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Abstract—This paper shows that using SRIOV for InfiniBand
can enable virtualized HPC, but only if the NIC tunable param-
eters are set appropriately. In particular, contrary to common
belief, our results show that the default policy of aggressive
use of interrupt moderation can have a negative impact on the
performance of InfiniBand platforms virtualized using SR-IOV.
Careful tuning of interrupt moderation benefits both Native and
VM platforms and helps to bridge the gap between native and
virtualized performance. For some workloads, the performance
gap is reduced by 15-30%.

Index Terms—SR-IOV, HPC, InfiniBand, Virtualization

I. INTRODUCTION

With advancements in recent virtualization technologies,

Cloud computing has realized a resurgence in recent years.

This model offers two key benefits to consumers: 1) faster

setup & deployment time and 2) reduced cost as customers are

charged based on exact usage rather than total allocation times.

Despite these benefits, earlier virtualization techniques had sig-

nificant overheads costs that proved too costly for the benefits

offered. Nonetheless, modern virtualization techniques have

significantly reduced virtualization overhead to a point where

the tradeoffs have become acceptable for many computing and

storage environments. Nonetheless, virtualization has still not

made major inroads in HPC environments. HPC environments

run computationally intense, scalable algorithms for large

inputs aiming to maximize utilization and throughput at all

available nodes. I/O overheads are particularly unacceptable

since they limit parallel speedup.

I/O virtualization is either performed in software with the

assistance of the virtual machine monitor (VMM), or directly

through the use of specialized hardware [1], [2], [3]. In the for-

mer approach, guest virtual machines (VMs) on a host are not

able to access physical devices, so the VMM is responsible for

routing traffic to/from the corresponding VMs. This method

incurs repeated memory copies and context switches, leading

to reduced performance. In contrast, specialized hardware

allows direct access from within a guest VM [4]. The guest

VM can thus performing I/O operations without duplicate

overheads caused by VMM intervention. Figure 1 provides

a high-level illustration of software virtualization and two

hardware virtualization strategies: PCI-passthrough and SR-

IOV [5]. The center block shows that only one VM has access

to a specific NIC at a time, whereas the rightmost part shows

how a single NIC can be shared across different VMs. In both

PCI-passthrough and SR-IOV the VMM is bypassed, which

eliminates the extra overhead mentioned earlier. This is in

contrast to the leftmost component of Figure 1 that illustrates

the: Virtual Machine Device Queue (VMDq) w/NetQueues

technique, that requires the VMM to route incoming packets

from the NIC to the correct VM.
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Fig. 1: Software Virt. vs. PCI-Passthrough vs. SR-IOV

As depicted in the Figure, SR-IOV compared to PCI-

passthrough offers the advantage of concurrent sharing of

physical devices among multiple VMs. Although the SR-

IOV standard has existed for several years now, hardware

vendor support for it on InfiniBand HPC interconnects has

only started to emerge. A recent work by Jose et al. is the

first to evaluate SR-IOV performance for InifiniBand clusters.

Their initial experiments conclude that due to significant per-

formance overhead for certain collective algorithms, it would

seem unfeasible to adopt virtualization for HPC [3].
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This paper offers a more thorough investigation and analysis

of SR-IOV performance over InfiniBand that shows that virtu-

alization overhead can be mitigated. We investigate the sources

of overhead, and propose parameter-tuning optimizations in

order to improve responsiveness of the VM to show that

SR-IOV performance is competitive with a non-virtualized

environment. More specifically, default parameter values that

improve interrupt moderation are defined for native environ-

ments, but may be suboptimal for virtualized environments.

II. BACKGROUND

For most of the last decade, InfiniBand has been regarded

as the fabric of choice for HPC clusters because it is a high-

bandwidth, low-latency interconnect. It is deployed in many

commodity clusters, and as of TOP500 list of June 2011,

used as the communication network in 41.2% of all systems.

However, even as InfiniBand usage continues to grow, several

factors continue to hinder full utilization of the technology’s

capabilities. The QDR InifiniBand with a bandwidth-rate of

40 Gbps, is often chosen more for its low latency rather than

for its raw-bandwidth capabilities.

A. RDMA

InfiniBand provides the Remote Direct Access Memory

(RDMA) feature, which provides for lower latency and allows

for zero-copy transfers (i.e., place data at the desired target

location without buffering). A client, also referred to as the ini-

tiator, issues a read request that includes a destination memory

address in its local memory. The target, or server, responds by

writing the desired data directly into the client’s memory at the

requested location. Eliminating the need to buffer messages,

having the network adapters directly copy data minimizes

operating system (OS) involvement across a low-latency fabric

and provides a fast mechanism for transferring data.

B. IPoIB

IPoIB (IP-over-InfiniBand) is a protocol that defines how to

send IP packets over IB. For example, Linux has a driver that

implements this protocol which effectively creates a network

interface for each IB port on the system. As a result, it

makes a Host Channel Adapter (HCA) behave as an ordinary

NIC. Although the driver provides this interface, IPoIB does

not utilize the full capabailities of the HCA. For example,

network traffic progresses through the normal IP stack, which

effectively requires a system call for every message sent.

Second, the host CPU is still required to process the data

packets. Despite not being able to fully utilize the HCA,

utiilzing IPoIB does mean that applications that use normal

IP sockets will be able to send messages across the faster

speed of the IB-link.

Jose et al. evaluate IPoIB performance between virtualized

and non-virtualized environments using the NetPerf bench-

marks. The observed result is more than 2x difference in per-

formance, which they suggest may be rooted in the overheads

of virtualizing the TCP/IP stack [3].

C. Single Root I/O Virtualization

SR-IOV allows a PCIe device to export a set of virtual

functions as well as the number of PCI physical functions

to enable sharing resources on the I/O device. The simplified

architecture for server virtualization is shown in Figure 2. In

this model, no passthrough is necessary, because virtualization

occurs at the end device, allowing the hypervisor to simply

map virtual functions to VMs to achieve native device perfor-

mance with the security of isolation.
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Fig. 2: SR-IOV

D. PCI passthrough

PCI-passthrough allows guests to have exclusive access to

PCI devices for a range of tasks. It allows PCI devices to

appear and behave as if they were physically attached to

the guest operating system. Two key disadvantages of this

method is that 1) it doesn’t allow for device sharing among

multiple guests and 2) supporting live-migration of the guest

is very difficult–features which are highly valuable for HPC

computing.

III. MOTIVATION

Although virtualization has much to offer the HPC com-

munity, broad adoption of virtualization technology remains

scarce mainly due to the following aspects.

A. Virtualization Performance Overhead

Traditional server virtualization brings sigificant perfor-

mance overhead. The hypervisor, also known as the Virtual

Machine Monitor (VMM), runs at the highest privilege, while

the VM and guest OS run at the user-level VMM. While

running the guest OS is embedded into the VMM when

encountering a privileged operation. As a result, expensive

context switching is required, especially during device access

of which is unacceptable for HPC applications.

B. Resource coordination between VMs

Virtualization adoption for HPC systems would require

efficient deployment and management of hundreds, if not

thousands of VMs across the different nodes. How to quickly
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allocate and setup hardware resources dynamically for dif-

ferent VMs on a single node while maintaining low system

overhead has proven increasingly difficult due to I/O overhead.

The functional advantages that SR-IOV offers over previ-

ous virtualization methods are 1) device sharing capabilities

between VMs on the same host and 2) simpler requirements

for detaching/reattaching device accesses to better facilitate

live-migrations.

Specifically, by removing an extra layer of virtualization

and memory copies by facilitating the virtualization on the

device itself rather than in the VMM, SR-IOV has the poten-

tial to offer significant performance improvement over PCI-

passthrough. Furthermore, it provides bandwidth multiplexing

of the hardware resource across the VMs during simultaneous

access, whereas this was not possible in PCI-passthrough.

Although previous work has shown it is possible to imple-

ment live-migration with use of passthrough virtualization, the

process remains quite complex [6], [7].

IV. NETWORK INTERRUPT TUNING

In our evaluation, we find that proper tuning of network

interrupts can have a considerable impact on InfiniBand per-

formance. In this section, we discuss the various parameters

that can be tuned to control the effect of network interrupts on

virtualization performance. Experiment results for our findings

are presented in Section VI.

A. Polling vs. Blocking Mode

Jose et al. discuss the methods used in InfiniBand for retriev-

ing completion events: Polling and Event-based mode. As their

names suggest, polling mode requires the user application to

continously poll the completion queue (CQ), whereas Event-

based/Blocking mode requires the application register for

completion events. Polling mode provides for faster response,

but depends on processor availability during the entire run-

time for efficient utilization so that the OS is not performing

ill-timed context switches.

Event-based mode is more suitable in cases when the

host machine is fully subscribed as the user application will

only access the completion queue when there is work to be

processed. Upon receiving an event, the network interface

generates an interrupt to signal the user thread that it is to

be scheduled according to OS scheduling policies. It has been

shown that Blocking Mode incurs additional overhead as a

result of interrupt and OS scheduling latencies than compared

to operating in Polling Mode.

Although they show that SR-IOV performance is compara-

ble to that of native when operating in Polling Mode, there

remains a noticable performance gap between virtualized and

non-virtualized mode when operating in Blocking Mode [3].

Given that virtualized environments are deployed in fully

subscribed scenarios, it is imperative that this performance

gap be reduced in order to make SR-IOV suitable for HPC

applications. To do so, we investigate the differences in

performance between virtualized and non-virtualized modes

with respect to interrupt handling.

B. Interrupt Management

Interrupt moderation is used to decrease the frequency of

network adapter interrupts to the CPU. Mellanox network

adapters use an adaptive interrupt moderation algorithm by de-

fault. The algorithm checks the transmission (Tx) and receive

(Rx) packet rates and modifies the Rx interrupt moderation

settings accordingly [8].

Interrupt Coalescing (IC) is used to reduce the interrupt

processing overhead and becomes necessary when the mini-

mum packet interarrival latency becomes comparable to the

per-packet interrupt processing overhead. Unfortunately, IC

can impact active network measurement tools that use closely

spaced packet pairs, trains, or streams. In particular, capacity

and available bandwidth estimation techniques can provide

incorrect results if they ignore IC.

It is recommended practice that to improve application scal-

ability and latency, interrupts requests (IRQs) be distributed

among the processors. The IRQ Balancer in the kernel is

responsible for intelligently distributing interrupts among the

cpus. However, depending on the type of interrupt, such as

the networking interrupt, it is advisable that the interrupt goes

to only one core. In cases where the frequency of a specific

interrupt class is high, then the IRQ balancer would assign it

to a specific core to maximize cache efficiency [9].

Shared Receive Queues (SRQ) provides a model to effi-

ciently share receive buffers across connections while main-

taining the benefits offered by a connection oriented transport–

good performance and reliability. Thus, the SRQ is a good

candidate for achieving scalable buffer management.

InfiniBand provides an asynchronous event associated with

a SRQ called SRQ LIMIT REACHED. This asynchronous

event is triggered when the number of unoccupied entries in

the receive buffer fall below the watermark threshold (preset

by the application).

Increasing this threshold limit causes interrupts to be trig-

gered more frequently as the receiver strives to maintain a

larger number of free work entries. On the other hand, de-

creasing the threshold reduces the frequency of the interrupts

as the receiver only needs to process the queue’s work entries

when there is only 1 free entry remaining.

Sur et al. propose a calculable solution for an appropriate

low watermark threshold such that the event is not triggered

too often nor too infrequently to ensure there is enough time

to post the buffers so that the SRQ remains non-empty [10].
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Fig. 3: SRQ Limit Watermark Threshold
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V. EXPERIMENTAL METHODOLOGY

Our experimental testbed consists of two compute nodes

featuring the Intel Sandy Bridge-EP platform. Each node

has dual Intel Xeon E5-2670 operating at 2.6 GHz with a

maximum turbo frequency of 3.3 GHz. The sixteen cores are

split into two NUMA nodes with 8 physical cores and a 20 MB

L3 cache. Each compute node has 48 GB of main memory split

between the two NUMA nodes. The platform is equipped with

one PCIe 3.0 slot. Table I illustrates additional details regard-

ing our testbed setup. Our virtualized environment consists of

two VMs, one on each physical node.

The VMs are configured to match as closely as possible to
the native hardware. The same Linux kernel and OS are used

in both on the native platform and within the VM. The number

of vCPUs matches the number of host CPUs. Each vCPU is

mapped to its corresponding physical CPU to avoid NUMA

migration issues. Similarly, we choose a VM size with 40GB

of memory. We choose this type of configuration based on the

assumption that users running HPC-workloads would utilize

the maximum amount of resources available.

TABLE I: Machine Configuration

Parameter Value
Number of Physical Nodes 2

Processors per Node 16
NUMA 2 Sockets

Main Memory 48 GB RAM
Caches L3-20 MB

Hard disk 600 GB
HyperThreading Disabled

Operation System CentOS 6.4 (RHEL6)
Linux Kernel 2.6.32-358.23.2.el6.x86 64

VMM KVM [2]
MLX OFED MLNX OFED LINUX-

2.0-3.0.0-rhel6.4-x86 64 [11]
IB Card Mellanox ConnectX-3 FDR

(40 Gbps)

We evaluate our system at the network and micro-

benchmark levels in addition to application-level benchmarks.

We use the commonly available IB-Verbs benchmarks, and the

OSU Micro-Benchmarks [12]. The IB-Verb benchmarks were

used to evaluate performance at the low-level IB-Verbs, and

the OSU benchmarks to depict the building blocks of HPC-

applications:collective communication operations. All MPI

experiments were run using MVAPICH2 1.9a2 [13].

Each experiment runs for a sufficient number of iterations

in order to mitigate divergence due to OS interference. In

addition, results are averaged across multiple trials in order

to ensure their accuracy. Further, we employ process to core

binding to avoid thread migration delays. In Table II, we

describe each benchmark as well as its input size.

VI. PERFORMANCE RESULTS

In this section, we present the performance evaluation

results of SR-IOV compared to native mode for the different

type of communication benchmarks and algorithms. We do not

include bandwidth performance results as Jose et al. show and

we confirm that MPI bandwidth evaulation reveals that under

both Polling & Event-based Modes, SR-IOV achieves near to

peak bandwidth [3].

More specifically, we present our results with two objectives

in mind:

• deeper statistical evaluation of performance evaluation to

include min, max, and percentile analysis

• understanding how targeted parameter tuning, geared

towards increasing interrupt frequency improves SR-IOV

performance.

Simply comparing the default reported benchmark average,

which depending on how they are computed by the respective

benchmarks, can be insufficient under certain circumstances.

For example, small input working-sets or smaller iteration

counts may not be enough to mitigate indeterminate OS

behavior (such as system daemons or context switches), such

that even a few divergences may skew results.

The additional statistics offer deeper insight into SR-IOV

tail-latency overhead. Taming the long latency tail has been

a major focus in the Cloud Computing domain, because as

systems scale, performance overhead is dominated by the

slowest percentile [14].

Given the variations between trials of the same experiment,

we use hypothesis testing to determine the relative perfor-

mance between the native and SR-IOV cases. Specifically, we

use a paired t-Test, with a two-tailed distribution to validate

our NULL-hypothesis. The Null-Hypothesis being evaluated

is: the means between two populations being compare are
equivalent: μa == μb.

Table entries listed as < 0.001 indicate that the computed

value can be approximated to 0. P-values below 0.05 are
generally considered statistically significant, while one of 0.05
or greater indicates no difference between the groups.

A. Network-Level Performance

As indicated in section II, InfiniBand provides both send-

recv & RDMA. We illustrate the performance of IB-Verbs in

Figures 4–6.

As Mentioned in Table II We run ib write lat, ib read lat,

and ib atomic lat for N=1000, N=10000, and N=100,000 iter-

ations. Due to space constraints, we only plot the reported av-

erages (median), and the 90th/95th percentiles for ib write lat.

Because the virtual NIC disables message inlining, we also

report our native results with message inlining being disabled.

This is done so that comparisons to the VM experiments are

fair. Figures 5 and 6 show that the 90th and 95th percentiles

of the native runs are equivalent despite executing for differ-

ent iterations. In contrast, the percentile values for the VM

runs show notable difference for different iteration values.

Specifically, we notice a drop in the computed percentile.

We attribute this effect to the long-tail latency commonly

encountered in virtualized environments. We use this insight

to suggest 1) majority of program execution (90-95%) is

comparable between native and SR-IOV and 2) most of the

latency overhead can be attributed to the long-tail latency
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TABLE II: Evaluated Benchmarks

Benchmarks Input Size Description

Network-Level ib write lat N=1000,10000,100000 latency test of RMDA writes
ib read lat latency test of RDMA reads

Micro-Level

osu latency

N=100000

Send/Receive Latency Test
osu barrier MPI Barrier Latency Test
osu alltoall MPI Alltoall Latency Test

osu allgather MPI Allgather Latency Test
osu allreduce MPI Allreduce Latency Test

Macro-Level

CG

Class C

Uses a conjugate gradient method to compute
an approximation of the smallest eigenvalue of a large, sparse, matrix

LU Simulated CFD application–Employs SSOR numerical scheme
to solve a regular, sparse, triangular system

SP Simulated CFD application–Uses linear equations to Navier-Stokes equation

EP Kernel-only coordination of pseudorandom number
generation at the beginning and result collection at end

effect. A similar result is illustrated in Figure 7 with the MPI-

AlltoAll benchmark. In these figures, the x-axis represents

message size in bytes and the y-axis illustrates the execution

time in microseconds (μs), with the line plots illustrating

the average execution time of the 90/95/99th percentiles. The

graph illustrates that performance gap of the 90th percentile

between native and virtualized runs are more comparable,

whereas there is a significant difference between the two

modes in the 99th percentile. Similar behavior is observed

with the MPI-allReduce and MPI-allGather benchmarks, but

are not shown here due to space constraints.
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Fig. 4: IB-Verbs RDMA Write Latency

B. Micro-level MPI Benchmarks

We next look at evaluating the basic communication oper-

ations (barrier + send/receive), upon which the more complex

collective algorithms (e.g. allReduce, allGather, AlltoAll) are

based on. Table III depicts the 1) average reported latency

across 15 trials for each configuration between the means of

�%

��

�%

��

�%

%�

�
�
	


�
�



�

�
�
	

���&�'	(
	��
)	

����������
�	

���������

�

%

��

�%

��

���� ���� ���� ���� ����� ����� �%%�� ������

�
�

�


�
	

	


��

�	��� 	�!
"	��#$�	��

�����������
�	

����������

������������
�	

�����������

Fig. 5: IB-Verbs RDMA Write Latency
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Fig. 7: Performance for N=1000000

TABLE III: Latency (μs) Blocking Mode Avg

Bytes Native-RX88 Native-RX1 VM-RX88 VM-RX1
64 5.05 3.77 7.06 5.4
128 5.23 3.8 7.12 5.36
256 5.61 4.5 7.47 6.27
512 5.86 4.64 7.62 6.68

1024 6.23 5.39 8.03 7.58
2048 7.74 6.62 8.90 8.65
4096 8.86 7.61 10.01 9.40
8192 11.45 9.98 11.60 10.78
16384 16.2 14.45 14.8 14.2

the four populations (Native-RX88, Native-RX1, VM-RX88,

& VM-RX1) for the osu-latency benchmark.

Columns noted with -RX88 correspond to the HW-NIC Rx-

frame count trigger for interrupt moderation being set to the

default value 88, where RX1 corresponds to the Rx-frame

count set to 1. This table shows that the average latency for a

Message Size (M) <= 16384 bytes, VM-RX1 is competitive

with that of Native-RX1, and both are better than the default.

Although we see from Table III tuning the RX-frame count

improves both the native and virtualized experiments of osu-

latency benchmark, that is not always the case. Table IV shows

the computed averages across 15 trials and P-value for the osu-

AllGather benchmark between Native-RX88 and Native-RX1.

Here, we see that the average between the two configurations

are either statistically equivalent when the P-value > 0.05 or

that Native-RX1 is statistically worse than Native-RX88 when

the P-value < 0.05. Our detailed results (not-included) show

that VM-RX88 is worse than VM-RX1 even though Native-

RX88 is equal to or better than Native-RX1.

In Figure 8 we illustrate the performance impact of changing

the RX-frame trigger count has with varying number of

active processes for the osu-AllGather benchmark. The x-axis

denotes the message size while the y-axis represents execution

time in (μs). Experiments are run for N=2,4, and 8 total pro-

cesses with processes per node (PPN) = 1,2,4 respectively. The

graph again confirms the competitive performance between

TABLE IV: OSU-AllGather (μs) Blocking Mode Avg

Bytes Native-RX88 Native-RX1 P-Value
8 2.92 2.91 0.84
16 2.87 2.89 0.66
64 2.76 2.97 < 0.001

128 3.60 3.67 0.10
256 3.82 3.96 < 0.001
512 4.128 4.21 < 0.001

1024 4.92 4.87 0.36
2048 5.95 6.02 < 0.001
4096 6.76 7.03 < 0.001
8192 10.12 10.14 0.12

TABLE V: OSU-AllGather Blocking Mode P-Value

Bytes N=2,PPN=1 N=4,PPN=2 N=8,PPN-4
128 0.53 < 0.001 < 0.001
256 0.05 < 0.001 < 0.001
512 0.12 < 0.001 < 0.001

1024 0.65 < 0.001 < 0.001
2048 0.008 < 0.001 0.21
4906 0.12 0.0015 < 0.001
8192 0.21 < 0.001 0.49
16384 < 0.001 < 0.001 < 0.001

native and VM for a Message Size (M) <= 16384 bytes.

Correspondly, Table V presents the calculated P-Value for the

osu-AllGather comparing Native RX88 and VM-RX1.

Figure 9 shows the performance for the osu-barrier bench-

mark with adjustment to the SRQ-Limit parameter. On the

x-axis there are three main groups of results: Avg/Min/Max

Latency. Within each subgroup we present results for a varying

number of total active (N) processes, and the number of

process per node. The y-axis represents the execution time in

μs. We evaluate the adjustment for both Polling & Interrupt

Modes. We find that increasing the SRQ-Limit threshold

results in about a 15% (13 down to 9 (μs) latency improvement

compared for Blocking Mode operation, and also a slight

improvement in Polling Mode.
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Fig. 9: Performance w/varying SRQ Limit

C. Performance Analysis

Additonal breakdown of the per-iteration performance re-

sults illustrate a couple of key points. In comparing the abso-

lute maximum latency encountered for an iteration within the

same experiment between native and VM, we find the values to

be mostly consistent for small and medium. However, there are

few instances where the SR-IOV experiment may experience a

comparatively long delay before completion. Table VI depicts

the absolute maximum latency experienced when running the

osu-bcast benchmark for N=100000 iterations.

The 99th percentile numbers reported in Table VI indicate

that Native somewhat outperforms VM in long-tail latency.

This effect is further exacerbated in the maximum latency

numbers seen. For the large message sizes (262144–4194304

bytes) the VM experiment experiences an absolute maximum

per-iteration latency that is a factor of 4-5 times larger than its

native counterpart. This is likely caused by inefficiencies of OS

scheduling policies when communicating very large messages.

Although such instances are clear outliers occuring rarely, they

are able to skew the computed average for experiments of short

duration.

D. Macro-level MPI Benchmarks

In this subsection we present performance results for four

application benchmarks from the NPB-2.4 suite: CG, LU, SP,

and EP.

For reasons discussed in Section VI-A, we disable message

inlining and use of shared memory optimizations by MVA-

PICH2 for the native trials to present a fairer comparison.

Through experimentation we determine that message inlining

does offer a performance boost for some benchmarks (7% for

CG), but not others (LU) when operating in fully subscribed

mode. Due to space constaints, we do not illustrate the

performance impact of these optimizations for native.

Figures 10–13 show the performance for the four NPB

benchmarks illustrated showing the impact of the interrupt

parameters adjusted. The x-axis indicates the trial number,

while the y-axis depicts the execution time in seconds. For

TABLE VI: OSU-Bcast

Max-Value | 99th Percentile (μs)

Max-Value 99th Percentile
Bytes Native VM Native VM

1 382.9 303.03 6.91 11.92
2 423.90 307.08 7.15 10.01
4 275.85 299.93 7.15 10.11
8 276.09 288.96 7.15 10.0

16 416.99 303.03 7.15 10.0
32 275.85 279.90 7.15 10.0
64 371.933 277.99 7.15 10.0
128 412.94 282.05 7.15 10.96
256 282.05 289.92 7.15 10.96
512 381.95 281.10 9.06 10.01

1024 429.15 288.96 9.06 11.91
2048 404.12 295.88 10.01 12.87
4096 418.90 296.12 10.01 13.83
8192 406.03 305.89 14.06 15.97
16384 405.07 309.94 18.12 20.98
32768 424.15 324.97 25.034 27.90
65536 413.179 369.07 35.05 36.97

131072 436.07 345.96 56.03 59.13
262144 489.9 2902.03 96.01 105.86
524288 585.08 3915.07 185.97 191.93

1048576 699.99 2436.16 345.0 361.93
2097152 1063.82 4861.83 662.01 693.01
4194304 1678.23 5449.77 1321.01 1415.97

CG, LU, and EP we illustrate the results for 32 processes,

whereas for SP we illustrate for 16 processes. Due to the

algorithmic structure of SP, we are unable to experiment

with a larger number of processes without oversubscribing the

nodes. We present the baseline native performance against VM

performance with the interrupt parameters tuned according.

We vary the SRQ Limit, the RX-Frame trigger count, and the

interrupt moderation timer window.

For each of the graphs, we see that tuning the interrupt

parameters improves VM performance compared against the

native default value for RX frame count. In contrast with the

micro-benchmarks, we see that increasing the Rx-frame rate,

or the software SRQ Limit threshold, has little impact on three

of the four benchmarks, the exception being EP. However, by

adjusting the smallest & largest interrupt moderation timers to

40 & 1000 (μs) respectively, we see about a 7% performance

improvement for VM experiments.

Timer moderation values represent the window in which an

interrupt would occur: rx-usecs-low represents the soonest, and

rx-usecs-high the latest. For latency-bound traffic interrupts

are usually triggered based on rx-usecs-low, while bandwidth-

bound traffic triggers on rx-usecs-high. By increasing the timer

window, the NIC is better able to support different program

phases: ones that are predominately latency-bound and others

that are bandwidth-bound.

Increasing the timer interrupt window, either through in-

creasing the RX frame trigger count or by increasing the

moderation window seems to increase overhead by delaying

the critical path for a benchmark such as EP (Figure 12) that

has little / no communication.
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In contrast, the virtualized performance for benchmarks CG,

LU, and SP (Figures 10, 11, and 13 respectively) improves

as the interrupt window is increased. For example, Figure 10

illustrates that having the default RX frame trigger performs

better than RX=1. Performance is further improved if we also

increase the interrupt moderation window. This is in contrast

to micro-benchmarks where RX=1 improved performance.
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VII. RELATED WORK

Prior work can be categorized into either software-based

or hardware-based categories. In this section we focus our

discussion of related works that target hardware-based solu-

tions because they 1) generally demonstrate better performance

compared to software-based ones and 2) software-based solu-

tions are primarily focused on the Xen platform [15], [16].

A. PCI Passthrough

Regola et al. evaluate PCI-passthrough performance for

both HPC applications and disk I/O operations under differ-

ent hypervisors: KVM, Xen, and OpenVZ [17]. They show

that utilizing PCI-passthrough that despite allowing improved
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scalability when compared to other virtualization techniques,

such as para-virtualization, overhead significantly increases.

Despite recent advances in eliminating CPU overhead, high

I/O overhead remains.

B. SR-IOV

1) Ethernet: Several studies have demonstrated that SR-

IOV is significantly better than software-based solutions for

10GigE networks [18]–[20]. Liu et al. provide a detailed

performance evaluation on the environment of SR-IOV capable

10GigE Ethernet in KVM [18].

They study several important factors that impact network

performance in both virtualized and native systems. Dong et al.

have conducted experiments to compare SR-IOV performance

with a paravirtualized network driver. The results show that

SR-IOV can achieve high performance, high scalability, and

with a low CPU overhead at the same time [19].

Huang et al. address two important issues: redundant in-

terrupts and single-threaded NAPI, which affect performance

and scalability of SR-IOV with 10GigE network. Their results

also demonstrate that SR-IOV approach can achieve high

performance I/O in a KVM-based virtualized environment
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[20]. Furthermore, previous studies with Xen demonstrated

the ability to achieve near-native performance in VM-based

environment for HPC [21], [22], [23], [24].
2) InfiniBand: Jose et al. compare SR-IOV performance

against native on InfiniBand to determine if SR-IOV is prime-

time for HPC applications. With their preliminary experi-

ences, they show that for the performance of MPI and PGAS

point-to-point communication benchmarks over SR-IOV with

InfiniBand is comparable to that of the native InfiniBand

hardware, for medium and large message lengths. However,

the performance of certain MPI collective operations over SR-

IOV with InfiniBand is noticably worse when compared to the

native designs [3].
Although they show that there exists virtualization overhead,

a more thorough evaluation of SR-IOV performance remains

to be done in order to fairly evaluate SR-IOV’s potential. As

discussed in the above section, current research on SR-IOV

mainly pays attention to the environment of 10GigE network.
Given that InfiniBand usage continues to grow within the

HPC community, it is critical for researchers to fully under-

stand the benefits and performance bottlenecks to be able

to fully utilize its potential. This paper concentrates on this

scenario, which is different from other works, and provides a

more detailed investigation into how performance can be tuned

evaluated under a broader set of applications than [3].
More importantly, we show that network parameters tuned

for native performance may be suboptimal in a virtualized

environment. In tuning interrupt-specific parameters, we show

that virtualization performance improves as a result of in-

creased system responsiveness.

VIII. CONCLUSION

The HPC community has avoided adopting virtualization

due to CPU and I/O overhead, while pursuing complex

interconnects that offer extremely low-latency interconnect

fabrics. In this paper, we present our detailed evaluation of

SR-IOV with InfiniBand. Further, we find that virtualized

performance for HPC workloads can be competitive with that

of native if network-interrupt parameters are tuned to increase

the responsiveness of the SR-IOV system. Additional analysis

also shows that much of the remaining overhead is due to

long-tail latency. For some benchmarks, the performance gap

is reduced by 15-30%, thus increasing the attractiveness of

SR-IOV for HPC platforms.
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