

COVER PAGE

An Analysis of Reliable Delivery Specifications for Web Services

Shrideep Pallickara, Geoffrey Fox and Sangmi Lee
Community Grids Laboratory, Indiana University

{spallick, gcf, leesangm}@indiana.edu

Note that this analysis pertains to the version of WS-RM and WS-Reliability
on Feb 10th 2004. The table on the next page summarizes the state of these

specifications as of July 2004.

 WS-Reliability WS-ReliableMessaging
Related
Specifications

SOAP SOAP, WS-Addressing and WS-Policy

Acknowledgement
scheme for reliable
delivery

Relies only on positive acknowledgements.
Error corrections are initiated by the
source.

Uses both positive and negative
acknowledgments. Error corrections can thus be
initiated at both source and sink.

Message numbering
initialization

Starts at 0 for the first message in a group. Starts at 1 for the first message in a group.

Message number
exhaustion

Sender and receiver terminate sequences if
message number with Long.MAX_VALUE is
received.

A MessageNumberRollover fault is issued by
the source if message numbering exceeds
Long.MAX_VALUE, and the sequence is
terminated.

Message numbering
information

REQUIRED only for groups with more than
1 message.

Message number is REQUIRED for every
message.

Acknowledgement
Ranges

Allows acknowledgement of a range of
messages.

Allows acknowledgement of a range of
messages.

Requesting
acknowledgements

The AckRequested element is REQUIRED in
every message for which Guaranteed
delivery or Ordered delivery needs to be
ensured.

AckRequested is used to request the receiving
entity to acknowledge the message received.
This is not REQUIRED for messages that are not
retransmissions or the last message within a
group.

Terminating group
of messages

Based on the agreement items of
GroupExpiryTime GroupMaxIdleDuration

Based on the policy settings associated with
SequenceExpiration and InactivityTimeout

Exchanges indicating
group termination

No separate exchange exists for
terminating a group of messages.

A specific exchange, TerminateSequence,
exists for terminating a sequence. A source is
required to issue this after getting
acknowledgments on ALL messages.

Retransmissions Triggered after the receipt of a set of
positive acknowledgements.

Triggered after the receipt of a set of positive
and negative acknowledgements. The
RetransmissionInterval for a group of
messages, which can be adjusted using
exponential backoff algorithm also triggers it.

Quality of Service Agreements can also be established
regarding various protocol elements.

WS-Policy assertions are used to meet delivery
assurances, and also to set various protocol
agreements.

Delivery assurances
supported

Exactly once ordered delivery, reliable
delivery. Order is always tied to guaranteed
delivery and cannot be separately specified.

At most once, at least once and exactly once.
Order is not necessarily tied to guaranteed
delivery.

Security Relies on WS-Security and assorted
specifications

Relies on WS-Security and assorted
specifications

Protocol faults/error
reporting

Faults issued are based on problems with
message formats and message processing.

Faults issued are based on problems with
message formats, message processing and
message number rollovers.

 1/11

An Analysis of Reliable Delivery Specifications for Web Services

Shrideep Pallickara, Geoffrey Fox and Sangmi Lee
Community Grids Laboratory, Indiana University

{spallick, gcf, leesangm}@indiana.edu

Abstract

Reliable delivery of messages is now a key component of
the Web Services roadmap, with two promising, and
competing, specifications in this area viz. WS-Reliability
from OASIS and WS-ReliableMessaging from IBM and
Microsoft. In this paper we provide an analysis of these
specifications. Our investigations have been aimed at
identifying the similarities and divergence in philosophies
of these specifications. We also include a gap analysis and
a series of recommendations plugging the gaps identified
by the gap analysis.

Keywords: guaranteed delivery, ordered delivery, WS-
Reliability, WS-ReliableMessaging and fault tolerance.

1. Introduction

Remote method invocations have been used in
distributed systems for quite some time. Frameworks such
as CORBA from the Object Management Group (OMG)
[1] have had schemes in place to facilitate invocations on
remote objects for more than a decade. There also has been
support for remote invocations in programming languages,
a case in point being the Java Remote Method Invocation
(RMI) Framework [2]. In these cases we could think of the
remote object as providing a service comprising a set of
functions. The provider exposes the service’s capability
through an appropriate description language, which
comprises the function names, the number and type
arguments that a given service function takes and finally
the return type that would be returned upon completion of
the invocation.

The underlying principle for Web Services [3] is similar
to what existed in these earlier systems. The difference lies
in the scale, scope, ubiquity and ease of utilization of these
services. The deployments and utilization of these services
are driven by a slew of XML based specifications that
pertain to exposing services, discovering them and
accessing these securely once the requestor is
authenticated and authorized.

As web services have matured the interactions that the
services have between themselves have gotten increasingly
complex and sophisticated. Web services can be composed
easily from other services, and these services can be made
to orchestrate with each other in dynamic fashion. Web
services specifications have addressed issues such as
security, trust, notifications, service descriptions,
advertisements, discovery and invocations among others.
These specifications can leverage, extend and interoperate

with other specifications to facilitate incremental addition
of features and capabilities. As web services have become
dominant in the Internet and Grid systems landscape, a
need to ensure guaranteed delivery of interactions
(encapsulated in messages) between services has become
increasingly important. This highly important and complex
area was previously being addressed in the Web Services
community using homegrown proprietary application
specific solutions. It should be noted that the terms
guaranteed delivery and reliable delivery tend to be used
interchangeably to signify the same concept.

Reliable delivery of messages is now a key component
of the Web Services roadmap, with two promising, and
competing, specifications in this area viz. WS-Reliability
[4] from OASIS and WS-ReliableMessaging [5] from IBM
and Microsoft among others. In this paper we provide an
analysis of these specifications. Our investigations have
been aimed at identifying the similarities and divergence in
philosophies of these specifications. We also include a gap
analysis identifying potential drawbacks in both these
specifications, including a series of recommendations to
address issues identified in the gap analysis. We believe it
is quite possible that these specifications may continue to
exist alongside each other. To account for such a scenario
we also include a scheme for federating between these
specifications. Such a scheme will allow service nodes to
belong to either one of these competing specifications and
still continue to interact reliably with each other.

This paper is organized as follows in section 2 we
provide an overview of the related work in the area of
reliable delivery. In section 3 we include a brief primer on
acknowledgements the most fundamental element in
ensuring guaranteed delivery. In sections 4 and 5 we
provide an analysis of the similarities and differences in
these specifications. In section 6 we present a gap analysis
of these specifications, while providing recommendations
to plug these gaps in a series of recommendations provided
in section 7. Finally, we present issues in federating these
schemes and outline conclusions.

2. Related work

In this section we provide a taxonomy of related work in
the area of reliable and ordered delivery. We consider
traditional group based systems, asynchronous
publish/subscribe systems and message queuing systems.
We also review fault tolerance approaches in distributed
object based systems and recovery oriented computing.
The efforts in group based systems and publish/subscribe
systems have focused on ensuring reliable delivery to

 2/11

multiple entities interested in a message. Messaging
queuing systems deal with ensuring reliable delivery
between queues. Fault tolerant CORBA tries to ensure
availability (and accompanying accesses) of the remote
object in question under various failure scenarios.

2.1. Group based systems

The problem of reliable delivery [6, 7] and ordering [8,
9] in traditional group based systems with process crashes
has been extensively studied. The approaches normally
have employed the primary partition model [10], which
allows the system to partition under the assumption that
there would be a unique partition which could make
decisions on behalf of the system as a whole, without risk
of contradictions arising in the other partitions and also
during partition mergers. However the delivery
requirements are met only within the primary partition.
Recipients that are slow or temporarily disconnected may
be treated as if they had left the group.

This virtual synchrony model, adopted in Isis [11],
works well for problems such as propagating updates to
replicated sites. Systems such as Horus [12] and Transis
[13] manage minority partitions (by having variants of the
virtual synchrony model) and can handle concurrent views
in different partitions. The overheads to guarantee
consistency in these cases can be too strong

Spinglass [14] employs “gossip” style algorithms,
where recipients periodically compare their disseminations
with other members of the group. Each recipient compares
it dissemination sequence (a message digest of the
message sequences received so far) with one of the group
members. Deviations in the digest result in solicitation
requests (or unsolicited responses) for missing messages
between these recipients. This approach is however
unsuitable where memberships can be fluid and hence a
recipient is unaware of other recipients that should have
received the same message sequences. Approaches to
building fault-tolerant services using the state machine
approach have been suggested in Ref [15].

2.2. Publish/Subscribe systems

NaradaBrokering [16, 17] facilitates delivery of events
to interested entities in the presence of node and link
failures. Furthermore, entities are able to retrieve any
events that were issued during an entity’s absence (either
due to failures or an intentional disconnect). The scheme
withstands failures of the entire broker network and does
not require a stable storage at every entity.

DACE [18] introduces a failure model, for the strongly
decoupled nature of pub/sub systems. This model tolerates
crash failures and partitioning, while not relying on
consistent views being shared by the members. DACE
achieves its goal through a self-stabilizing exchange of
views through the Topic Membership protocol. This
however may prove to be very expensive if the number

and rate at which the members change their membership is
high.

The Gryphon [19] system uses knowledge and curiosity
streams to determine gaps in intended delivery sequences.
This scheme requires persistent storage at every publishing
site and meets the delivery guarantees as long as the
intended recipient stays connected in the presence of
intermediate broker and link failures. It is not clear how
this scheme will perform when most entities within the
system are both publisher and subscribers, thus entailing
the presence of a stable storage at every node in the broker
network. Furthermore it is conceivable that the entity itself
may fail, the approach does not clearly outline how it
handles these cases. Systems such as Sienna [20] and Elvin
[21] focus on efficiently disseminating events, and do not
sufficiently address the reliable delivery problem in the
presence of failures.

2.3. Message Queuing Systems

Message queuing products (MQSeries) [22] are
statically pre-configured to forward messages from one
queue to another. This leads to the situation where they
generally do not handle changes to the network (node/link
failures) very well. Furthermore these systems incur high
latency since they use the store-and-forward approach,
where a message is stored at every stage before being
propagated to the next one. They also require these queues
to recover within a finite amount of time to resume
operations.

2.4. Fault Tolerant CORBA

The Fault Tolerant CORBA (FT-CORBA) [23]
specification from the OMG defines interfaces, policies
and services that increase reliability and dependability in
CORBA applications. The fault tolerance scheme used in
FT-CORBA is based on entity redundancy [24],
specifically the replication of CORBA objects. In CORBA
objects are uniquely identified by their interoperable object
reference (IOR). The FT-CORBA specification introduces
interoperable group object references (IGOR). When there
is a remote object, the client can access a replica simply by
iterating through the references contained in the IGOR
until the invocation is successfully handled by the
replicated object. The specification introduces several
schemes to manage different replication schemes.

The DOORS (Distributed Object-Oriented Reliable
Service) system [25] incorporates strategies to augment
implementations of FT-CORBA with real time
characteristics. Among the issues that the DOORS system
tries to address are avoiding expensive replication
strategies and dealing with partial failure scenarios.
DOORS provides fault tolerance for CORBA ORBs based
on the service approach. Approaches such as Eternal [26]
and Aqua [27], provide fault tolerance by modifying the
ORB. OS level interceptions of have also been used to
tolerate faults in applications. Ref [28] provides an

 3/11

excellent taxonomy of the various approaches to fault
tolerant CORBA.

2.5. Recovery Oriented Computing

The Recovery Oriented Computing (ROC) project [29]
at UC Berkley and Stanford University takes the
perspective that faults, failures, errors and bugs are facts to
be coped with rather than problems to be solved (also
known as Peres’ law). The project is deals with reducing
the Mean Time To Recover (MTTR) from system failures
instead of Mean Time To Failure (MTTF). ROC improves
dependability in systems by recovering from failures fast
thus ensuring continued availability.

3. A primer on acknowledgements

Entities involved in reliable messaging need to facilitate
easy detection of errors in received sequences while also
being able to fix these errors in sequences. In sender-
initiated protocols a sender gets positive acknowledgments
(ACKs) from all receivers periodically. A positive
acknowledgement confirms the receipt of a specific event
by a given receiver. This information along with the
knowledge of the events, which an entity is supposed to
receive, allows the identification of holes in the delivery
sequence at any given node. The sender can then initiate
retransmissions to fix these errors.

In receiver-initiated protocols errors in received
sequences are detected at the receivers, This detection in
turn triggers negative acknowledgements (NAK) to fix
these holes in the delivered sequences and retrieve any
previously undelivered events. In receiver initiated
protocols the assumption at the sender is that the message
has been received at the receiver unless indicated
otherwise by the NAKs.

It should be noted that in sender-initiated protocols the
error detection, initiation of error correction and the
retransmission are all performed at the sender side. In
receiver-initiated protocols the error detection and
initiation of error corrections are performed at the receiver,
while the retransmissions are performed by the sender.
ACK based schemes can exist by themselves, while NAK
based schemes cannot. This is because in a purely NAK
based scheme there is no way for the sender to know for
sure if a message was received and hence the sender can
never clear the buffer allocated for messages that were sent
by the sender.

4. Similarities in the specifications

The specifications – WS-Reliability and WS-
ReliableMessaging – both of which are based on XML,
address the issue of ensuring reliable delivery between two
service endpoints. In this section we outline the similarities
in the underlying principles that guide both these
specifications. The similarities that we have identified are

along the six related dimensions of acknowledgements,
ordering and duplicate eliminations, groups of messages
and quality of service, timers, security and fault/diagnostic
reporting.

Both the specifications rely only on positive
acknowledgements to ensure reliable delivery. This in turn
implies that all error detections, initiation of error
corrections and subsequent retransmissions of “missed”
messages are performed at the sender side. The receiver
side plays no role whatsoever in detecting these errors and
initiating corrections. A sender may also proactively
initiate corrections based on the non-receipt of
acknowledgements within a pre-defined interval.

The specifications also address the related issues of
ordering and duplicate detection of messages issued by a
source. A combination of these issues can also be used to
facilitate exactly once delivery. Both the specifications
facilitate guaranteed exactly-once delivery of messages, a
very important quality of service that is highly relevant for
transaction oriented applications; specifically banking,
retailing and e-commerce.

Both the specifications also introduce the concept of a
group (also referred to as a sequence) of messages. All
messages that are part of a group of messages share a
common group identifier. The specifications explicitly
incorporate support for this concept by including the group
identifier in protocol exchanges that take place between
the two entities involved in reliable communications.
Furthermore, in both the specifications the qualities of
service constraints that can be specified on the delivery of
messages are valid only within a group of messages, each
with its own group identifier.

The specifications also introduce timer based operations
for both messages (application and control) and group of
messages. Individual and group of messages are
considered invalid upon the expiry of timers associated
with them. Finally, the delivery protocols in the
specifications also incorporate the use of timers to initiate
retransmissions and to time out retransmission attempts.

In terms of security both the specifications aim to
leverage the WS-Security specification, which facilitates
message level security. Message level security is
independent of the security of the underlying transport and
facilitates secure interactions over insecure communication
links.

The specifications also provide for notification and
exchange of errors in processing between the endpoints
involved in reliable delivery. The range of errors supported
in these specifications can vary from an inability to
decipher a message’s content to complex errors pertaining
to violations in implied agreements between the interacting
entities.

5. Difference in approaches

In this section we compare the difference in the
approaches and philosophies towards some of the key
concepts in these specifications.

 4/11

5.1. SOAP related issues

WS-ReliableMessaging specifies an XML based
schema for elements that are needed for reliable
messaging. WS-ReliableMessaging includes a SOAP
binding for its protocol. WS-Reliability, on the other
hand, is a SOAP-based protocol for the reliable delivery of
messages. WS-Reliability includes a HTTP binding, where
the HTTP response can be used for carrying
acknowledgements associated with individual messages.
Similarly, SOAP faults as a result of processing and
protocol errors can also be carried during these HTTP
responses.

5.2. Grouping Messages

In WS-ReliableMessaging every message is considered
to be part of a group of messages. Even if there is just a
single message, it is considered to be part of a sequence
comprising only one message. The unique identifier
associated with a Message comprises the unique Group
identifier and its position within the group of messages.

WS-Reliability on the other hand allows a message to
exist outside the realms of a group of messages. Every
message also has its own unique identifier.

5.2.1 Beginning sequences

Messages within a group of messages are identified
differently in both the specifications. In WS-Reliablity
when a sender node is ready to start issuing a group of
messages, the exchange between the sender and receiver
also includes a SequenceNumber element with a status
attribute. The status attribute can take one of three
values – start indicating the beginning; end indicating
the last message and continue for every message that is
neither the first or the last message within the sequence in
question.
 In WS-ReliableMessaging the last message in the group
of message is identified through the use of the
LastMessage element within the Sequence element.
There is a MessageNumber associated with every
message in a group of messages, and this is what is used to
identify the beginning and position of messages in a group
of messages. The absence of the LastMessage element
is indicative of the fact that the end of the sequence of
messages has not yet been reached. Furthermore, a
receiver node issues a fault if any other message in the
same group of messages has a MessageNumber greater
than the one contained in the message with
LastMessage element.

To ensure the consistency of processing messages
belonging to different groups of messages, it is important
to make sure that no messages are issued in a group of
messages, once a message has been explicitly tagged as the
last message in that sequence. This important verification

does not currently explicitly exist in the WS-Reliability
specification.

5.3. Sequence Numbering

Every message within a group of messages in both
these specifications has numbering information associated
with it (SequenceNumber in WS-Reliability and
MessageNumber in WS-ReliableMessaging). The
numbering begins at 0 for WS-Reliability while it begins
at 1 for WS-ReliableMessaging.

From the implementation standpoint of these
specifications, the following issue needs to be considered.
In most languages the default values associated with
variables that are not explicitly initialized is 0. In an
implementation of the WS-ReliableMessaging
specification this value needs to be explicitly updated
(since a value of zero is an invalid number) prior to routing
it to the receiver. Thus, there is no ambiguity regarding
whether the variable associated with the sequence
numbering was initialized or not. This is not the case with
WS-Reliability, where it is conceivable that a message can
be published without incrementing the value assigned by
default. In general it is preferable that the numbering
information associated with a message is explicitly
increased prior to issuing the message instead of doing so
after sending the message across.

Within a group of messages WS-Reliability does not
require the numbering information to be present in every
message. In fact the numbering information is mandated
only for ensuring ordered delivery. In the WS-
ReliableMessaging case the numbering information is
necessary for every message. This is also because, unlinke
WS-Reliability, messages in WS-ReliableMessaging do
not have a separate unique identifier associated with them.
The unique identifier associated with the message is a
combination of the group identifier and the message
number.

In the unlikely event that there is a rollover associated
with messaging numbering, both these specifications
handle the issue in different ways. In WS-Reliability case
the source is expected to generate a new group identifier
and begin new sequence only after receipt of the last
message in the older message sequence. In the WS-
ReliableMessaging case no new sequences can be
generated and a MessageRollover fault needs to be
issued.

5.4. Acknowledgements

Both the approaches rely on positive
acknowledgements. Error detection and the accompanying
corrections are initiated by the sender upon the receipt of
acknowledgements from the receiver. There are some
differences in the acknowledgement scheme in these
specifications. In WS-ReliableMessaging, the receiver
need not acknowledge the receipt of every message. When
the messages being sent are part of a sequence, the last

 5/11

message in the sequence has an indicator indicating that it
is indeed the last message. Upon receipt of this message,
the receiver sends a report regarding the messages that it
received. This includes, besides the identifier associated
with the message group, the range of the messages that
were received and also individual sequences numbers in
the case there were missing sequences between these
messages. In WS-ReliableMessaging an entity can also
explicitly specify, using the AckRequested element,
that an acknowledgement is mandated upon the receipt of
any message. While this is not currently the case, we
recommend that this be mandatory for the last message in
a sequence of messages.

The WS-Reliability specification on the other hand
mandates an acknowledgement for every message that is
received at the receiver. The acknowledgements are based
on the message identifiers and not based on specific
sequence numbers. As mentioned earlier, the sequence
numbers are used only for satisfying the ordering
constraint. In WS-Reliability the sender can also specify
the reply pattern for a receiver of its messages. The
acknowledgements may then be issued directly in the reply
to a reliable message, as a callback request and finally in
the response to a separate poll request.

The approach deployed by the WS-Reliability
specification facilitates earlier detection of lost messages
and concomitant retransmissions to heal these errors. On
the other hand, in the default mode in WS-
ReliableMessaging the delays associated with error
detection may be significantly higher if the number of
messages present in a group of messages is high.

5.5. Ordering and duplicate detection

Duplicate detections and ordering are performed at the
receiver side. The receiver side needs to decide both the
rejection of duplicate messages and the ordering associated
with messages. These guarantees are valid only within a
sequence of messages, and since the numbering
information associated with the messages is known to
increase monotonically, ordering can easily be ascertained.
In WS-ReliableMessaging both ordering and duplicate
detection is based on the numbering information associated
with individual messages within a sequence. The duplicate
detection can exist independent of ordered delivery.

In WS-Reliability the numbering information associated
with messages comes into play only while ensuring
ordered delivery. Duplicate detection of messages is based
on the message identifiers associated with individual
messages. This can sometimes prove to be an expensive
operation based on the number of messages in the
sequence. It should be noted that in WS-Reliability
message ordering is always tied to guaranteed delivery and
cannot be separately specified.

5.6. Quality of Service

In WS-Reliability the quality of service associated with
the delivery of messages is dictated entirely by the source
of the messages. In WS-ReliableMessaging this
information can be specified by the receiver side through
the use of the WS-Policy family of specifications to arrive
on assurances associated with the delivery of messages.
WS-Policy enables a receiver to describe and advertise its
capabilities and/or requirements, and enables
communication regarding the characteristics that apply for
a given sequence of messages. The delivery assurances
available in WS-ReliableMessaging include AtmostOnce,
AtleastOnce, ExactlyOnce and InOrder.

Since the specification pertains to reliable delivery and
the AtmostOnce delivery assurance can imply non-
delivery of a given message, we are of the opinion that this
should not be there in the first place.

5.7. Timestamps and expiry related information

In WS-Reliability the timestamps are based on UTC
timestamps and conform to the dateTime element
specified in [XML Schema Part2: Data Types]. In WS-
ReliableMessaging there is no explicit reference to UTC,
though the timestamps use the dateTime format alluded
to earlier.

Both the specifications provide for timer based expiry
pertaining to an individual message or a group of
messages. In WS-Reliability there is an ExpiryTime,
which defines the expiration time associated with an
individual message. The specification also includes
removerAfter where the receiver maintains the group
identifier until the end of the sequence of messages is
received or until the expiry of the specified time.

In WS-ReliableMessaging Expires provides an
indication of the expiry time for a sequence of messages.
The specification also incorporates an Inactivity
timeout (specified in milliseconds) which is the duration
after which an endpoint that has not received application or
control messages belonging to a sequence of messages
may consider the aforementioned sequence to have been
terminated due to inactivity.

5.8. Retransmissions

Retransmissions are always initiated by the sender side.
This is an artifact of the use of positive
acknowledgements. Retransmissions can also be proactive
where multiple successive attempts at varying intervals
(usually increasing) are made to deliver a message. In WS-
Reliability the retransmissions are triggered faster since an
acknowledgement is expected corresponding to the
delivery of every message. The source also attempts
retransmissions until a specified number of attempts have
been made.

WS-ReliableMessaging on the other hand allows the
specification of a RetransmissionInterval

 6/11

(specified in milliseconds) for a sequence of messages.
This in turn affects every message within that sequence of
messages and may be modified at the source's discretion
during the lifetime of the sequence. This relates to the time
that is allowed to elapse after which the non-receipt of a
acknowledgment corresponding to the message triggers
retransmissions. The specification also allows this interval
to be adjusted based on the exponential backoff algorithm.
In WS-ReliableMessaging the efficiency of error
corrections is determined based on the acknowledgement
policy (one per message, or after the delivery of a
sequence) and the time specified in the
RetransmissionInterval.

5.9. Fault Codes supported within the protocol

The faults reported by the protocols facilitate error
reporting based on the problems that can be reported. WS-
Reliablity facilitates the reporting of invalid message
headers, invalid message identifiers and invalid references
to message identifiers in acknowledgements issued by a
receiver. The specification also facilitates the reporting of
invalid timestamps and expiry times associated with
messages. Finally, the specification can also report these
errors in reply patterns.

The WS-ReliableMessaging specification can report
errors pertaining to sequence terminations, message
number rollovers, invalid acknowledgements, invalid
sequences and errors pertaining to the maximum
numbering information that can be associated with
messages in a given sequence.

While both specifications sufficiently address
faults/errors that can take place WS-Reliability lacks the
ability to report violation of the maximum numbering
information that can be associated with messages in a
given sequence; after a message has been tagged as the last
message in that sequence. WS-ReliableMessaging on the
other hand lacks the ability to notify errors pertaining to
the timing related operations within the specifications.

6. Gap Analysis

In this section we present a gap analysis of the two
specifications. This analysis pertains to what we feel is
lacking in both these specifications. The gap analysis is
performed over specific items, each of which is described
in individual subsections.

6.1. Sender side error detections

In both the specifications, error detections are
performed only at the sender side. This happens to be the
case even though the receiver side possesses the
information to perform this. Since error detections are
performed at the sender side, the receiver side can never
initiate the accompanying error corrections. This in turn

implies that latencies for delivery of messages are bound
by the retransmission interval setup at the sender side.

6.2. Sender side error corrections

Since the retransmissions are always initiated at the
sender side, the error corrections are bound both by the
retransmission interval and the number of attempts that
will be made before the retransmission is timed out. It is
conceivable that an entity might have disconnected (either
due to failures, scheduled reboots or application startups).
In this case proactively initiating retransmissions tend to
be futile and a waste of system and network resources. The
costs increase with the number of attempts,
unacknowledged messages and payload sizes of the
application data encapsulated within these messages.

It is also possible that the application logic, responsible
for processing a certain type of message, could be the
cause for the problem, in which case the receiving entity
might be forced to defer the acknowledgement until the
problem has been rectified. However the constant
retransmissions from the sender side might need to be
continually discarded to deal with such a scenario.

6.3. Support for mobile computing

An area of increasing significance, given the
proliferation of sensors and the advances in wireless
networks, is mobile computing. Of specific concern within
mobile computing is the premium on network usage along
with the limited, and hence slower, computation speeds.

Proactive retransmissions that can sometimes flood a
receiver node (as outlined earlier) can exacerbate problems
on a mobile device. In such cases the inability, in both
these specifications, to facilitate receiver-initiated error
detections and subsequent retransmissions can seriously
impact the performance of these devices.

6.4. Support for ordered delivery across

sequences

Both the specifications do not provide for ordered
reliable delivery across sequences. The specifications also
do not facilitate the setting up of causal relationships
between messages published in different groups.

This can be a problem since the sender might not know
ahead of time the causal/general ordering relationships that
will exist between messages that it might publish. It is thus
impossible to ensure that a message would be delivered
after the delivery of a previously published message
belonging to a different group.

6.5. Support for one-to-many reliable & ordered

delivery

The specifications also implicitly assume that a need
would never arise to ensure ordered delivery across
multiple services. It is conceivable that a service may need

 7/11

to ensure that a given message was received by some
service A before it publishes a message to some other
service B. We argue that the problem is sufficiently
complex and important enough that it should have been
addressed within this specification.

6.6. Complexity of duplicate detections

Both these specifications facilitate duplicate detection
only within a group of messages. In WS-
ReliableMessaging this is based on the sequence number
associated with messages and not on the identifier that
might be associated with the message. In fact messages do
not have a separate identifier and the identifier is
determined based on the message number and the
identifier associated with the sequence.

If a group of messages does not have an expiration
time, in both these specifications, the receiver might need
to maintain information indefinitely regarding the
sequences that have been delivered. The specifications do
not describe the effect of the same message being present
in different sequences. The problem is compounded in the
WS-ReliableMessaging specification where a message
does not have a unique identifier associated with it. It is
thus possible for the same message to be assigned different
numbering information with the same sequence!
 In WS-Reliability duplicate detection is based on
message identifiers. In such cases the complexity of
duplicate detections increases with number of messages in
a sequence. In fact the problem becomes combinatorially
explosive as the number of messages in the group of
messages approaches the message rollover limit.

6.7. Trivial implementations of the specification

Both the specifications provide for the expiry of
messages and groups of messages. It is obvious that the
delivery constraints associated with these expired
messages would no longer be valid since the message itself
is an invalid message. Introducing expiry timers associated
with messages and sequences, provides an escape clause,
which in turn to could be used to have trivial
implementations of the specification. If all messages have
a timer element associated with them, a trivial
implementation may simply discard all messages that it is
expected to route reliably.

Expiry of messages and sequences are orthogonal to the
reliable delivery guarantee, and should be handled by the
application layers.

7. Recommendations

In this section we provide recommendations to plug the
gaps that were identified in the previous section.

7.1. Use Negative acknowledgements

We recommend the use of Negative acknowledgements
(NAKs). NAKs enable the receiver side to detect errors in
received sequences and to initiate retransmissions. Such a
scheme ensures that a receiver is indeed ready to process
the retransmissions and that the chances of the
retransmissions not being processed at the receiver side are
significantly lower.

Such a scheme can also ensure that there are two
entities that can initiate retransmissions and error
corrections. The onus is otherwise only on the sender side.
This scheme allows proactive sender retransmissions and
detection of missing sequences based on the received
acknowledgements to exist alongside the scheme we
recommend.

The NAK scheme would also assuage the strains
imposed on mobile devices that may use these protocols to
ensure reliable delivery.

7.2. Every message should have a catenation

number

To ensure ordered delivery across sequences, we
recommend that every message should have a
monotonically increasing catenation number associated
with it. Furthermore, we recommend that this catenation
numbering information associated with a message
identifier should have a one-to-one relationship i.e. for a
given message identifier there is only one numbering
information and vice versa. This catenation numbering
information allows a receiver to order all messages issued
by a source irrespective of the sequence, which they
belong to.

It should be noted that this does not impose total order
on all message issued from a source to a receiver. It simply
implies that ordering across multiple sequences is possible,
if so desired, by the receiver. Specification of causal
ordering relationships between messages across sequences
is now easy to specify, verify and satisfy.

To support cases where a rollover might occur at a
destination, we also include a rollover epoch signifying the
rollover horizon that the event belongs to. By having the
catenation and rollover epochs both as Unsigned Long
variables, this scheme allows a source to uniquely identify
18,446,744,073,709,551,615 x
18,446,744,073,709,551,615 messages that it
can issue.

7.3. Including previous catenation numbers with

every messages

To facilitate ordering/delivery-constraints for messages
across multiple receiver destinations, for every message,
belonging to a specific group of messages, the source also
needs to add information regarding the catenation number
associated with the last message published to that
destination. A sender node can then wait until it receives

 8/11

an acknowledgement from a receiver prior to issuing
cross-destination-dependent message to another receiver,
which is supposed to receive this event only after the
acknowledgement. The source can of course issue
messages to receivers at other destinations if the source
decides to do so.

Including previous catenation numbers also facilitates
ordering of messages across different sequences and
receiver destinations. Thus, for two groups of messages A
and B, for totally ordered delivery across sequences of
messages at a destination, a message should be delivered
only if the message corresponding to the previous
catenation number was previously delivered reliably and in
order. This can be a recursive constraint, meaning that a
previous sequence number should be delivered reliably and
in order.

To facilitate ordered delivery within sequences, a
message could also include information regarding the
catenation number that was associated with the last
message published in that sequence (a value of zero would
signify that the message in question is the first one within
that sequence).

7.4. Easier duplicate detections

Since every message, issued by a source would have a
unique catenation number associated with it, duplicate
detections are easier to perform. Specification and
evaluation of causal constraints based on these catenation
numbers are also easier to perform.

7.5. Elimination of time based expiry in

messages and sequences

We recommend the removal of timer based expiry of
messages and sequences, which we believe are application
specific and clearly outside the realms of the reliable
delivery specifications. Such a move would eliminate the
possibility of trivial implementations and result in a
specification that truly provides reliable delivery.

8. Federation between these specifications

We believe that it is possible that these specifications
might be deployed concurrently. Federation between these
specifications will allow endpoints in these specifications
to interact with each other. This would involve mapping
the semantics of operations involved in these
specifications. These operations need to be managed by a
middleware.

In this section we identify the key issues that need to be
considered while federating between these specifications
in each of the two cases that need to be considered. The
quality of service that can be negotiated between the
sender and receiver is based on the strongest constraint that
is available between these entities. This would imply that
in both the cases, the quality of service available would be

reliable delivery and exactly-once-ordered-reliable
delivery, based on the WS-Reliability specification.

8.1. WS-Reliability Sender and WS-

ReliableMessaging Receiver

In this case, any standalone messages delivered at the
receiver needs to be part of a sequence of messages. The
middleware is thus responsible for packing the standalone
message such that it is part of a group of messages with
message number 1. The generated group identifier could
be the same as the message identifier in the original
message.

Acknowledgements will be mandated for every
message issued by the WS-Reliability Sender. The
acknowledgements issued by the WS-ReliableMessaging
node will be based on group identifiers and Message
Number. While this would be straightforward for
standalone messages, in the case of groups of messages,
the middleware is expected to keep track of the identifiers
associated with the individual message numbers and issue
the acknowledgement (based only on the message
identifier) to the WS-Reliability nodes.

The numbering of messages in the sequence also needs
to be addressed. The middleware is expected to increment
the numbering information associated with individual
messages in a sequence by one. This is to account for the
fact that messages in a sequence are numbered starting at
1 in WS-ReliableMessaging and 0 for WS-Reliability.
The WS-Reliability node should also initiate the creation
of a new group of messages when it publishes a message
with numbering information that is just once increment
away from the maximum value of an Unsigned Long. This
is to prevent the occurrence of a MessageRollover
fault in the WS-ReliableMessaging receiver.

The expiry timer associated with an independent
message in WS-Reliability can be mapped into the expiry
timer associated with the corresponding WS-
ReliableMessaging sequence with only one message.
Timers corresponding to expiry of sequences can be easily
mapped.

8.2. WS-ReliableMessaging Sender and WS-

Reliability Receiver

In this case every message issued is part of a sequence
of messages. The acknowledgement that the sender
expects is based on the group identifier and the numbering
information associated with the message. This mapping of
message identifier to message number within a sequence
of messages needs to be performed by the middleware.

Also, message sequence numbers should be
decremented prior to delivery at the receiver node. This is
because the WS-Reliability node expects the message
numbering to start at 0. As far as Message numbering
rollovers are concerned, the middleware is expected to
throw a MessageRollover fault as soon as it
encounters a message numbering rollover.

 9/11

The mapping of expiry timers is easy in this case too.

9. Conclusions

The specifications pertaining to the reliable delivery of
messages is one of the most important set of specifications
in the Web Services landscape. In this paper we have
presented an analysis of the two most promising and
leading specifications specified by traditional leaders in
Web Service efforts. Some of our comparisons pertaining
to WS-Reliability and WS-ReliableMessaging have been
summarized in the form of table in Table 1 on page 10.

10. References
[1] The Object Management Group http://www.omg.org
[2] The Java Remote Method Invocation Framework

http://java.sun.com/products/jdk/rmi/
[3] The W3C Web Services Acivity. http://www.w3c.org
[4] Web Services Reliable Messaging TC WS-Reliability.

http://www.oasis-open.org/committees/download.php/
5155/WS-Reliability-2004-01-26.pdf

[5] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) http://www-106.ibm.com/
developerworks/webservices/library/ws-rm/

[6] Kenneth Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):36–53, 1993.

[7] Vassos Hadzilacos and Sam Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Technical
Report TR94-1425, Dept. Of Computer Science, Cornell
University, Ithaca, NY-14853, May 1994.

[8] Kenneth Birman. A response to Cheriton and Skeen’s
criticism of causal and totally ordered communication.
Technical Report TR 93-1390, Dept. Of Computer Science,
Cornell University, Ithaca, NY 14853, October 1993.

[9] Kenneth Birman and Keith Marzullo. The role of order in
distributed programs. Technical Report TR 89-1001, Dept.
Of Computer Science, Cornell University, Ithaca, NY
14853, May 1989.

[10] Aleta Ricciardi, Andre Schiper, and Kenneth Birman.
Understanding partitions and the “no partition” assumption.
In Proceedings of the Fourth Workshop on Future Trends of
Distributed Systems, Lisbon, Portugal, September 1993.

[11] Kenneth Birman. Replication and Fault tolerance in the ISIS
system. In Proceedings of the10th ACM Symposium on
Operating Systems Principles, pages 79–86, Orcas Island,
WA USA, 1985.

[12] R Renesse, K Birman, and S Maffeis. Horus: A flexible
group communication system. In Communications of the
ACM, volume 39(4). April 1996.

[13] D Dolev and D Malki. The Transis approach to high-
availability cluster communication. In Communications of
the ACM, volume 39(4). April 1996.

[14] Spinglass: Secure and Scalable Communications Tools for
Mission-Critical Computing. Kenneth P. Birman, Robbert

van Renesse and Werner Vogels. International Survivability
Conference and Exposition. DARPA DISCEX-2001,
Anaheim, California, June 2001.

[15] Fred Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. In ACM Computing
Surveys, volume 22(4), pages 299–319. ACM, December
1990.

[16] The NaradaBrokering System
http://www.naradabrokering.org

[17] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/
USENIX International Middleware Conference. 2003.

[18] Romain Boichat, Patrick Th. Eugster, Rachid Guerraoui, and
Joe Sventek. Effective Multicastprogramming in Large
Scale Distributed Systems. Concurrency: Practice and
Experience, 2000.

[19] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi, Yuanyuan
Zhao, Joshua S. Auerbach: Exactly-once Delivery in a
Content-based Publish-Subscribe System. DSN 2002: 7-16

[20] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Achieving scalability and expressiveness in an
internet-scale event notification service. In Proceedings of
the 19th ACM Symposium on Principles of Distributed
Computing, pages 219–227, Portland OR, USA, July 2000.

[21] Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. In
Proceedings AUUG97, pages 243–255, Canberra, Australia,
September 1997.

[22] The IBM WebSphere MQ Family. http://www-
3.ibm.com/software/integration/mqfamily/

[23] Object Management Group, Fault Tolerant CORBA
Specification. OMG Document orbos/99-12-08 edition,
December 1999.

[24] Object Management Group, Fault Tolerant CORBA Using
Entity Redundancy RFP. OMG Document orbos/98-04-01
edition, April 1998.

[25] Balachandran Natarajan, Aniruddha Gokhale, Douglas
Schmidt and Shalini Yajnik. “DOORS: Towards High-
performance Fault-Tolerant CORBA”, in Proceedings of the
2nd International Symposium on Distributed Objects and
Applications (DOA), Antwerp, Belgium, Sept 2000.

[26] Priya Narasimhan, Louise E. Moser, P. M. Melliar-Smith:
Using Interceptors to Enhance CORBA. IEEE Computer
32(7): 62-68 (1999)

[27] Michel Cukier, Jennifer Ren, Chetan Sabnis, David Henke,
Jessica Pistole, William H. Sanders, David E. Bakken, Mark
E. Berman, David A. Karr, Richard E. Schantz: AQuA: An
Adaptive Architecture that Provides Dependable Distributed
Objects. Symposium on Reliable Distributed Systems 1998:
245-253.

[28] Aniruddha Gokhale, Balachandran Natarajan, Joseph Cross,
and Douglas C. Schmidt, Towards Dependable Real-time
CORBA Middleware, Cluster Computing: the Journal on
Networks, Software, and Applications Special Issue on
Dependable Distributed Systems, edited by Alan George.

[29] The Berkeley/Stanford Recovery-Oriented Computing
(ROC) Project. http://roc.cs.berkeley.edu/.

 10/11

http://www.omg.org/
http://java.sun.com/products/jdk/rmi/
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
http://www-106.ibm.com/ developerworks/webservices/library/ws-rm/
http://www-106.ibm.com/ developerworks/webservices/library/ws-rm/
http://www.cs.cornell.edu/Info/Projects/Spinglass/public_pdfs/Spinglass Secure.pdf
http://www.naradabrokering.org/
http://www-3.ibm.com/software/integration/mqfamily/
http://www-3.ibm.com/software/integration/mqfamily/

Table 1: Comparing some of the features in WS-Reliability and WS-ReliableMessaging
 WS-Reliability WS-RM
SOAP related issues Is a SOAP based protocol, which has an HTTP

binding which facilitates acknowledgements
and faults to be issued over HTTP responses.

WSRM provides an XML schema for elements
needed to support the reliable messaging
framework. The specification provides a SOAP
binding for the protocol.

Related
Specifications

SOAP, WS-Security WS-Policy, WS-Security

Unique Ids URI based [RFC 2396], the syntax for the
message-ID should be based on what is
outlined in RFC2392.

URI based [RFC 2396]. No additional
requirement. Messages within a sequence are
identified based on message numbers.

Sequence
numbering
initialization

Starts at 0 for the first message in a group. Starts at 1 for the first message in a group.

Sequence
numbering rollover

Generate a new group identifier and begin
new sequence only after receipt of last
message in old sequence.

No new sequences can be generated.
MessageRollover fault is issued.

Presence of
numbering
information and its
relation to delivery

REQUIRED only for guaranteed ordering. Message number is REQUIRED for every
message that needs to be delivered reliably.

Acknowledgements Can be sent upon receipt of messages, as a
callback or in response to a poll. Needed upon
receipt of every message.

Acknowledgements can be based on a range
of messages, and the timing for issuing this
can be advertised in a policy. An endpoint
may also choose to send acknowledgements
at any time.

Requesting
acknowledgements

The AckRequested element is REQUIRED in
every message for which reliable delivery
needs to be ensured.

AckRequested is used to request the
receiving entity to acknowledge the message
received. This is not REQUIRED.

Correlation
associated with an
Acknowledgement

The identifier associated with the message
being acknowledged.

The identifier associated with the sequence of
messages and the message number within
that sequence.

Timestamps Are expressed as UTC and conforms to a
[XML Schema Part2: Data Types] dateTime
element.

No explicit reference to UTC. Uses the
dateTime format.

Retransmissions Triggered after receipt of a set of
acknowledgements. In the event an
acknowledgement is not received, the
message is retransmitted until a specified
number of resend attempts have been made.

Allows the specification of a
RetransmissionInterval for a sequence
(effects every message in the sequence). The
interval can also be adjusted based on the
exponential backoff algorithm.

Quality of Service Is initiated by the sender. WS-Policy assertions are used to meet
delivery assurances.

Delivery sequences
supported

Exactly once ordered delivery, reliable
delivery.
Order is always tied to guaranteed delivery
and cannot be separately specified.

At most once, at least once and exactly once.
Order is not necessarily tied to guaranteed
delivery.

Security Relies on WS-Security and assorted
specifications

Relies on WS-Security and assorted
specifications

Fault Codes
supported by
protocol

InvalidMessageHeader
Invalid MessageIdentifier
InvalidReferenceToMessageId
InvalidTimeStamp
InvalidExpiryTime
InvalidReliableMessage
InvalidAckRequested
InvalidMessageOrder

SequenceTerminated
Unknown Sequence
InvalidAcknowledgement
MessageNumberRollover
LastMessageNumberExceeded

 11/11

	Abstract
	Introduction
	Related work
	Group based systems
	Publish/Subscribe systems
	Message Queuing Systems
	Fault Tolerant CORBA
	Recovery Oriented Computing

	A primer on acknowledgements
	Similarities in the specifications
	Difference in approaches
	SOAP related issues
	Grouping Messages
	Beginning sequences

	Sequence Numbering
	Acknowledgements
	Ordering and duplicate detection
	Quality of Service
	Timestamps and expiry related information
	Retransmissions
	Fault Codes supported within the protocol

	Gap Analysis
	Sender side error detections
	Sender side error corrections
	Support for mobile computing
	Support for ordered delivery across sequences
	Support for one-to-many reliable & ordered delivery
	Complexity of duplicate detections
	Trivial implementations of the specification

	Recommendations
	Use Negative acknowledgements
	Every message should have a catenation number
	Including previous catenation numbers with every messages
	Easier duplicate detections
	Elimination of time based expiry in messages and sequences

	Federation between these specifications
	WS-Reliability Sender and WS-ReliableMessaging Receiver
	WS-ReliableMessaging Sender and WS-Reliability Receiver

	Conclusions
	References

