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Abstract—This paper provides an overview of the Concurrency&Computation: Practice&Experience special 

issue on workflow in Grid systems.  It is based on discussions at the Global Grid Forum GGF10 Workflow 

workshop in Berlin, March 2004 and subsequent analysis of the final papers. We describe the background from 

both a Grid and Global Grid Forum perspective and the distinctive features of the application requirements. 

We categorize different types of workflow emphasizing the important input from the distributed computing 

community.  We discuss separately both the different workflow systems (often called (run-time) enginres) and 

the expression languages like BPEL. We highlight some important outstanding research issues in the conclusion. 

 

Index Terms: Workflow, Grid Application, Grid Services, Web Services. 

 

I. INTRODUCTION 

On Mach 9, 2004 the Global Grid Forum hosted a workshop on the topic of workflow in Grid systems.  

Our goal in organizing this workshop was twofold.  First, we wanted to survey and contextualize the very 

large spectrum of work already going on within the Grid research community on workflow programming 

and enactment [Yu]. Second, and perhaps more important, we wished to understand and to articulate the 

major problems that remain to be solved in this area.   If the GGF community can bring some clarity to 

these outstanding research themes, we may be able to help focus the community on solutions.   

 

The fact that the Grid research community has such a strong desire to define the role of workflow in Grid 

systems may come as some surprise to people in the business world.  The Workflow Management 

Coalition (WfMC) has existed for over 10 years and they have standard reference models, documents and a 

substantial industry of tools and workflow management support products.   Why has the Grid community 
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not adopted these existing standards?  While it is not uncommon for the scientific community to re-invent 

technology rather than purchase existing solutions, there are issues involved in the technical applications of 

Grid systems that are unique to science and go beyond the models of workflow of the past.  For example, 

in 1996 the WfMC defined workflow as: 

 

The automation of a business process, in whole or part, during which documents, 

information or tasks are passed from one participant to another for action, according to a 

set of procedural rules.[allen]. 

 

Clearly, this definition does not accurately capture the current business world, which is in the process of 

being transformed by the needs of e-commerce and a move to web services.  In the case of workflow in 

science and engineering, the primary topic of the papers here, workflow concepts have evolved from 

distributed programming using systems like Linda [Linda], AVS [avs] and Khoros [khoros] and complex 

shell scripts to a suite of sophisticated programming systems described below.  Similarly, the Grid world 

has evolved from simple toolkits to authenticate users on remote supercomputers, to a service-based 

architecture intended for activities ranging from supporting large, distributed virtual organizations for e-

science to autonomic and on-demand computing for commercial enterprises.  The applications of Grids are 

equally diverse.  In the current Grid context one may postulate the definition of workflow to be: 

 

 The automation of the processes, which involves the orchestration of a set of Grid 

services, agents and actors that must be combined together to solve a problem or to define 

a new service.     

 

What this workshop has accomplished is to explore the various meanings of “combine”, “service” and 

“actor” in this vague definition, and to shed some new light on nature of the problems that we seek to 

solve.  

 

Thirty five papers were submitted to the workshop and 10 papers were selected for full presentation and an 

addition 11 authors were represented in focused panel sessions.   This special issue contains an additional 7 

papers that were submitted in response to the call for this publication.  The GGF meeting followed another 

workshop at the Edinburgh e-Science Center which was held in December of 2003 and a summary of that 

meeting was presented by Dave Berry to start the GGF workshop. The workshop had one invited 

presentation by Frank Leymann from IBM.  In the paragraphs that follow, we attempt to present an 

overview of the findings of the workshop and discuss the contributions made by the papers presented in 

this special issue.   

 



II. CHARACTERIZING THE APPLICATIONS 

 

It is important to note that the workshop focused primarily on the problems of workflow in scientific 

applications.   This, in part, reflects the origins of the GGF but it also reflects the fact that most commercial 

and enterprise-level applications seem to be well served by emerging standards like the Business Process 

and Execution Language for Web Services WS-BPEL [bpel].  However, this may be an illusion.  In fact, 

the penetration of Grid technology into science is much greater than it is in the commercial sector.  And 

what may seem like a solved problem in the commercial-grid sector may, in fact, be a problem with 

dimension not yet fully understood in the Grid science community.   

 

The applications described in the workshop included: 

1. The search for gravitational waves coming from compact binary star systems. 

2. Bioinformatics and systems biology. 

3. The genetic analysis of autoimmune diseases. 

4. Large scale data analysis for particle physics. 

5. Obtaining bayesian networks from data 

6. Ecological studies of invasive species. 

7. Geological investigations of igneous rocks. 

8. Computational fluid dynamics  

9. Prediction of short range weather phenomena. 

 

The nature of these applications of workflow varied dramatically.  The time it takes to execute workflows 

from this collection ranged from seconds to months and the number of entities participating in the 

workflows went from two or three to tens of thousands. In some cases people are part of the process.  For 

example, some workflow may require human approval or intervention at some point during the workflow 

enactment.  In some cases the workflow is monitored and controlled by a user in real time, but it is often 

submitted as a “batch” process to be enacted where and when the resources are available.   In other cases 

the work flow may need to be defined by classes of requirements for outcomes, which, in turn must be 

compiled into specific enactment steps. 

A. A Workflow Hierarchy 

Workflow, as practiced in scientific computing, derives from several significant precedent programming 

models that are worth noting because these have greatly influenced the way we think about workflow in 

scientific Grid applications.    We can call these the “dataflow” model in which data is streamed from one 

actor to another.   As previously mentioned AVS and Khoros were early important examples of this model.  

The other influence comes from something we can call “distributed parallel programming” in which actors 



invoke each other via remote procedure calls.  The Common Component Architecture as implemented in 

XCAT [xcat], HeNCE [hence] and the ICENI [iceni] project are examples of such systems.  A major 

structural difference between these to models is the way they are synchronized and controlled.  In a purely 

dataflow based system, the synchronization is fully distributed: the activities are determined by the arrival 

of data and there is no “central” control that is explicit.  In the distributed parallel programming model 

there is often an explicit component that is the centralized control that sequences the interactions between 

the component agents.    While the pure dataflow concept is extremely elegant, it is very hard to make 

work in practice because distributing control in a distributed system can create applications that are not 

very fault tolerant.  Consequently, many of the systems that are described here that use a dataflow model 

for expressing the computation may have an implicit centralized control program that sequences and 

schedules each action. As we shall see in the systems described here, the “heritage” of the programming 

model will often be obvious and can help us understand programming philosophy of the system. It is 

interesting to contrast the dataflow and graphical programming approach between the parallel 

programming and distributed systems environments. The “scalable” (large number) of decomposed parts 

and strict synchronization of most large parallel scientific codes has made the graphical GUI and dataflow 

paradigm unpopular in this field. However they clearly are very effective in a broad class of (functional 

rather than data parallel) distributed or Grid applications. 

 

Of the many possible ways to distinguish workflow computations on Grids, one is to consider a simple 

complexity scale.  At the most basic, and arguably the most common, level one can consider simple linear 

workflows in which a sequence of tasks must be performed in a specified linear order.  The first task 

transforms an initial data object into new data object which is the “input” to the next data-transformation 

task, etc.  The execution time for the entire chain of tasks may be a few minutes, or it may be days.   In the 

cases where the execution time is short, the most common workflow programming tool is a simple script 

written in Python or Perl or even Matlab.   The case of longer running workflows often requires more 

sophisticated tools that are described below. 

 

At the next level of complexity, one can consider workflows that can be described by an acyclic graph, 

where nodes of the graph represent a task to be performed and edges represent dependencies between 

tasks.   This is harder to represent with a scripting language without a substantial additional framework 

behind it, but it is not at all difficult to represent with a tool like Ant [karajan, ogre] and it is the foundation 

of the DagMan [deelman] workflow system used by the Condor project.   Applications that follow this 

pattern can be characterized by workflows in which some tasks depend upon the completion of several 

other tasks which may be executed concurrently.  For example, parameter studies in which a number of 

identical tasks must be initiated with slightly different input conditions and, when they are all complete, a 

summary task is needed to finish the work. 



 

The next level of workflow complexity can be characterized cyclic graphs, where the cycles represent 

some form of implicit or explicit loop or iteration control mechanisms.  In this case the workflow “graph” 

often describes a network where the nodes are either services or some form of software component 

instances or represent more abstract control objects.  The graph edges represent messages or data streams 

or pipes that channel work or information between services and components.   Many of Grid workflow 

tools, including many described at the workshop and in this volume, correspond to this model.  We will 

describe these in greater detail below.   What distinguishes these applications from the acyclic graph of 

tasks model is that the nodes represent services that are “connected” to other services.  This communication 

often takes the form of a dialog or sequences of transactions.  It is often said that the paradigm in [xcat, 

iceni] can be likened to “composition is space” to distinguish it from the “composition in time” that 

characterizes an acyclic graph of tasks where edges represent execution order dependences.   Data 

decomposition in parallel computing corresponds to “composition in space”. Another distinguishing 

feature of some systems – especially the acyclic graphs – is the critical importance of “job-scheduling” of 

the type seen in Condor [Condor]. 

 

This cyclic graph model is also often considered to be a type of Grid-level distributed static dataflow.  In 

some cases this is exactly what it is: each node is processing a stream of messages and pushing results 

streams to its downstream connected neighbors.  For example, a distributed tool to process events in “real 

time” from instrument sources. 

 

It can be argued that this cyclic graph of communicating services/components can be “unwound” into an 

acyclic graph of tasks.  This is correct only if there is an a priori way to tell how many cycles are executed 

in the graph prior to termination of the workflow. 

 

The final level of workflow is one in which a compact graph model is not appropriate.  This may be the 

case when the graph is simply too large and complex to effectively “program” it as a graph.  (However, 

some tools allow one to turn a Graph into a new first-class component or service, which can then be 

included as a node in another graph (a workflow of workflows).   This technique allows graphs of arbitrary 

complexity to be constructed. )   A more significant case in which a static graph model fails is when the 

very structure of the workflow is not static.  It may be the case that the workflow is driven by events that 

determine its structure.   It may also be the case that the workflow structure is defined by processes that are 

negotiated at runtime.  For example, suppose one component service must be replaced by another and that 

new service requires other new services to be connected into the picture.  These new services may also 

require a different organization of the upstream components of the workflow.  Or, for example, a workflow 

may be able to dynamically optimize its structure when it sees that a component service is not needed.  



While applications of workflows of this complexity may appear to be science fiction at the present time, 

the application of Grids to autonomic systems may require this level of intelligence and adaptability.  

 

Finally, the static graph model may fail as a means to characterize the workflow in the case that the graph 

is implicit as in the case when the workflow is expressed as a set of desired outcomes that can be satisfied 

by a number of different workflow enactments.  For example, a data query may be satisfied moving a large 

data set across country or it may be cheaper to recreate the data in a local environment.  This is a simple 

example of the Griphyn virtual data concept [griphyn]. 

 

III. THE WORKFLOW SYSTEMS. 

 

The workshop had presentations on a number of significant workflow systems.  Many of these address the 

“cyclic graph model” with a compositional tools based on graphical layout system that allows users to 

move “components”, which represent tasks or services, from a palette to an assembly panel.  Using typed 

input and output ports, the programmer connects together the graph and then executes it.   This is certainly 

not a new idea.  The AVS graphics system [avs] was an early component based framework for building 

graphical scientific application.  In the cases of distributed systems a number of previous systems operate 

in this mode [manish, xcat, webflow].    However, this new generation of tools is the first to directly 

address the issues of Grid programming.  

 

The Triana system, described in the paper “Programming Scientific and Distributed Workflow with Triana 

Services” [triana], is an excellent example of this concept. At the user’s level Triana provides an elegant 

and well tested composition tool and a large toolbox of ready-to-use components.  For Grid application, 

Triana uses a software layer called the GAP to distribute subsystems of the workflow graph to remote Grid 

resources for execution.  Triana has a mechanism to move a subgraph of the workflow to remote hosts for 

execution.   Triana also has a mechanism that allows an arbitrary remote web and grid services to be 

imported into the computation by transforming the WSDL document for the service into a local proxy 

component.   

 

The paper “Scientific Workflow Management and the Kepler System” [kepler] describes Kepler, which 

approaches many of the same problems as Triana.  Kepler is used  in several  large Grid projects where the 

management of  biological data analysis workflows is critical.  The approach Kepler takes is based on an 

actor-oriented model which allows hierarchical modeling and dataflow semantics.  The Kepler tools 

support a well-designed graphical composition interface that is very intuitive and easy to use.  To support 

the interaction with web services Kepler uses a form of actor proxy for each web services that is invoked.  



In addition they have created a set of Grid actors for doing GridFTP file management and Globus GRAM 

execution.  The paper also provides a very elegant study of the connection between the Kepler’s 

foundations and higher-order functional programming.  

 

Another workflow system, Taverna, that has been extensively used in life science applications is described 

in the paper “Taverna: Lessons in creating a workflow environment for the life sciences” [taverna].  

Taverna is part of the myGrid project, which is building middleware to support data-intensive experiments 

in molecular biology.  The Taverna team’s excellent paper provides many insights into the problems of 

doing scientific workflows in a web service oriented environment and several are worth repeating here.  

Building workflows based on service composition is a powerful approach and they have over 1000 services 

that can be used as components in workflows.  However, solving the problems of service discovery and 

selection become non-trivial parts of the process when the potential catalog of workflow components is 

large.  Another issue they point out is that many stand-alone services have powerful data analysis and 

visualization user interfaces that are provided to the user.  By use the service as a single component in a 

workflow, one bypasses these capabilities.  This passes the problem of  doing final data analysis and 

visualization to the end of the workflow process where it is often hard to replace what has been given up 

along the way.   A major problem that Taverna addresses is that of capturing the full metadata context 

including the provenance of all aspects of the scientific experiment that the workflow represents.  This 

includes the data derivations and the workflow’s audit trail of invoked services.  A critical feature of e-

science is the ability to enable the repeatability of experiments. 

 

Several papers address the role of Petri nets in Grid workflows.  In “User Tools and Languages for Graph-

based Grid Workflows”, [hoheisel] Hoheisel addresses the problem of graph complexity by dynamic 

workflow refinement as part of the process of transforming the abstract Petri net graph into a concrete one 

used for execution.  He also shows how the Petri net model can incorporate both implicit and explicit 

exception management.   

 

In the paper “Grid-Flow: A Grid-Enabled Scientific Workflow System with a Petri Net-Based Interface” 

[gridflow] Guan and co-authors describe another Petri net-based workflow system called Grid-Flow.  

Their approach to Petri net-based tools is to employ a generic modeling system called GMI to define the 

instance of the Petri net user interface tools.  The  Petri net specification  is then  compiled into a lower 

level Grid-Flow Description language which  is executed by the workflow engine. The  paper “Workflow 

applications in GridLab and PROGRESS projects” [progress] describes another Petri net inspired 

workflow system GRMS.  They describe this system and compare it to Dagman and Triana and discuss its 

implementation in the PROGRESS portal.   

 



In the paper “ScyFlow: An Environment for the Visual Specification and Execution of Scientific 

Workflows” [skyflow] the authors describe another directed graph based workflow tool that is designed to 

manage NASA’s large scale simulation and data analysis work.   SkyFlow can handle both control flow 

and parameterized data flow within any given workflow.  In many ways, this is a very powerful, 

lightweight alternative to many more complex systems.  In the paper, “Automatic Grid Workflow Based on 

Imperative  Programming Languages” [cepba] the authors take the approach of parallelizing sequential 

programs to generate Grid workflows and they compare their approach to many other systems described 

here. 

 

In “What makes workflows work in an opportunistic  environment?” [deelman] the authors concentrate 

particularly on issues of data management and we draw from the experiences with mapping and execution 

systems: Pegasus, DAGMan and Stork.  They address the particularly important problem of  resource 

allocation and planning for workflow execution involving many large data-intensive tasks.  

IV. EXPRESSING WORKFLOW 

As noted above there are a host of very powerful and useful workflow composition tools with excellent 

graphical user interfaces.   These are intended for the class of workflows that are modest size, i.e. less than 

a few thousand nodes, cyclic or acyclic graphs.    

 

For larger systems, or for workflows of most complex dynamically structured type, something that 

resembles a complete programming language is required.  Analogously in conventional programming, one 

distinguishes user environment (Interactive Development Environment IDE), programming language (say 

Java or C#) and runtime. The latter is called “enactment engine for Grid workflow. BPEL is the leading 

candidate for a “complete programming language” for workflows.  In fact, BPEL provides two usage 

patterns for expressing workflow behaviors.  The first usage pattern is based on the concept of an abstract 

process which represents a role, such as “buyer” or “seller” in a business process and the “graph” based 

language to describe their interaction.  These interactions are defined by partner links and BPEL provides 

the language to describe the public aspects of the protocol used in the interaction between these partners.     

The other usage pattern of BPEL involves the “algebraic” or algorithmic language needed to define the 

logic and state of an executable process in terms of web service resources and XML data, and tools to deal 

with exceptions and failures.    

From the perspective of Grid workflows BPEL brings several important features together that are not well 

represented in most of the other systems described here.  First, a BPEL workflow, once enacted, can be a 

very long-lived entity.  In high quality implementations, it exists as a web-service that is executed by a 

workflow engine that is capable of suspending the state of the instance in a database.  This means a 

workflow instance can wait weeks or months for an event to happen that can cause it to be re-activated and 



respond.   Furthermore, BPEL has control structures that allow for very dynamic responses and fault 

recovery.   

 

Three papers in the workshop discuss the role of BPEL.  Frank Leymann from the University of Stuttgart 

and IBM described BPEL in both philosophy and design. Leyman’s article [leyman] addresses how BPEL 

can be used in concert with the implied resource pattern of WSRF.  He shows how resource lifetime and 

transactions can be addressed using BPEL.  He also considers the problem of monitoring, but concludes 

that additional support is needed to solve this problem.  Francisco Curbera, Rania Khalaf, William Nagy, 

Sanjiva Weerawarana provided a paper [papco] that describe the issues involved in the implementation of 

BPEL4WS and Aleksander Slominski [alek] also describes the issues involved with integrating BPEL with 

the OGSI and WSRF Grid standards.  He also considers some extensions to BPEL to support data 

management through a type of pseudo partners.  Finally Dieter Cybok’s paper [cybok] describes a very 

BPEL-like language called GWEL which was designed to test workflow concepts in the context of OGSI 

and the Globus version 3 toolkit. 

 

In the course of the workshop several significant issues were raised about workflow expression.  First 

among these is the issue of the level of abstraction needed to describe workflows.  The graph based 

construction toolkits like Triana, Taverna, ICENI and others allow the user to describe workflow at the 

level of a graph of components.  It is then left to other tools to map this abstraction to specific resources.  

BPEL is at a different level of abstraction in which the programmer specifies processes and their logic in 

terms of services that are bound at a later time.   

 

At a higher level we have systems like Chimera [chim] in which the workflow is defined in terms of virtual 

data requirements.  Chimera abstract dependencies are mapped to lower level involved with service 

discovery, planning and execution.  Chimera uses Pegasus with Dagman [deelman], which is a 

combination of two systems that incorporates adaptive resource planning and scheduling into the execution 

of the workflow.  Using this approach they have been able to dynamically schedule very large (many 

thousands of task nodes) workflow on production grids.  

     

An important question that was raised several times at the meeting was the role of BPEL as a standard 

language for orchestrating services-based Grid applications.  There are two important approaches to using 

BPEL in other Grid systems.  The first of these is using BPEL’s own extensibility to create “towers” 

specific to particular Grid styles or application domains.  The second approach is to consider BPEL a target 

language for higher level languages such as those discussed here. This type of use for language is common 

in conventional programming where on distinguishes the languages used in the different phases of a 

programming task – those used for compilers, script engines, virtual machines, machine code are rather 



different. One could imagine using a dataflow GUI as the programming model and BPEL as the Grid 

machine code. Further especially at the user level, one has many different languages expressing different 

application requirements and programming models; one should expect multiple languages to be needed for 

Grid workflow.  

 

V. ISSUES IN WORKFLOW ENACTMENT 

 

There are several significant issues that have been raised for workflow enactment in the context of Grid 

systems.   Of course for those interested in scientific applications, performance is always an issue.  In the 

case of workflow enactment, there are two aspects to this: efficiency and robustness.  In terms of 

efficiency, the critical issue is the ability to quickly bind workflow tasks to the appropriate Grid resources.  

It also depends very heavily on the mechanisms used to move data between tasks and services that need 

them at various stages of the enactment. One cannot assume that web service protocols like SOAP should 

be used in anything other than “control” and simple message delivery.  Real data movement between 

components of the workflow must be either via an interaction with a data movement service, or through 

specialized binary-level data channel running directly between the tasks involved.   

 

Robustness is another issue.  We must assume that various parts of a workflow will fail.  BPEL and a few 

other workflow systems have extensive exception handling capabilities.  It is essential that exception 

handling include mechanisms to recover from failure as well as detecting it.  Also failure is a something 

that can happen to a workflow enactment engine.  If we assume that the workflow lasts for a long period 

(days or months) we must assume that its execution will not be a continuously running process.  It may 

more closely resemble a document that is updated over time as its author has occasion to work on it.   

 

A related issue is the monitoring of the workflow.   In addition to being able to restart the workflow from a 

failure checkpoint, the user may wish to track progress of the enactment.  In some cases the workflow is 

event driven and a log of the events that trigger the workflow processing can be used to “replay” an 

animation of how the workflow progressed.   This is also an important aspect of debugging a workflow.  A 

user may wish to “single step” the workflow execution to understand potential errors in the flow logic.   

 

Alternatively, the user may actually wish to “steer” the workflow as it approach various points where 

human intervention about resource or algorithm decisions.  

 

 



VI. GENERAL RESEARCH ISSUES 

There are a number of significant general issues for workflow authoring and enactment in Grid systems.  

Many of these point to general research problems for the future.   

 

One area that has received little attention in the current Grid workflow projects is the issue of security.  

Howard Chivers observed “workflow systems are often interposed between users, data and services 

without considering the trust responsibilities that this design imposes on planning and enactment systems.”  

He goes on to suggest, “we need a Systems Design approach that separates enactment and protection by 

refactoring the protection requirements away from planning and enactment and into the distributed 

system.”   It is dangerous to trust a complex workflow enactment to assure resources are protected.  To 

what extent can we delegate a user’s identity/authority to a complex workflow enactment that may require 

a large set of capabilities to complete a set of distributed tasks?  Chivers’ paper [chivers] is an updated 

reflection on many of these themes.    

 

Another interesting area of research involves the way in which we can use a workflow document as part of 

the scientific provenance of a computational experiment?  Under what conditions can we publish a 

workflow script as a document that can be used by others to verify a scientific claim?  If the workflow was 

triggered by sequences of external events, can the monitoring of the workflow capture these events well 

enough so that the enactment can be repeated?  

 

There are a variety of places where Semantic Grid research will have an impact on workflow in Grid 

systems.  The provenance questions stated above are certainly among these.  Other include finding better 

ways for our workflow to automatically generate the metadata about the way the work was done so that a 

later search for a method to solve a particular problem can turn-up the appropriate patterns of solution.  

More generally, how can a system discover/synthesize a workflow if the only thing the user provides is the 

desired outcome of the enactment? This may involve an integration of case-based reasoning and a very rich 

service-based Grid.   Can we build systems that allow workflows to automatically do incremental self-

optimization? Can we automatically discover new properties and services of a Grid that enable such self-

optimization? 

 

Another important problem involves the manner in which we bind data sources to workflow patterns and 

templates.  In many scientific applications, the individual workflow components are complex applications 

that require dozens of parameter settings.  In some cases, the parameter settings must be propagated to 

multiple services and in other cases, the ability to set a particular parameter may depend upon the 

authorization level of the user.  The difficult part is that in many cases, the workflow instance is created on 



demand from a user at a Grid portal. The user may not know that the workflow exists: to the user it is a 

web application. How do we collect all the required parameters needed as inputs to all the services in the 

workflow and present this to the user as a coherent interface?  Clearly it is possible for the designer of the 

workflow template to also build a web-form page to supply the needed parameters, but there is a need to be 

able to automate this interface generation process.   

 

There are clearly many more research problems to be addressed.  Many topics, both short and long term are 

addressed in the workshop papers.   
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