
An Analysis of the Costs for Reliable Messaging in Web/Grid Service
Environments

Shrideep Pallickara, Geoffrey Fox, Beytullah Yildiz, Sangmi Lee Pallickara, Sima Patel and Damodar Yemme
(spallick, gcf, byildiz, leesangm, skpatel, dyemme)@indiana.edu

Community Grids Lab, Indiana University.

Abstract

As Web Services have matured the interactions that the
services have between themselves have gotten
increasingly complex and sophisticated. Web services can
be composed easily from other services, and these
services can be made to orchestrate with each other in
dynamic fashion. As web services have become dominant
in the Internet and Grid systems landscape, a need to
ensure guaranteed delivery of interactions (encapsulated
in messages) between services has become increasingly
important. In this paper we describe our work with the
WSRM specification. Here we describe our support of
WSRM and also include an empirical evaluation of the
various facets of this specification. We believe this would
be very useful for system designers who intend to
incorporate support for reliable messaging within their
Grid applications.

1. Introduction

The emerging Web Services stack comprising XML –
the lingua franca of the various standards, SOAP [1] and
WSDL [2] have facilitated sophisticated interactions
between services. WSDL describes message formats and
message exchange patterns for services using XML.
Interactions are facilitated through the exchange of SOAP
messages. The use of XML throughout the Web Services
stack of specifications allow interactions between services
running on different platforms, containers, implemented
in different languages, and over multiple transports.

It should be noted that more recently there has been an
effort to factor the OGSI [3] functionality to comprise a
set of independent Web Service specifications. These
specifications align OGSI with the consensus emerging
from the Web Services Architecture working group of the
World Wide Web Consortium. The specifications that
comprise the new proposed framework – the WS-
Resource Framework (WSRF) [4] – can co-exist with
other specifications in the Web Services area such as
authentication, transactions, reliable messaging and
addressing. The WSRF specification also includes WS-
Notification [5] which models notifications using a topic
based publish/subscribe mechanism. Similarly, the WS-
GAF [6] effort in the United Kingdom provides a
framework for building Grid applications using existing
Web Services specifications while adhering to the

principles of service-oriented architectures. The proposed
solution demonstrates how issues like stateful interactions,
logical resource naming, metadata, and lifetime
management can be easily addressed using existing Web
Services technologies.

As Web Services have matured the interactions that the
services have between themselves have gotten
increasingly complex and sophisticated. Web services can
be composed easily from other services, and these
services can be made to orchestrate with each other in
dynamic fashion. Web services specifications have
addressed issues such as security, trust, notifications,
service descriptions, advertisements, discovery and
invocations among others. These specifications can
leverage, extend and interoperate with other specifications
to facilitate incremental addition of features and
capabilities. As web services have become dominant in
the Internet and Grid systems landscape, a need to ensure
guaranteed delivery of interactions (encapsulated in
messages) between services has become increasingly
important. This highly important and complex area was
previously being addressed in the Web Services
community using homegrown, proprietary, application
specific solutions. It should be noted that the terms
guaranteed delivery and reliable delivery tend to be used
interchangeably to signify the same concept. Reliable
delivery of messages is now a key component of the Web
Services roadmap, with two promising, and competing,
specifications in this area viz. WS-Reliability [7] from
OASIS and WS-ReliableMessaging (hereafter WSRM)
[8] from IBM and Microsoft among others. In this paper
we provide an analysis of these specifications.

In this paper we describe our work with the WSRM
specification. Here we describe our support of WSRM and
also include an empirical evaluation of the various facets
of this specification. We believe this would be very useful
for system designers who intend to incorporate support for
reliable messaging within their Grid applications. Here,
we also note that we have recently finished incorporating
support for the WS-Reliablity specification. The
remainder of this paper is organized as follows. In section
2 we include a brief overview of the WSRM specification.
In section 3 we include a description of our
implementation strategy. We include empirical results
from our implementation in section 4, with related work
being described in section 5. Finally, in section 6 we
outline our conclusions and future work.

 1

2. WSRM

WSRM describes a protocol that facilitates the reliable
delivery of messages between two web service endpoints
in the presence of component, system or network failures.
The specification outlines two distinct roles viz. a source
and a sink. WSRM provides support for various delivery
modes such as exactly-once and at least once. The
delivery guarantees are valid over a group of messages,
which is referred to as a sequence. Prior to a reliable
exchange of messages between the source and a sink, a
sequence needs to be established. Associated with this
sequence is information regarding the source and sink, a
unique identifier – typically a UUID, and policy
information related to protocol elements and security
related issues. Every message in WSRM is within the
purview of sequence, within a sequence messages are
assigned monotonically increasing message numbers.
These message numbers allow one to keep track of
problems, if any, in the intended message delivery at a
sink. The message numbers facilitate the determination of
out of order receipt of messages as well as message losses.

In WSRM to facilitate error corrections a sink is
expected to issue acknowledgements after the receipt of a
message or a set of messages. This acknowledgement
interval is typically negotiated during the creation of a
sequence. The acknowledgement from a sink may cover a
single message or a group of messages within a sequence.
Upon receipt of this acknowledgement a source can
determine which messages might have been lost in transit
and proceed to retransmit the missed messages. Another
protocol constant, the retransmission interval governs the
pro-active retransmission of messages in the event that an
acknowledgement has not been received within the
elapsed time. In WSRM error corrections can also be
initiated at the sink; this is done through the use of
negative acknowledgements which identify the message
numbers that have not been received at a sink. Since
message numbers increase monotonically, if message
numbers 1,2,3,4 and 8 have been received at a sink, this
sink can easily conclude that it has not received message
numbers 5,6 and 7.

WSRM includes exchanges for the creation and
termination of sequences, and also provides for
notification and exchange of errors in processing between
the endpoints involved in reliable delivery. The range of
errors can vary from an inability to decipher a message’s
content to complex errors pertaining to violations in
implied agreements between the interacting entities.

2.1 Specifications leveraged by WSRM

WSRM leverages other specifications such as WS-
Addressing [9] and WS-Policy [10]. WS-Addressing is a

way to abstract from the underlying transport
infrastructures the addressing needs of an application.
WS-Addressing incorporates support for end point
references (EPRs) and message information (MI) headers.
EPRs standardize the format for referencing (and passing
around references to) both a Web service and Web service
instances as well. The MI headers standardize information
pertaining to message processing related to replies, faults,
actions and the relationship to prior messages. This is
especially useful in cases where there would be multiple
dedicated entities dealing with these different cases.
Besides, the use of WS-Addressing for describing the
source and the sink, WSRM also leverages fault reporting
headers to report problems in the processing messages. It
is expected that every message within WSRM has a
unique identifier, typically a UUID, which is carried
within the Message-ID information header.

WSRM uses WS-Policy to exchange information
regarding protocol constants such as acknowledgement
intervals, retransmission intervals, exponential backoffs
etc. An entity may specify these constants for a specific
sequence or for a set of sequences. WS-Policy can also be
used to convey security related information.

3. Implementation of the WSRM

In our implementation of the WSRM specification we
considered SOAP to be the focal point of our
implementation strategy. Since all control exchanges,
messages and processing logic is encapsulated within
SOAP messages this approach allows the creation of a
WsProcessor which deals with SOAP messages. Most WS
specifications are intended to be cascaded and work in
tandem with each other: having a SOAP centric approach
allows us to cope with such scenarios. Within the WSRM
protocol there are two distinct roles viz. source and sink.
The functionality associated with these roles is dealt with
in two distinct instances of the WsProcessor. The
WsProcessor contains just one method viz.
processExchange(SOAPContext, direction)
where SOAPContext simply encapsulates the
SOAPMessage and the direction specifies whether
the message was received over the network or from the
application.

Included below is the definition of the
processExchange() method. Using the
SOAPContext it is possible for an entity to retrieve the
javax.xml.SOAPMessage or the equivalent
EnvelopeDocument (from XMLBeans). The logic related
to the processing of messages is different depending on
whether the message was received from the application or
network. Exceptions thrown by this method are all
checked exceptions and can be trapped using appropriate
try-catch blocks. Depending on type of the exception that
is thrown, either an appropriate SOAP Fault is constructed
and routed to the relevant location or it triggers exception

 2

related processing at the node in question. A processor
decides on processing a SOAP based on three parameters
• The contents of the WSA action attribute contained

within the SOAP Header.
• The presence of specific schema elements in either

the Body or Header of the SOAP Message.
• If the message has been received from the application

or if it was received over the network.
If the WS processor does not know how to process a
certain message, it throws an
UnknownMessageException an example of this
scenario is a WS-Eventing source node receiving a
CreateSequence response from over the network. An
IncorrectExchangeException is thrown if the
WsProcessor instance should not have received a specific
exchange. For example if a WSRM sink node receives a
wsrm:Acknowledgement it would throw that particular
exception. MessageFlowException and
ProcessingExceptions are errors caused due
problems with networking and processing a message
respectively. Typically, when these exceptions occur
unlike the previous exceptions processing related to the
message within the handler/filter chain needs to be
terminated immediately. ProcessingExceptions
occur due to processing errors related to inability to locate
protocol elements in message, incorrect schemas and no
values being supplied for some elements. Included below
is the definition of the processExchange() method.

public void
processExchange(SOAPContext soapContext,
 int direction)
throws UnknownExchangeException,
 IncorrectExchangeException,
 MessageFlowException,
 ProcessingException
As we mentioned earlier WSRM leverages two other
specifications --- WS-Addressing and WS-Policy.

3.1 Architecture

Figure 1 provides a high-level view of the architecture
of our implementation (open-source and available for
download from http://www.naradabrokering.org) . Here
the WSRM processor leverages capabilities available
within processors related to other specifications such as
WS-Addressing and WS-Policy. In fact, the first set of
headers that need to be processed upon receipt of SOAP
messages are those related to WS-Addressing. In the case
of control exchanges, the semantic intent of the SOAP
message is conveyed through the wsa:Action element in
WS-Addressing. Similarly, the relationship between a
response and a previously issued request is captured in the
wsa:RelatesTo element.

While generating responses to a targeted web service,
WS-Addressing rules need to be followed in dealing with

the wsa:ReferenceProperties and
wsa:ReferenceParameters element contained in a
service’s end point reference. Similarly responses, and
faults are targeted to a web service or designated
intermediaries based on the information encapsulated in
other WS-Addressing elements such as wsa:ReplyTo and
wsa:FaultTo elements.

The WS-Policy specification is used to deal with
policy issues related to sequences. An entity may specify
policy elements from an entire range of sequences. A
stable storage is also available at every entity to store
messages. It should be noted that an entity may be a
source, sink or both for reliable delivery of messages. Our
implementation has been tested with two relational
databases viz. MySQL and PostgreSQL.

Figure 1: Overview of WSRM implementation

3.2 Rationale for the choice of XMLBeans

While implementing these specifications we were
faced with an important decision regarding the choice of
tool to use in processing the XML schema that
aforementioned specifications conform to. In simple terms
we were looking for a system that allowed us to process
XML from within the Java domain. There were three
main choices. First, we could use the AXIS wsdl2java
compiler. Issues (in versionAxis 1.2) related to
wsdl2java’s support for schemas have been documented
in Ref [11]. Specifically, the problems related to support
for complex schema types, XML valaidation and
serialization issues.

The second approach was to use the JAXB
specification (a specification from Sun to deal with XML
and Java data-bindings). JAXB though better than what is
generated using Axis’ wsdl2java still does not provide
complete support for the XML Schema. We looked at
both the JAXB reference implementation from Sun and
JaxMe from Apache (which is an open source
implementation of JAXB).

 3

http://www.naradabrokering.org/

The final approach involves utilizing tools which focus
on complete schema support. Here there were two
candidates –- XMLBeans and Castor –- which provide
good support for XML Schemas. We settled on
XMLBeans because of two reasons. First, it is an open
source effort. Though originally developed by BEA it was
contributed by BEA to the Apache Software Foundation.
Second, in our opinion it provides the best and most
complete support for the XML schema of all the tools
currently available. It allows us to validate instance
documents and also facilitates simple but sophisticated
navigation through XML documents. The XML generated
by the corresponding Java classes is true XML which
conforms to (and can be validated against) the original
schema.

4. Performance Measurements

We now include performance measurements from our
experiments. These experiments were performed on a 3.5
GHz Pentium IV machine with Sun’s 1.4.2 Java Virtual
Machine. For each measurement we performed the
experiment 100 times. An outlier removal program was
used to remove outliers, if any, in the result set. For each
run we also tracked the memory utilization. This was done
by simply recording the memory utilization prior to the
invocation of a specific operation and after the invocation.
In some cases this calculation resulted in a negative
utilization because of garbage collection (via the Java
garbage collector thread) in the intervening period. We
have measured several relevant performance aspects of
our implementation. We now proceed to discuss each of
this in detail. A synopsis of our results is also available in
a separate table (Table 1) for the reader’s perusal.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100
 0

 2500

 5000

 7500

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Costs involved in SOAPMessage Creation - Axis/XMLBeans

Elapsed Time (Axis)
Memory Utilization (Axis)

Elapsed Time (XMLBeans)
Memory Utilization (XMLBeans)

Figure 2: Costs of SOAP creation - Axis/XML Beans
Figure 1 depicts the costs involved in the creation of

SOAP messages in Axis and XMLBeans. The SOAP
message in Axis is an instance of
javax.xml.soap.SOAPMessage while the one in
XMLBeans is based on the class which is derived from

the SOAP schema. Both these versions are important
since though the specification has been implemented with
XMLBeans, during deployments in containers it needs to
be conversions need to be made to the
javax.xml.soap.SOAPMessage representation.

Figure 3 depicts the costs associated with converting
an XMLBeans representation into the equivalent
javax.xml.soap.SOAPMessage instance. Figure 4 depicts
the cost associated with converting a
javax.xml.soap.SOAPMessage instance into an equivalent
XML Beans SOAP Envelope instance. In these figures,
ssome of the spikes coincide with the garbage collection
(as evidenced by the dips in memory utilization) process,
It is our conjecture that some of these spikes are related to
scheduling of threads on windows XP, and the interaction
of threads in Axis and XML Beans. Repeated experiments
revealed the same pattern.

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 10 20 30 40 50 60 70 80 90
-500000

-400000

-300000

-200000

-100000

 0

 100000

El
ap

se
d

Ti
m

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Conversion of an XMLBeans Envelope Document
to a SOAPMessage

Elapsed Time
Memory Utilization

Figure 3: Costs for XMLBeans Envelope to Axis

SOAP conversion

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90
-500000

-370000

-240000

-110000

 20000

El
ap

se
d

Ti
m

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Conversion of a SOAPMessage into an
XMLBeans Envelope Document

Elapsed Time
Memory Utilization

Figure 4: Costs for Axis SOAP to XMLBeans

Envelope Conversion
Figure 5 depicts the costs associated with the creation of
endpoint references (also referred to as EPRs) in WS-
Addressing (also referred to as WSA). EPRs facilitate the

 4

targeting of web services involved in interactions and are
central to all specifications that leverage WS-Addressing.

Figure 5: EPR creation with (and w/o) reference

properties

Figure 6: SOAP Envelope creation with basic (and most)

WSA elements based on WSA rules
Figure 6 depicts the costs associated with creation of a

SOAP envelope targeted to a specific EPR based on WS-
Addressing rules under two specific cases. In the first case
we include only the most basic WSA elements while in
the second case we include most of the WSA elements.

Figure 7 depicts the costs associated with parsing WSA
headers. This operation is typically the precursor to any
processing since the WSA elements indicate not only the
semantic intent (wsa:Action) but also the context
(wsa:Relates, wsa:MessageID) and also where errors
need to be issued to in case there are problems. The
spikes in the processing time all coincide with garbage
collection times (as evidenced by the dips in memory
utilizations). Figure 8 depicts the cost associated with the
creation of a SOAP Envelope describing a WSRM fault
based on the rules outlined in both the WSRM and WS-
addressing specifications. Though some of the spikes
coincide with the memory utilization dips (hence garbage
collection) it is not clear to us why we see these spikes in
the elapsed times. Repeated tests have revealed similar
patterns.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100
-500000

-400000

-300000

-200000

-100000

 0

 100000

 200000

El
ap

se
d

Ti
m

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Parsing W S-Addressing Headers within an Envelope

Elapsed Time
Memory Utilization

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100
 0

 1000

 2000

 3000

 4000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Creation of WSA Endpoint Reference with & without
 Reference Properties

Elapsed Time (w/o Ref Props)
Memory Utilization (w/o Ref Props)

Elapsed Time (Ref Props)
Memory Utilization (Ref Props)

Figure 7: Parsing of WS-Addressing Headers

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

-400000

-300000

-200000

-100000

 0

 100000

El
ap

se
d

Ti
m

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Creation of a W SRM Fault Envelope conforming to
 both W SRM and W S-Addressing rules.

Elapsed Time
Memory Utilization

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100
 0

 5000

 10000

 15000

 20000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Envelope creation with basic and most
 WSA elements based on WS-Addressing Rules

Elapsed Time (Basic)
Memory Utilization (Basic)

Elapsed Time (Most)
Memory Utilization (Most)

Figure 8: Creation of a WSRM fault

Figure 9: Creation of WSRM CreateSequence Requests

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100
 0

 4000

 8000

 12000

 16000

 20000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Creation of a WSRM Create-Sequence Request

Elapsed Time
Memory Utilization

Figure 9 depicts the cost associated with the creation of
WSRM CreateSequence request while Figure 10 depicts
the cost associated with the generation of the
corresponding response. These SOAP message envelopes
are created based on the rules outlined in both the WS-
Addressing and WSRM specifications.

 5

Figure 10: Generation of WSRM CreateSequence Response

Figure 11 and Figure 12 depict the costs associated
with the creation of a WSRM Sequence element and the
addition of this element to a SOAP Envelope. Typically,
during the reliable messaging process a wsrm:Sequence
element containing the appropriate sequence identifier and
an incremented message number is added to the
application SOAP message.

Figure 11: Creation of WSRM Sequence element

Figure 12: Addition of WSRM Sequence element to SOAP

Figure 13 depicts the costs associated with the creation
of a WSRM sequence acknowledgement, which contains
acknowledgements for a range of messages. Figure 14

outlines the costs involved in the creation of a WSRM
Terminate Sequence request envelope based on the rules
outlined in WS-Addressing and WSRM.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100
 0

 4000

 8000

 12000

 16000

 20000

 24000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Generation of a WSRM Create-Sequence Response

Elapsed Time
Memory Utilization

Figure 13: Creation of WSRM Sequence Acknowledgement

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90
-500000

-400000

-300000

-200000

-100000

 0

 100000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Creation of a WSRM Sequence Acknowledgement

Elapsed Time
Memory Utilization

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100
 0

 1000

 2000

 3000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Creation of a WSRM Terminate Sequence Request

Elapsed Time
Memory Utilization

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 1000

 2000

 3000

 4000

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Creation of WSRM Sequence Element

Elapsed Time
Memory Utilization

Figure 14: Creation of WSRM Terminate Sequence Request

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50 60 70 80 90 100

El
ap

se
d

Ti
m

e
(M

ic
ro

se
co

nd
s)

Test Run #

Total W SRM Processsing times at Source and Sink

W SRM Source Node
W SRM Sink Node

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100
 0

 500

 1000

 1500

E
la

ps
ed

 T
im

e
(M

ic
ro

se
co

nd
s)

 M

em
or

y
U

til
iz

at
io

n
(B

yt
es

)

Test Run #

Addition of a WSRM Sequence Element to a SOAP Envelope

Elapsed Time
Memory Utilization

Figure 15: Total Processing times
Figure 15 depicts the total processing times at a WSRM
source and sink. This includes the times for storage of
message to stable storage at both source and sink. For
MySQL this cost is typically between 4-6millsecond for
message sizes 100B-10KB.

 6

Table 1: Summary of results (All results in Microseconds)
Operation Mean Standard

Deviation
Standard
Error

Number
of
Outliers

Min
Value

Max
Value

Memory
Utilization
(Bytes)

Create an XMLBeans based
Envelope Document

121.29 25.77 2.65 6 110 333 2192

Create an Axis based SOAPMessage 85.76 79.36 8.22 7 34 540 1824
Convert an EnvelopeDocument to a
SOAPMessage

3503.81 758.48 80.85 12 2632 5406 57152

Convert SOAPMessage to
EnvelopeDocument

730.08 392.35 41.58 11 327 1911 34424

Create a WS-Addressing EPR
(Contains just a URL address)

84.61 25.61 2.67 8 72 301 2072

Create a WS-Addressing EPR
(Contains WSA
ReferenceProperties)

133.13 35.64 3.71 8 114 354 2648

Create a WSE SubscribeRequest 2716.98 975.79 101.73 8 1382 5418 76360
Create an Envelope targeted to a
specific WSA EPR

157.98 12.19 1.27 8 140 219 7184

Create an Envelope targeted to a
specific WSA EPR with most WSA
message information headers

263.20 35.73 3.74 9 240 471 13880

Parse an EnvelopeDocument to
retrieve Wsa Message Info Headers

711.74 231.61 23.76 5 555 1317 61024

Create a Wsrm Fault 413.80 239.17 25.07 9 271 1212 18096
Create a Wsrm SequenceRequest 268.95 37.93 3.97 9 212 374 16392
Create a Wsrm SequenceResponse 234.97 17.40 1.81 8 212 324 18160
Create a Wsrm SequenceDocument 43.8125 2.99 0.30 4 42 53 2424
Add a WsrmSequenceDocument to
an existing envelope. (Contains
sequence identifier and message
number)

13.01 0.57 0.05 4 11 15 464

Create a WSRM
SequenceAcknowledgement based
on a set of message numbers

461.17 172.40 18.27 11 301 1043 20624

Create a WSRM TerminateSequence 20.95 1.30 0.13 4 20 25 2072

5. Related Work
The problem of reliable delivery [12] and ordering [13,
14] in traditional group based systems with process
crashes has been extensively studied. The approaches
normally have employed the primary partition model [15],
which allows the system to partition under the assumption
that there would be a unique partition which could make
decisions on behalf of the system as a whole, without risk
of contradictions arising in the other partitions and also
during partition mergers. This virtual synchrony model,
adopted in Isis [16], works well for problems such as
propagating updates to replicated sites. Systems such as
Horus [17] and Transis [18] manage minority partitions
(by having variants of the virtual synchrony model) and
can handle concurrent views in different partitions.

We now discuss related work in the read of
publish/subscribe systems. NaradaBrokering [19, 20]
facilitates delivery of events to interested entities in the

presence of node and link failures. Furthermore, entities
are able to retrieve any events that were issued during an
entity’s absence (either due to failures or an intentional
disconnect). The scheme withstands failures of the entire
broker network and does not require a stable storage at
every entity. DACE [21] introduces a failure model, for
the strongly decoupled nature of pub/sub systems. This
model tolerates crash failures and partitioning, while not
relying on consistent views being shared by the members.
The Gryphon [22] system uses knowledge and curiosity
streams to determine gaps in intended delivery sequences.
This scheme requires persistent storage at every
publishing site and meets the delivery guarantees as long
as the intended recipient stays connected in the presence
of intermediate broker and link failures

Message queuing products (MQSeries) [23] leverage
the store-and-forward approach where the queues are
statically pre-configured to forward messages from one
queue to another. The Fault Tolerant CORBA (FT-

 7

CORBA) [24] specification from the OMG defines
interfaces, policies and services that increase reliability
and dependability in CORBA applications. The fault
tolerance scheme used in FT-CORBA is based on entity
redundancy [25], specifically the replication of CORBA
objects.

In the area of Web Services, the WS-Reliability
specification from Sun and Oracle includes support for
more or less the same set of capabilities as in WS-Reliable
Messaging. We have implemented this WS-Reliability
specification and will be releasing it to the open source
community in the near future.

6. Conclusions and Future Work

In this paper we presented details about our
implementation of the WS-ReliableMessaging
specification. We also included empirical results from our
implementation. The results demonstrate that WS-
ReliableMessaging introduces acceptable overheads while
ensuring the reliable delivery of SOAP messages between
two web service endpoints.

References
[1] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging

Framework," June 2003. http://www.w3.org/TR/
2003/REC-soap12-part1-20030624/

[2] Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

[3] The Open Grid Services Infrastructure (OGSI).
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-
ogsi-gridservice-23_2003-02-17.pdf

[4] The Web Services Resource Framework (WSRF)
http://www.globus.org/wsrf/

[5] Web Services Notification http://www-106.ibm.com
/developerworks/library/specification/ws-notification/

[6] Savas Parastatidis, Jim Webber, Paul Watson, Thomas
Rischbeck. A Grid Application Framework based on Web
Services Specifications and Practices. CS-TR-825, School
of Computing Science, University of Newcastle upon Tyne,
UK, Jan 2004.

[7] Web Services Reliable Messaging TC WS-Reliability.
http://www.oasis-open.org/committees/download.php/
5155/WS-Reliability-2004-01-26.pdf

[8] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)
ftp://www6.software.ibm.com/software/devel
oper/library/ws-reliablemessaging200403.pdf

[9] Web Services Addressing (WSAddressing)
ftp://www6.software.ibm.com/software/developer/library/
wsadd200403.pdf

[10] Web Services Policy Framework (WS-Policy). IBM, BEA,
Microsoft and SAP. http://www-
128.ibm.com/developerworks/library/specification/ws-
polfram/

[11] Kevin Gibbs, Brian D Goodman, IBM Elias Torres. Create
Web services using Apache Axis and Castor. IBM
Developer Works. http://www-

106.ibm.com/developerworks/webservices/library/ws-
castor/.

[12] Vassos Hadzilacos and Sam Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Technical
Report TR94-1425, Cornell University, Ithaca, NY-14853,
May 1994.

[13] Kenneth Birman. A response to Cheriton and Skeen’s
criticism of causal and totally ordered communication.
Technical Report TR 93-1390, Cornell University, Ithaca,
NY 14853, October 1993.

[14] Kenneth Birman and Keith Marzullo. The role of order in
distributed programs. Technical Report TR 89-1001,
Cornell University, Ithaca, NY 14853, 1989.

[15] Aleta Ricciardi, Andre Schiper, and Kenneth Birman.
Understanding partitions and the “no partition” assumption.
In Proceedings of the Fourth Workshop on Future Trends
of Distributed Systems, Lisbon, Portugal, September 1993.

[16] Kenneth Birman. Replication and Fault tolerance in the
ISIS system. In Proceedings of the10th ACM Symposium
on Operating Systems Principles, pages 79–86, Orcas
Island, WA USA, 1985.

[17] R Renesse, K Birman, and S Maffeis. Horus: A flexible
group communication system. In Communications of the
ACM, volume 39(4). April 1996.

[18] D Dolev and D Malki. The Transis approach to high-
availability cluster communication. In Communications of
the ACM, vol 39(4). April 1996.

[19] The NaradaBrokering System
http://www.naradabrokering.org

[20] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/
USENIX International Middleware Conference. 2003.

[21] Romain Boichat Effective Multicast programming in Large
Scale Distributed Systems. Concurrency: Practice and
Experience, 2000.

[22] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi,
Yuanyuan Zhao, Joshua S. Auerbach: Exactly-once
Delivery in a Content-based Publish-Subscribe System.
DSN 2002: 7-16

[23] The IBM WebSphere MQ Family. http://www-
3.ibm.com/software/integration/mqfamily/

[24] Object Management Group, Fault Tolerant CORBA
Specification. OMG Document orbos/99-12-08 edition,
December 1999.

[25] Object Management Group, Fault Tolerant CORBA Using
Entity Redundancy RFP. OMG Document orbos/98-04-01
edition, April 1998.

 8

http://www.w3.org/TR/ 2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/ 2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/wsdl
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.globus.org/wsrf/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
ftp://www6.software.ibm.com/software/devel oper/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/devel oper/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www.naradabrokering.org/
http://www-3.ibm.com/software/integration/mqfamily/
http://www-3.ibm.com/software/integration/mqfamily/

	Abstract
	Introduction
	WSRM
	Specifications leveraged by WSRM

	Implementation of the WSRM
	Architecture
	Rationale for the choice of XMLBeans

	Performance Measurements
	Related Work
	Conclusions and Future Work
	References

