
An Analysis of Notification Related Specifications for Web/Grid applications

Shrideep Pallickara and Geoffrey Fox
(spallick, gcf)@indiana.edu

Community Grids Laboratory, Indiana University

Abstract

Notification is especially important in the Service
Oriented Architecture (SOA) model engendered by Web
Services. where Web Services interact with each other
through the exchange of messages. In this paper we
compare and contrast two competing specifications in the
area of notifications. The first one, WS-Notification, is
part of the Web Service Resource Framework (WSRF).
The second one is the WS-Eventing specification. These
specifications are expected to have far reaching
implications on the development of asynchronous,
complex, dynamic systems.

Keywords: notifications, publish/subscribe, middleware
systems, Web Services, Grid Services, WSRF

1. Introduction

Messaging is a fundamental primitive in distributed
systems. Entities communicate with each other through
the exchange of messages, which can encapsulate
information of interest such as application data, errors and
faults, system conditions, search and discovery of
resources. A related concept is that of notifications where
entities receive messages based on their registered interest
in certain occurrences or situations. Messaging and
notifications are especially important in the Service
Oriented Architecture (SOA) model engendered by Web
Services. Here, Web Services interact with each other
through the exchange of messages.

In this paper we compare and contrast two competing
specifications in the area of notifications. The first one,
WS-Notification [1], is part of the Web Service Resource
Framework (WSRF) [2]. WSRF is a realignment of the
dominant Open Grid Service Infrastructure [3, 4] to be
more in line with the emerging consensus [5] within the
Web Services community. The second one is the WS-
Eventing [6] specification from IBM and Microsoft.
These specifications are expected to have far reaching

implications on the development of asynchronous,
loosely-coupled, dynamic systems.

2. Comparing the specifications

WS-Notification is a complex specification comprising
three other specifications viz. WS-BaseNotification, WS-
BrokeredNotification and WS-Topics. Furthermore
several elements (such as subscriptions and topic spaces)
are also resources (WS-Resource) as outlined in the
WSRF suite of specifications. In their role as resources
these aforementioned elements also need to support
inspection and modification of the associated properties
and lifetimes as outlined in the WS-ResourceProperties
and the WS-ResourceLifetime specifications respectively.
WS-Eventing on the other hand is a self-contained
specification.

WS-Notification provides support for both a Notify
message as well as raw application-specific messages.
The Notify message type also encapsulates topic
information within them. This is especially useful in
allowing a consumer to identify the sub-processes
responsible for dealing with specific topics. The WS-
BrokeredNotification specification also provides support
for loosely-coupled interactions since a publisher need
not keep track of all its consumers. WS-Eventing on the
other hand provides support only for raw application
specific messages. WS-Eventing notifications do not
encapsulate any topic information within them.

WS-Notification currently only outlines the push
delivery mode for notifications. The push model is one in
which notifications are pushed to the consumer. WS-
Notification however incorporates support for delegated
(or brokered) delivery of notifications. WS-Eventing also
outlines the push model for notifications. A related
specification from Microsoft and Intel, WS-Management
[7] outlines three other modes for delivery: batched, pull
and trap. The batched mode allows an event source to
batch multiple notifications into a single SOAP envelope.
In the pull mode a sink is responsible for polling the
source at regular intervals and pulling notifications if any
are available. Finally, the trap mode leverages the SOAP

over UDP specification and indicates that the sink is
interested in receiving notifications over UDP.

Both specifications provide support for delegated
management of subscriptions through the Subscription
Manager interface. Furthermore, the specifications also
allow the specification of XPath constraints to filter
notifications. In WS-Notification the subscription related
operations include subscribe, pause and resume. Pause
and resume relate to the ability to suppress receipt of
notifications in the intervening period between them. WS-
Notification also includes support for retrieving the last
message that was published by a publisher on a given
topic. The specification also allows consumers to modify
their termination times. It should be noted that there is no
operation for unsubscribe. Instead, the WS-Notification
specification expects consumers to adjust the time for
expiration of the subscription resource as governed by the
WS-ResourceLifetime specification. This is a problematic
issue since an unsubscribe operation is semantically
different from the expiry of a subscription. In WS-
Notification there is also no exchange which announces
the end of a subscription to a consumer. In WS-Eventing
the subscription related operations include subscribe,
renew, unsubscribe and subscription-end. The renew
operation relates to the ability to extend the lifetime of a
subscription. A sink receives a Subscription End
notification either as a result of the lifetime expiring or an
unsubscribe operation. Though the WS-Eventing
specification does not support the pause-renew set of
operations, the WS-Management specification facilitates
this operation. There is no separate message in WS-
Eventing to retrieve the last message published by a
source, though this is not really needed if one has the
pause-resume feature from WS-Management.

WS-Notification includes a separate specification,
WS-Topics, which deals with the management of a topic
space. The topic space facilitates hierarchical
organization of topics and supports two wildcard
operators, * and //, for the selection of topics within a
topic tree. In WS-Notification consumers can inspect the
topics available at a producer through the Notification
Producer interface. In WS-Eventing there is no formal
specification regarding the management of topics.

In WS-Notification a publisher need not keep track of
all the subscriptions or the routing of events to consumers.
This task is performed by the broker intermediary. In
WS-Eventing the source keeps track of all sinks, and is
responsible for routing notifications to the sinks.

3. Federation between the specifications

We believe that it is possible that these specifications
might be deployed concurrently. Federation between

these specifications will allow endpoints in these
specifications to interact with each other. This would
involve mapping the semantics of operations involved in
these specifications. These operations need to be managed
by a middleware. Here we briefly review some of the key
issues involved. First, the operations related to
subscriptions need to be mapped. Here, the requests to
unsubscribe and to renew subscriptions in WS-Eventing
should be mapped into the appropriate calls using WS-
ResourceLifetime if needed. Second, the middleware also
needs to maintain a list of properties that are
automatically generated. This would enable WS-Eventing
components to behave as WS-Resources that facilitate
inspection of properties. Delivery modes supported in
either specifications need to be mapped appropriately.
Issues pertaining to pausing and renewing of
subscriptions need to be handled by the federation
module by appropriately keeping track of issued
notifications.

4. Conclusions

In this paper we have analyzed and contrasted the two
dominant specifications in the area of Web Services
notifications. Depending on the needs of the application
deployments can choose to leverage either of these
specifications.

5. References

[1] Web Services Notification (WS-Notification). IBM,

Globus, Akamai et al. http://www-106.ibm.com/
developerworks/library/specification/ws-notification/

[2] The Web Services Resource Framework.
http://www.globus.org/wsrf/

[3] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.”,
Global Grid Forum, June 22, 2002. Available from
http://www.globus.org/research/papers/ogsa.pdf.

[4] The Open Grid Services Infrastructure (OGSI).
http://www.gridforum.org/Meetings/ggf7/drafts/draft
-ggf-ogsi-gridservice-23_2003-02-17.pdf

[5] D. Booth, et al, “Web Services Architecture.” W3C
Working Group Note 11 February 2004. http://
www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[6] Web Services Eventing. Microsoft, IBM.. http:
//ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[7] Web Services Management. Microsoft, Intel et al.
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-management.pdf

http://www-106.ibm.com/ developerworks/library/specification/ws-notification/
http://www-106.ibm.com/ developerworks/library/specification/ws-notification/
http://www.globus.org/wsrf/
http://www.globus.org/research/papers/ogsa.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-management.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-management.pdf

	Introduction
	Comparing the specifications
	Federation between the specifications
	Conclusions
	References

