High Performance and Specialized Transport in Web Services

We want to structure data mining and sensor filtering tools as Web Services that however can exploit any applicable high performance transport mechanism at any level of the OSI stack. The general approach we call WS-TransportBinding and it extends the principles used in WS-Security and the two proposed Web Service reliable messaging standards (WS-RM and WS-Reliability). The essential ideas are
a) The security, reliable messaging, routing and performance aspects of all data transport are controlled at the application layer by SOAP compliant messaging infrastructure implementing a high performance controllable overlay network. These features are implemented at various levels of the OSI stack and can use best available protocols – including those based on UDP
b) The overlay network transports streams which are ordered sets of messages. The message abstraction used includes, like traditional SOAP over HTTP, a header and a body where the header is transported in a lightweight fashion allowing the overlay network to easily process the header information at intermediate points. Where possible we do NOT use the Russian doll model where the overlay network opaquely transports messages with the headers of other transport protocol hidden inside the body of each overlay network messages. Rather we map all relevant header (control) information to the header of the overlay network so that control information can be interpreted with low overhead at any intermediary or endpoint node that needs to act on the message.
c) WS-TransportBinding assumes that all the control mechanism is negotiated in a conventional SOAP model as is familiar from SOAP’s HTTP binding. This control information establishes details of the high performance transport which is acceptable to all parties. After the initial negotiation the data is streamed in an optimal fashion using in general a different encoding and a different transport protocol from initial negotiation. This streaming uses a different port from the initial negotiation, so we can still change the stream processing using out of band traditional SOAP messages. This approach is similar to that used in WS-SecureConversation which is used to negotiate secure security streams.
d) We can use these ideas to interface Web Services and the high performance transport protocols discussed above with the parallel computing technology MPI (and its I/O interface MPI-IO in MPI-2). We prefer the hybrid model where MPI – optimized for low latency and high bandwidth – is used internally to a parallel system and NaradaBrokering (NB) externally. However, there will be a need to interoperate with distributed versions of MPI like MPICH-G2. This interoperability is nontrivial as NB and SOAP have much richer metadata than MPI. We will solve this by supporting MPI in exactly the same fashion as defined in WS-TransportBinding. One initializes a stream of MPI messages with a set of control messages containing SOAP and NB header information. A unique integer (UUID) is generated at this phase and used to label the stream and the mapping of NB/SOAP to MPI, just like we do today with RTP messages. One only needs this integer, a stream continuation tag and a sequence number on each MPI message in the high performance stream. These can be held in MPI Communicator and Tag fields. Thus after the initial negotiation, the MPI messages are transported with no performance degradation. This strategy will be used both in generating conventional MPI messages at the stream parallel computing interface and in supporting Grid enhanced MPI systems. This discussion uses NB but is not specific to NB.

e) We can implement the overlay network using the NaradaBrokering (NB) messaging package but the proposed WS-TransportBinding is not tied to this software. NB is linked to Web services using the SOAP handler or equivalent mechanism. The handler handles message control using control instructions in the SOAP header. This SOAP header is carried in the header (termed synopsis) of each NaradaBrokering message in a fashion that depends on the particular protocol. For a standard HTTP message, the NaradaBrokering synopsis holds the full XML of the SOAP header. For streaming RTP events, the header is a short binary string carrying a UUID mapping to binary protocol type, sequence number and stream position (begin, end, continue) and SOAP header used in negotiating this streams transport
f) NaradaBrokering already supports many important protocols including UDP, TCP and parallel TCP. We should add fast UDP based transports. Some aspects of these ideas have been demonstrated in a version of GridFTP that uses NaradaBrokering as its transport mechanism. This allows GridFTP to respect the WS-RM reliable messaging supported by NaradaBrokering. GridFTP illustrates the two ways one can implement the interface to the overlay network. The highest performance with minimal copying is to use a NaradaBrokering plugin. However GridFTP used a simpler but more general proxy method where one builds a custom filter mapping the native transport of the service to that optimized for the overlay network. This choice between plug-in and proxy is of course a general option and not specific to NB.
