 ���������ൌ ෍ ௜௝ݓ
௜ழ௝ஸே

ሺหݑ௜ െ ௝หݑ ൅ ξʹܶܮ െ ௜௝ሻଶߜ  (10) 

As the original cost function and target dimension 
configuration gradually changes when the computational 
temperature changes, we denote ்ܺ  as the target dimensional 
configuration and ο்  as the dissimilarities of each pair of 
sequences under temperature T. So the updated STRESS 
function of DA-SMACOF becomes  

ሺ்ܺሻߪ  ൌ σ ௜௝௜ழ௝ஸேݓ ሺ݀௜௝ሺ்ܺሻ െ  ሚ௜௝ሻଶ (11)ߜ

where ߜሚ௜௝ is defined as 

ሚ௜௝ߜ  ൌ ቐ
௜௝ݓ�௜௝����������������݂݅ߜ ൌ Ͳ

௜௝ߜ െ �ξʹܶ݁ݏ݈݁����ܮ ௜௝ߜ�݂݅ ൐ �ξʹܶܮ
Ͳ݁ݏ݅ݓ�ݎ݄݁ݐ݋����������������

 (12) 

Note that if the distance between point ݅  and point ݆  is 
missing fromο, thenݓ௜௝ ൌ Ͳ. There is no difference between 
௜௝ߜ ሚ௜௝andߜ  since both of the distances are considered missing 
values. This is not proposed in the original DA-SMACOF 
where all weights for all distances in ο�are set to 1. 

By expanding (11), updated STRESS value can be defined 
as  

 

ሺ்ܺሻߪ ൌ ෍ ௜௝ݓ
௜ழ௝ஸே

ሚ௜௝ଶߜ ൅ � ෍ ௜௝ݓ
௜ழ௝ஸே

݀௜௝ଶ ሺ்ܺሻ

െ ʹ� ෍ ௜௝ݓ
௜ழ௝ஸே

ሚ௜௝݀௜௝ሺ்ܺሻߜ  
(13) 

 ൌ ఋ෩ଶߟ ൅ ଶሺ்ܺሻߟ െ  ሺ்ܺሻ  (14)ߩʹ

Equation (14) has three terms, the first term ߟఋ෡ଶ is a constant 
because it only depends on fixed weights and temperature, so it 
is a constant. Then to obtain the majorization algorithm for 
 :ሺ்ܺሻ, they are defined as followingߩ ଶሺ்ܺሻ andߟ

ଶሺ்ܺሻߟ  ൌ ᇱ்ܺ�ݎݐ ்ܸܺ  (15) 

ሺ்ܺሻߩ ᇱ்ܺ�ݎݐ = ሺ்ܺሻ்ܺܤ (16)

where ܸ and ܤሺ்ܺሻ is defined as following: 

௜௝ݒ ൌ ቐ
െݓ௜௝ ����������������������݂݅�݅ ് ݆

െ෍ݒ௜௞
௞ஷ௜

݂݅�݁ݏ݈݁���������������� ݅ ൌ ݆  (17) 

ܾ௜௝ ൌ

ە
ۖ
۔
ۖ
െۓ ሚ௜௝ߜ௜௝ݓ

݀௜௝ሺ்ܺሻ
݂݅ ݅ ് ݆ǡ ௜௝ݓ ് Ͳǡ ܽ݊݀�݀௜௝ሺ்ܺሻ ് Ͳ

െ෍ܾ௜௞
௞ஷ௜

݅�݂݅�݁ݏ݈݁���������������������������� ൌ ݆������������

Ͳ ݁ݏ݅ݓݎ݄݁ݐ݋�������������������

 (18) 

Finally, to find the majorizing function for (11), we apply 
(15) and (16) to (14). By using Cauchy-Schwarz inequality, the 
majorization inequality for the STRESS function is obtained as 
following 

ሺ்ܺሻߪ ൌ ఋ෩ଶߟ ൅ ݎݐ ்ܺᇱ ்ܸܺ െ ᇱ்ܺ�ݎݐʹ  ሺ்ܺሻ்ܺ (19)ܤ

൑ ఋ෩ଶߟ ൅ ݎݐ ்ܺᇱ ்ܸܺ െ ᇱ்ܺ�ݎݐʹ ሺ்ܼሻ்ܼܤ ൌ ߬ሺ்ܺǡ ்ܼሻ  (20) 

By setting the derivatives of ߬ሺ்ܺǡ ்ܼሻ to zero, we finally 
get the formula of the WDA-SMAOCF, 

்ܸܺ ൌ ሺ்ܼሻ்ܼ (21)ܤ

்ܺ௨ ൌ ܸறܤሺ்ܼሻ்ܼ  (22) 

where ܸற is the pseudo-inverse of ܸ. And ்ܼ is the estimated 
்ܺ  from previous iteration. Equation (22) is also called 
Guttman transform by De Leeuw and Heiser [14]. Although �ற 
could be calculated separately from SMACOF algorithm since 
V is static during the iterations, the time complexity of full 
rank matrix inversion is always ܱሺܰଷሻ [22][23]. Compared to 
the time complexity of SMACOF, which is ܱሺܰଶሻ , this is 
bottleneck for large-scale computation of weighted SMACOF.  



Instead of using pseudo-inverse of V, we d

and if N is large, ܸ ൅ ܫ ൎ ܸ , where ܫ  is an

matrix, so by replacing V by ሶܸ  in (21), we hav

function of WDA-SMACOF as 

ሶܸ ்ܺ ൌ  ሺ்ܼሻ்ܼܤ

Theorem 1. ሶܸ  is a symmetric positive definite

Proof. Since ݓ௜௝ ൌ ௝௜ݓ , so ݒ௜௝ ൌ ௝௜, and ሶܸݒ ൌ
�ሶ  can be represented as  

ሶ௜௝ݒ ൌ ቐ
െݓ௜௝����������������������������������������݂݅�݅�

ͳ ൅෍ݓ௜௞
௞ஷ௜

݂݅�݁ݏ݈݁�����������������������������

Because ݓ௜௝ ൒ Ͳ , so ݒሶ௜௜ ൐ Ͳ . And ݒ
σ ȁݒሶ௜௞ȁ௞ஷ௜ . So according to [24], Theorem 1 is 

Since ሶܸ  is an SPD matrix, we could solv

(22) without doing the pseudo-inverse of ܸ .

issue, a well-known iterative approximation 

the ݔܣ ൌ ܾ form equation, so called Conjugat

[25] could be used here. Traditionally, it i

quadratic form while ݔ  and ܾ  are both vecto

ሺܼሻܼܤ  and ܺ  are both ܰ ൈ ܮ  matrices. So 

could be directly used when ܮ ൌ ͳ. Neverth

situations, the CG method needs to be updated

equations. In ݅th iteration of CG, the residual

the search direction is denoted as ݀௜, ߙ௜ and ߚ
 ଴ and ݀଴ are given asݎ

଴ݎ ൌ ݀଴ ൌ ሶܤ �െ ሶܸ ܺ 

where ܤሶ  is the produce of ܤሺܼሻ ൈ ܼ. 

Let’s denote ݀ݐ݋ሺܺǡ ܻሻ ൌ σ σ ଵஸ௜ஸேଵஸ௝ஸ௅ݔ
ܮ ൈ ܰ and ܻ is ܰ ൈ ௝௜ݔ matrix and ܮ  is the ݆th
element in ܺ and ݕ௜௝ is the ݅th row, ݆th column

another word, ݀ݐ݋ሺܺǡ ܻሻ is calculating the sum

over rows of ܺ and their corresponding colum

complete equations for CG are updated to 

௜ߙ ൌ
௜௧ǡݎሺݐ݋݀ ௜ሻݎ
൫݀௜௧ǡݐ݋݀ ሶܸ ݀௜൯

 

௜ܺାଵ ൌ ௜ܺ ൅  ௜݀௜ߙ
௜ାଵݎ ൌ ௜ݎ െ ௜ߙ ሶܸ ݀௜ 

௜ାଵߚ ൌ
௜ାଵ௧ݎሺݐ݋݀ ǡ ௜ାଵሻݎ
௜௧ǡݎሺݐ݋݀ ௜ሻݎ

 

݀௜ାଵ ൌ ௜ାଵݎ ൅  ௜ାଵ݀௜ߚ
It is a recognized fact that original CG

algorithm, that ܺ and the other parameters are

iteration. And the error, which is denoted as ݂
is a non-increasing value until converge

complexity of CG is ܱሺܰଶሻ as the matrix mult

and (28) are ܰ ൈ ܰ ൈ ܮ where ܮ ا ܰ.  

WDA-SMACOF algorithm is illustrated 

The initial temperature ଴ܶis critical in WDA-
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ualization purpose. So there 

ad with this design.  



Algorithm 2 WDA-MI-MDS algorithm 
Input: ܦଵ, ܦଶ, ଵܺ, ߝ and ߙ 
for each ݔො in ܺଶ do 
  Compute ο෠  and ෠ܺଵ 
  Compute ଴ܶ 
  ݇ ൌ Ͳ; 
  while ௞ܶ ุ ௠ܶ௜௡ do 
    Update ο෠  to ο෨  using (12) 

Initialize random mapping for ݔො, called ݔොȁ଴ȁ 
ݐ     ൌ Ͳ 
    while ߪሺݔොȁ௧ȁሻ െ ොȁ௧ାଵȁሻݔሺߪ ൐  ߝ
        Update ݔොȁ௧ାଵȁ using (45) 
ݐ         ൌ ݐ ൅ ͳ 
    end while 
    Cool down computational temperature ௞ܶାଵ �ൌ �ߙ� ௞ܶ  
    ݇ ൌ ݇ ൅ ͳ 
  end while 
end for 
return ܺଶ 

IV. WEIGHTED DA SOLUTION FOR MI-MDS 
In this section, we propose a weighted deterministic 

annealing solution for MI-MDS. First, we briefly discuss out-
of-sample problem and MI-MDS, and then we describe 
weighted DA-MI-MDS (WDA-MI-MDS) in detail. 

A. Out-of-Sample Problem and MI-MDS 
The in-sample and out-of-sample problem has been brought 

up in data clustering and visualization to solve the large-scale 
data problem. In DACIDR, MDS is used to solve the in-sample 
problem, where a relatively smaller size of data is selected to 
construct a low dimension configuration space. And remaining 
out-of-sample data can be interpolated to this space without the 
usage of extra memory.   

In formal definition, suppose we have a dataset contains 
size of ܰ in-sample data, denoted as ܦଵ, and size of ܯ out-of-
sample points, denoted as ܦଶ , where in-sample points were 
already mapped into an L-dimension space, and the out-of-
sample data  needs to be interpolated to an L-dimension space, 
defined as ܺ ൌ ሼ ଵܺǡ ܺଶሽ , where ଵܺ ൌ ሼݔଵǡ ଶǡݔ ଷǡݔ ǥ ǡ ேሽݔ  and 
ܺଶ ൌ ሼݔேାଵǡ ேାଶǡݔ ேାଷǡݔ ǥ ǡ  ேାெሽ. Note that only one point atݔ
a time is interpolated to the in-sample space. So the problem 
can be simplified to interpolate a point ݔො to L-dimension with 
the distance observed to in-sample points. The STRESS 
function for  ݔො is given by 

ሺܺሻߪ ൌ σ ௜௫ො௜ஸேݓ ሺ݀௜௫ොሺܺሻ െ ௜௫ොሻଶ  (31)ߜ

where ݀௜ሺݔොሻ  is the distance from ݔො  to in-sample point ݅  in 
target dimension, and ߜ௜௫ො is the original dissimilarity between 
ොݔ  and point ݅ . If all weights equals to 1, equation (31) is 
transformed to 

ሺܺሻߪ ൌ σ ሺ݀௜௫ොሺܺሻ െ ௜௫ොሻଶ௜ஸேߜ   (32) 

MI-MDS is an iterative majorization algorithm proposed by 
[7] to minimize the STRESS value in (32), where all weights 
are assumed to be 1. It will find ݇ nearest neighbors from in-
sample points of a given out-of-sample point ݔො at first, denoted 

as ܲ ൌ ሼ݌ଵǡ ଶǡ݌ ଷǡ݌ ǥ ǡ ௞ሽ݌ . Then by finding a majorizing 
function, its minimum STRESS can be obtained analytically.  

B. Weighted DA solution for Majorizing Interpolation MDS 
MI-MDS has been proved to be efficient when deal with 

large-scale data. However, there are two disadvantages with 
this method. First, it assumed that all weights equal to one, 
where it couldn't deal with missing values and different 
weights. Secondly, this method is an EM-like optimization 
algorithm, which could be trapped in local optima as the EM-
SMACOF.  

Therefore, we propose WDA-MI-MDS to solve these 
issues. To solve the weighted out-of-sample problem, we need 
to find an optimization function for (31). By expanding (31), 
we have 

 
ሺܺሻߪ ൌ෍ݓ௜௫ොߜ௜௫ොଶ

௜ஸே
൅෍ݓ௜௫ො

௜ஸே
݀௜௫ොଶ ሺܺሻ

൅ ʹ෍ݓ௜௫ොߜ௜௫ො݀௜௫ො
௜ஸே

 
(33) 

 ൌ ఋଶߟ ൅ ଶሺܺሻߟ െ  ሺܺሻ�� (34)ߩʹ

where ߟఋଶ is a constant irrelevant to ܺ. So similar to SMACOF, 
only ߟଶሺܺሻ  and ߩሺܺሻ  need to be considered to obtain the 
majorization function. ߟଶሺܺሻ can be deployed to 

ଶሺܺሻߟ ൌ ොݔଵ௫ොԡݓ െ ଵԡଶ݌ ൅ڮ൅ݓே௫ොԡݔො െ ேԡଶ݌  (35)

ൌ σ ௜௫ො௜ஸேݓ ԡݔොԡଶ ൅ σ ௜ԡଶ௜ஸே݌௜௫ොԡݓ െ ௧  (36)ݍොݔʹ

where ݍ௧ ൌ ሺσ ௜ଵ௜ஸே݌௜௫ݓ ǡ ǥσ ௜௅௜ஸே݌௜௫ݓ ሻwhere ܮ is the target 
dimension. The Cauchy-Schwarz inequality can be applied on 
െ݀௜௫  in ߩሺܺሻ to establish the majorization function, which is 
given as  

െ݀௜௫ ൌ െԡݔො െ ௜ԡ        (37)݌

 ൑ െσ ሺ݌௜௔ െ ௜௔݌ො௔ሻሺݔ െ ௔ሻ௔ஸ௅ݖ
݀௜௫  (38) 

 
 ൌ െሺ݌௜ െ ௜݌ොሻ௧ሺݔ െ ሻݖ

݀௜௭  (39) 

where ݖ is a vector of length ܮ which contains ሺݖଵǡ ǥ ǡ  ௅ሻ, andݖ
݀௜௫ ൌ ԡ݌௜ െ  ሺܺሻ, we will haveߩ ԡ. By applying (37) toݖ

 െߩሺܺሻ ൑ െ෍ݓ௜௫ߜ௜௫
௜ஸே

ሺ݌௜ െ ௜݌ොሻ௧ሺݔ െ ሻݖ
݀௜௭

 (40) 

 ൌ െݔො௧෍ݓ௜௫ߜ௜௫
݀௜௭

ሺݖ െ ௜ሻ݌
௜ஸே

൅ ܥ  (41) 

where ܥ  is a constant irrelevant from ݔ . After applying (36) 
and (41) to (34), we will have 

ሺܺሻߪ ൑ ఋଶߟ ൅෍ݓ௜௫ො
௜ஸே

ԡݔොԡଶ ൅෍ݓ௜௫ොԡ݌௜ԡଶ
௜ஸே

െ ௧ݍොݔʹ

െ ௜௫ොߜ௜௫ොݓො௧෍ݔ
݀௜௭

ሺݖ െ ௜ሻ݌
௜ஸே

൅ ܥ ൌ ߬ሺݔොǡ ሻݖ
(42)

As both Ʉஔଶ  and �  are constants, equation (42) is a 
majorization function of the STRESS that is quadratic in �. 



The minimum of this function can be obtain
derivatives of ɒሺ�ොǡ �ሻ to zero, that is 

 ʹ෍ݓ௜௫ො
௜ஸே

ොݔ െ ௧ݍʹ െ ʹ෍ݓ௜௫ොߜ௜௫ො
݀௜௭

ሺݖ െ ௜݌
௜ஸே

ො௨ݔ  ൌ
௧ݍ ൅ σ ௪೔ෝೣఋ೔ෝೣ

ௗ೔೥
ሺݖ െ ௜ሻ௜ஸே݌

σ ௜௫ො௜ஸேݓ
 

where ݖ is the previous estimated ݔො. Although 
far can guarantee to generate a series o
STRESS value for from original distance
weights, it still could be trapped into local op
to add a deterministic annealing solution int
(12) to (44), and finally we have the iterat
equation for WDA-MI-MDS in (45), and 
illustrated in algorithm 2. 

ො௧௨ݔ ൌ
௧ݍ ൅ σ ௪೔ෝೣఋ෩೔ෝೣ೟

ௗ೔೥
ሺݖ െ ௜ሻ௜ஸே݌

σ ௜௫ො௜ஸேݓ
 

where ߜሚ௜௫೟  can be obtained using (12).  

C. Parallelization of WDA-MI-MDS 
Different from WDA-SMACOF, the out-

dimension reduction result only depends o
points. So ܦଵand ଵܺ  are copied and loaded 
every mapper. Since every out-of-sample poin
from any other out-of-sample points, WDA-
pleasingly paralleled. Therefore ܦଶ  is 
distributed across the mappers. And the result
could be simply merged into ܺଶ, as illustrated 

V. EXPERIMENTS 
The experiments were carried out on F

Cluster, which has 168 AMD Opteron 2378 
cores. We tested the accuracy of the re
normalized STRESS value, which can be calcu

തሺܺሻߪ ൌ σ ௜௝௜ழ௝ஸேݓ
ሺௗ೔ೕሺ௑ሻିఋ೔ೕሻమ

ఋ೔ೕమ
  

where Ɂ  is given by PID distance calculate
sequence alignment. Equation (46) is least 
difference between the mapped distance 
reduction and original distance and naturally l
STRESS means better performance [7] [14]. 
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2) hmp16SrRNA: The original hmp16SrRNA dataset has 
1.1 million sequences, which was clustered and visualized by 
DACIDR in our previous research [5]. In this experiments, we 
selected 10k of it as in-sample data and 40k as out-of sample 
data. Due to the larger size, it can not be done on a single core, 
so we used the parallel version of Full MDS and Interpolation 
to run the experiments on 80 cores. The distance was 
calculated using local alignments and 9.98% of distances were 
randomly missing and set to an arbitrary number. The 
normalized STRESS were shown in Figure 4. In this case, the 
weighted solutions has a normalized STRESS value lower 
than non-weighted solutions by 40%. 

3) COG Protein: Differently from DNA and RNA data, 
the Protein data doesn't have nicely clustered structure after 
dimension reduction, and its distance calculation was based on 
global alignment other than local alignment. In our 
experiments, we used 4872 consensus sequences to run full 
MDS, and interpolated rest 95672 sequences to these 
consensus sequences. Among these distances from Full MDS 
and Interpolation, 10% of them were randomly chosen to be 
missing distances. The runs for 4872 in-sample sequences 
were carried out on a single core, while the Interpolation for 
95672 out-of-sample sequences used 40 cores. The results for  
COG Protein data were shown in Figure 5. Non-weighted and 
weighted cases show insignificant difference that WDA 
performs only 7.2% better than non-weighted cases. 

In these experiments, different dataset shows different 
features after dimension reduction. Figure 11, Figure 12, and 
Figure 13 are the clustering and visualization results for these 
three dataset shown in software called PlotViz [28]. It is clear 
that the Metagenomics DNA data has well-defined boundaries 
between clusters; the sequences in hmp16SrRNA dataset are 
not as clearly separated but we could still observe some 
clusters; COG data points were evenly distributed in the 3D 
space, and the different colors are indication of existence of 
clusters identified by [2]. Although these three dataset had 
diverted visualization results, WDA solution always shows 
lowest normalized STRESS value and smallest divergence in 
all experiments. 

B. Comparison of Computational Complexities 
In these results, we assume that distances ߜ௜௝ are calculated 

beforehand, and the time of CG is compared separately with 
full matrix inversion in subsection C. So in this section, only 
performance differences of computing majorizing functions in 
different algorithms are shown. Therefore, for all of the 
algorithms, the time costs reflect the number of SMACOF 
iterations. 

1) Fixed threshold runs: For the runs in Section A where 
the ending condition for the algorithms wass threshold, the 
iteration number could be various due to the 
configuration/feature space of different dataset. As shown in 
Figure 6, for 4640 DNA data, DA solutions took longer to 
process because it converged multiple times as the 

 
Fig. 3. The normalized STRESS comparison of 

Metagenomics DNA mapped into 3D. 2000 
sequences were selected as in-sample data to 

run full MDS, and 2640 sequences were out-of-
sample data runs interpolation. 

Fig. 4. The normalized STRESS comparison of 
hmp16SrRNA data mapped into 3D. 10k 

sequences were selected as in-sample data to 
run full MDS, and 40k sequences were out-of-

sample data runs interpolation. 

Fig. 5. The normalized STRESS comparison of 
COG Protein data mapped into 3D. 4872 

consensus sequences were in-sample data runs 
full MDS, and 95k COG sequences were out-of-

sample data runs interpolation 

 
Fig. 6. The sequential running time for 

Metagenomics DNA mapped into 3D. The 
threshold is set to 10-6. 2000 sequences were in-

sample and 2640 were out-of-sample data. 

Fig. 7. The normalized STRESS comparison of 
Full MDS running on 4872 COG protein data 

at increasing iterations. Larger iteration 
number means longer time to process. 

Fig. 8. The running time for parallel Full MDS 
on 10k and Interpolation on 40k of 

hmp16SrRNA data. W is short for weighted, 
and N is short for non-weighted. 
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temperature cools down. weighted solutions had less iterations 
because the configuration space with weight enabled faster 
convergence, so the total time cost of weighted solutions were  
smaller than non-weighted solutions. However, this effect was  
not permanent on different dataset. When SMACOF ran on 
COG data, non-weighted solutions had less iterations to 
converge than weighted solutions as shown in Figure 7. This 
feature shows that if the points in  the target dimension space 
are almost evenly spreaded out, the iterations converge 
quicker. Figure 7 shows the normalized STRESS value for 
Full MDS of COG data as the iteration number increases. 
Both algorithms were set to run 480 iterations. It shows that 
for weighted case, the normalized STRESS kept decreasing 
and it finally converges after 480 iterations with a threshold of  
10-6. And for non-weighted case, the algorithm treats the input 
data as if there is no value missing. So when we calculated 
STRESS with non-weighted solution, it was always much 
higher than weighted case. It converges at about 280 
iterations, but its weighted STRESS (W-non-weighted) value 
was still higher than WEM cases at that point. 

2) Fixed iterations: If the iteration number of each run 
was fixed, we could simply compare the efficiency of different 
algorithms. Figure 8 shows how the time cost varied for 
weighted and non-weighted solutions of Full MDS and 
Interpolation when percentage of missing distance values from 
input increases. Full MDS ran a fixed number of iterations at 
480 and Interpolation runs 50 iterations for every out-of-
sample point. Because in non-weighted solutions, all weights 
were uniformly set to 1, there was no time difference for non-

weighted solutions when percentage of missing distance 
values increased. However, for weighted solutions, if an input 
distance was missing, the correspond weight equaled zero. 
According to (18), part of calculations in Full MDS were 
eliminated, and as in (45), a large percentage of calculations in 
Interpolation weren’t needed because the product of zero was 
still zero. The results showed that non-weighted Full MDS 
took an average of 206 seconds and non-weighted 
Interpolation took 207 seconds to finish for all cases. And 
weighted Full MDS only decreases 23% compared to non-
weighted solution, even in case where 90% values of input 
distance matrix were missing. But for Interpolation, as main 
part of the computation were spared due to the missing values, 
the time cost decreases almost linearly when the percentage of 
missing distances increases. It is clear that weighted solution 
has a higher efficiency on Full MDS and Interpolation than 
non-weighted solutions with fixed iterations. 

In conclusion, the weighted solution is not always faster 
than non-weighted solution when the threshold is fixed. But if 
the number of iterations is fixed, the weighted problem 
solution has a lower time cost compared to the non-weighted 
case. Within a given time, weighted solution can finish more 
iterations than non-weighted solution. 

C. Scalability Comparison 
In this section, we did a scale up test on a single core with 

matrix inversion and CG to show their different time 
complexity. A large-scale experiment using 50k hmp16SrRNA 
data with Full MDS was carried out on 600 cores, where 20% 
of original distances are missing. Some preliminary analysis of 

 
Fig. 9. The running time of CG compared to matrix inverse in SMACOF. 

Total iteration number of SMACOF is 480, and data is selected from 
hmp16SrRNA. CG has an average of 30 iterations. 

 
Fig. 10.  The normalized STRESS comparison of hmp16SrRNA data 

mapped into 3D. 50k sequences were selected as in-sample data to run full 
MDS with Conjugate Gradient method. 

 
Fig. 11. Clustering and visualization result of 
Metagenomics DNA dataset with 15 clusters.  

 
Fig. 12. Clustering and visualization result of 

hmp16SrRNA dataset with 12 clusters. 

 
Fig. 13. Visualization result of COG protein 

dataset, with 11 clusters identified. 
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using CG instead of matrix inversion were done. We found 30 
iterations within CG sufficed for up to 50K points, so 30 CG 
iterations per SMACOF step was used in these experiments. 

Figure 9 illustrates the difference between matrix inversion 
and SMACOF iteration time cost when data size goes up on a 
single machine. The original SMACOF performed better when 
data size was small, since matrix inversion ran only once 
before SMACOF iteration started. Additionally, we ran 480 
iterations for SMACOF, and CG is processed in every 
SMACOF iteration, so it has a higher time cost when there 
were less than 4k sequences. But when data size increased to 
8k, matrix inversion had significantly higher time cost than to 
CG. This suggests CG and its extensions gives an effectively 
ܱሺܰଶሻ approach when ܰ ب  while ,݊݋݅ݐܽݎ݁ݐ݅�ܩܥ�݂݋�ݎܾ݁݉ݑ݊
the time complexity of matrix inverse was always O(N3). 

Figure 10 shows the result of Full MDS on 50k in-sample 
hmp16SrRNA data using CG method where CG only needed 
4000 seconds in average to finish one run. The results shows 
that even at large scale, WDA-SMACOF still performed the 
best compared to other three methods. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed WDA-SMACOF and WDA-MI-

MDS, as two algorithms for full MDS and interpolation 
problems with DA techniques and weighted problems. Our 
results showed that the WDA solution always performs best for 
weighted data. Additionally, we effectively reduced the time 
complexity of SMACOF from O(N3) to O(N2) by using 
Conjugate Gradient instead of full Matrix Inversion and 
showing that a few iterations were sufficient. Future work will 
include larger scale test, adding weight function to HE-MI [6]. 
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