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Abstract
Simulating the dynamics of ions near polarizable nanoparticles (NPs) using coarse-grained models is extremely
challenging due to the need to solve the Poisson equation at every simulation timestep. Recently, a molecular dynamics
(MD) method based on a dynamical optimization framework bypassed this obstacle by representing the polarization
charge density as virtual dynamic variables, and evolving them in parallel with the physical dynamics of ions. We
highlight the computational gains accessible with the integration of machine learning (ML) methods for parameter
prediction in MD simulations by demonstrating how they were realized in MD simulations of ions near polarizable
NPs. An artificial neural network based regression model was integrated with MD simulation and predicted the optimal
simulation timestep and optimization parameters characterizing the virtual system with 94.3% success. The ML-enabled
auto-tuning of parameters generated accurate dynamics of ions for ≈ 10 million steps while improving the stability of
the simulation by over an order of magnitude. The integration of ML-enhanced framework with hybrid OpenMP/MPI
parallelization techniques reduced the computational time of simulating systems with thousands of ions and induced
charges from thousands of hours to tens of hours, yielding a maximum speedup of ≈ 3 from ML-only acceleration and a
maximum speedup of ≈ 600 from the combination of ML and parallel computing methods. Extraction of ionic structure
in concentrated electrolytes near oil-water emulsions demonstrates the success of the method. The approach can be
generalized to select optimal parameters in other MD applications and energy minimization problems.
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1 Introduction

Many biological and synthetic nanoparticle (NP) systems
are polarized in the presence of electric fields generated by
surrounding ions and other macromolecular charged species
(Levin 2005; Clapham 2007; Abrua et al. 2008). Examples
include proteins and DNA in an aqueous cellular medium,
emulsions where oil and water are partitioned, and gold NPs
dispersed in water. Accurate knowledge of ionic structure
near the surface of these NPs enables the understanding of
many nanoscale phenomena associated with these materials
such as protein conformational changes (Honig and Nicholls
1995), DNA precipitation (Raspaud et al. 1998), sponta-
neous emulsification (Sacanna et al. 2007), and NP self-
assembly (Levin 2005). Extracting this structure by simulat-
ing the dynamics of ions in the presence of polarizable NPs
using coarse-grained models is challenging due to the need
to compute polarization (induced) charges in order to prop-
agate the ion configuration (Allen et al. 2001; Marchi et al.
2001; dos Santos et al. 2011; Fahrenberger et al. 2014). This
computation typically involves solving the second-order
Poisson differential equation in 3-dimensional space at
each simulation timestep, making the use of conventional
nanoscale simulation methods very time consuming and
inefficient. Because of these computational challenges, the
problem of extracting ionic structure near polarizable NPs
has been a subject of intense research (Marchi et al. 2001;

Boda et al. 2004; Allen et al. 2001; dos Santos et al. 2011;
Jadhao et al. 2012, 2013; Fahrenberger et al. 2014; Gan et al.
2015; Qin et al. 2016; dos Santos and Netz 2018).

The problem is often re-casted in terms of energy
minimization for which different candidate functionals
and associated minimization methods have been pro-
posed (Marchi et al. 2001; Allen et al. 2001; Attard 2003;
Barros et al. 2014). Among these techniques, a molecular
dynamics (MD) method based on the dynamical optimiza-
tion of an energy functional enabled the replacement of
the expensive solution of the Poisson equation at each
simulation step with an on-the-fly computation of surface
polarization charges (Jadhao et al. 2012, 2013; Jing et al.
2015). The main focus of this paper is to highlight the com-
putational gains accessible by integrating machine learning
(ML) methods for parameter auto-tuning in MD simulations
by demonstrating how these gains were realized in the
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MD simulations of ions near polarizable NPs based on the
dynamical optimization framework.

In the dynamical optimization framework, inspired by the
Car-Parrinello method for simulating ion-electron systems
(Car and Parrinello 1985), an energy functional of the
induced charge density is dynamically optimized resulting
in the physical dynamics of ions in parallel with the
update of the virtual variables characterizing the induced
charge density. The virtual system is evolved in a manner
that keeps the induced charges close to the free-energy
minimum (“ground state”) corresponding to the evolving
ionic configuration. The advantages associated with the on-
the-fly computation of polarization effects in conjunction
with the reduction in computational costs achieved by
solving for the scalar induced charge density variable have
enabled the study of electrolyte solutions near polarizable
NPs using this framework (Jadhao et al. 2012; Jing et al.
2015). However, the applicability of the original method is
limited by the absence of a framework that automates the
process of selecting the “good” parameters characterizing
the virtual system as well as the optimal simulation timestep.
These quantities determine the stability, accuracy, and overall
efficiency of the dynamical optimization framework and they
are found by a tedious process of trial and error that is
informed by domain experience. Further, these parameters
are selected at the start of the simulation and held fixed
throughout the simulation, to often relatively conservative
values, in order to ensure the long-time stability of the
dynamics of ions.

Recent years have witnessed a remarkable growth in
the use of ML to enhance computational methods aimed
at understanding phenomena in materials science, biology,
neuroscience, and physics (Bartók et al. 2017; Ch’ng et al.
2017; Balakrishnan and Puthusserypady 2005; Schoenholz
2018; Liu et al. 2017; Long et al. 2015; Ferguson 2017;
Ward et al. 2018a). ML has been applied to identify interest-
ing parameter spaces (Spellings and Glotzer 2018), predict
parameters (Balakrishnan and Puthusserypady 2005), update
configurations (Botu and Ramprasad 2015), infer assembly
landscapes (Long et al. 2015; Ferguson 2017), predict prop-
erties of materials (Ward et al. 2016, 2018b) and classify
phases of matter (Ch’ng et al. 2017). Inspired by these recent
developments, we describe an approach to integrate ML and
MD methods to predict and auto-tune relevant parameters
and simulation timestep. This approach is applied to the
dynamical optimization framework to predict on-the-fly the
virtual system parameters and simulation timestep that keep
the polarization charge density close to the ground state
determined by the evolving ionic configuration at all times
during the simulation. The demonstration of the use of ML
to predict and tune the MD simulation timestep has broad
applicability. Similarly, we expect that the idea of using ML
for predicting the virtual system parameters can be extended
to enhance the original Car-Parrinello molecular dynamics
techniques (Car and Parrinello 1985) for simulating ion-
electron systems.

The use of ML to enhance the performance of the
dynamical optimization framework is demonstrated using
an O(n2) algorithm to propagate the dynamics of ions and
virtual system variables that is accelerated by implementing
a hybrid OpenMP/MPI parallelization approach to reduce

the computing time associated with the evaluation of the
forces and energies. The target applications of the framework
are systems where the effects of NP surface charge and
ion correlations typically lead to ion distributions that reach
constant bulk value within a few nanometers of the NP
surface such that a comprehensive study of ion densities
near NP surfaces can be performed by including thousands
of ions in a large simulation cell with reflective boundaries
(dos Santos et al. 2011; Messina 2002; Boda et al. 2004).
Many synthetic and biological systems including oil-water
emulsions, gold nanoparticles, and globular proteins exhibit
this scenario, and ion distributions in these systems have
been analyzed using O(n2) methods that are competitive
with O(n log n) methods for these moderately-sized systems
(Allen et al. 2001; Boda et al. 2004; dos Santos et al. 2011;
Messina 2002; Hatlo and Lue 2008; Jadhao et al. 2012).
Further, attempts to ameliorate this scaling via the use of
Ewald sums (Deserno and Holm 1998) or multigrid methods
(Sagui and Darden 2001) would introduce more variables
and parameters into the system making the assessment of
the coupling of the ML-enabled parameter selection process
with the simulation of ions and virtual system difficult. The
use of such methods is thus avoided in this first study of
developing ML-based enhancements for the treatment of
polarizability effects in ionic soft-matter simulations; future
work will include integrating this approach with fast Ewald
solvers for incorporating long-range effects.

As we discuss later in the results section, the ML-
enhanced dynamical optimization framework leads to an
increase in both the efficiency and the stability of the
associated MD simulations, while retaining the accuracy of
the unautomated framework. This combination of ML and
parallel computing in the context of nanoscale simulation
of ions is the first of its kind and paves the way for
developing online applications for web-based platforms like
nanoHUB (Klimeck et al. 2008), where the user engages
with the simulation software under limited interaction with
the developer and/or domain expert. An application that
simulates the self-assembly of ions near polarizable NPs by
employing the unique features of this framework has been
recently deployed on the nanoHUB cloud (Kadupitiya et al.
2018). As is evident by the use of ML in numerous
commercial platforms, scientific simulation workflow and
software applications will increasingly employ an ML layer
in the future. Understanding the integration of ML in
scientific applications is thus critical; the work presented
here contributes towards this goal.

2 Background and Related Work

2.1 Model and the Energy Functional
The problem of evaluating polarization effects in simu-
lation of charged systems has been extensively explored
by several research groups using different approaches
(Marchi et al. 2001; dos Santos et al. 2011; Boda et al. 2004;
Tyagi et al. 2010; Barros et al. 2014; Gan and Xu 2011;
Jadhao et al. 2012; Wynveen and Bresme 2006; Allen et al.
2001). Explicit simulation of solvent (environment) and
NPs is possible (Wynveen and Bresme 2006) using advanced
computational techniques such as fast multipole methods and
local electrostatics algorithms (Rottler and Maggs 2004); the
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role of solvent is also crucial in understanding properties
of ion dynamics at the molecular scale (Beckstein et al.
2004). However, many phenomena can not be suitably
investigated using fully atomistic models due to the pro-
hibitively large number of degrees of freedom associated
with such systems. This has led to the study of coarse-
grained models that treat ions explicitly but replace the
molecular structure of the solvent and the NP with con-
tinuous dielectric environments. Systems where the differ-
ent material parts are adequately captured by piecewise-
uniform dielectric permittivities (e.g. NP and solvent, pro-
tein and cellular medium) have attracted particular attention
(Allen et al. 2001; Boda et al. 2004; dos Santos et al. 2011;
Xu 2013; Jadhao et al. 2012, 2013; Barros and Luijten 2014;
Tyagi et al. 2010). For these model systems, solving for
the induced charge density reduces the computational costs
because the unknown induced charge density resides only
on the two-dimensional interface (boundary) between the NP
and the surrounding medium. We work with such a coarse-
grained model.

The dynamical optimization framework for extracting ion
distributions from simulations of the coarse-grained model
that treats the solvent and NP as dielectric continua is based
on the true energy functional of the induced charge density
introduced in Jadhao et al. (2012):

F [ω] =
1

2

∫∫
ρrGr,r′ (ρr′ +Ωr′ [ω]) dr

′dr

− 1

2

∫∫
Ωr[ω]Gr,r′ (ωr′ − Ωr′ [ω]) dr

′dr,

(1)

where ρ and ω are the ion and induced charge densities
respectively. The function G(r, r′) = |r− r′|−1 is the
Green’s function and Ω is given by

Ωr[ω] = ∇ ·
(
χr∇

∫
(ρr′ + ωr′) dr

′
)
, (2)

where χ(r) is the dielectric susceptibility. χ(r) is related
to the spatially-varying dielectric permittivity ϵ(r) via the
relation ϵ = 1 + 4πχ. The minimization of F [ω] leads to the
equation:

ω = Ω. (3)

Solving this equation is equivalent to solving the Poisson
equation; its solution produces the correct induced charge
density (Jadhao et al. 2012, 2013). At its minimum, F [ω]
evaluates to the true electrostatic energy of the system. These
features allow F [ω] to be optimized dynamically as the ions
move to their new positions in a simulation.

The functional F [ω] can be transformed into a functional
of only the surface (two-dimensional) induced charge density
for the case of polarizable NP in a solvent where the
NP and the solvent are modeled as materials of different,
but uniform, permittivities (Jadhao et al. 2012, 2013). The
discretized form of this transformed functional obtained by
meshing the NP surface into M finite elements is given as:

F [{ωk}] =
1

2

N∑
i=1

N∑
j ̸=i

qiK
◦◦

ri,rjqj +
1

2

N∑
i=1

M∑
k=1

qiK
◦•

ri,sk
ωkak

+
1

2

M∑
k=1

M∑
l=1

ωkK
••

sk,sl
ωlakal, (4)

where ωk, sk, and ak are, respectively, the induced charge,
position vector, and area associated with the kth finite
element. Here, N is the total number of ions, and qi
and ri are the charge and position vector of the ith ion
respectively. The terms K

◦◦

, K
◦•

, and K
••

in (4) are the effective
potentials of interaction between two ions, between an ion
and an induced charge, and between two induced charges;
explicit expressions of these functions can be found in
the original papers (Jadhao et al. 2012, 2013). F [{ωk}]
can be minimized on-the-fly using MD methods that treat
the induced charges on the surface as dynamic variables;
the details of this dynamical optimization framework are
provided in Section 3.

2.2 Nanoscale Simulation of Ions near
Polarizable Materials

We review the techniques of computing the ion distributions
in systems described by the coarse-grained model of ions
near the dielectric interface separating NP and solvent
(Boda et al. 2004; Tyagi et al. 2010; Allen et al. 2001;
Barros et al. 2014; Jadhao et al. 2012, 2013; Jing et al.
2015). Here, NP and solvent are characterized with different
(but uniform) dielectric permittivities. We focus on methods
that are broadly applicable and are not limited by the choice
of NP geometry or dielectric permittivity profile.

We first outline the methods based on variational
approaches to the problem of evaluating the polarization
effects as these techniques are most closely related to the
work presented here. In this approach, one transforms the
original problem of solving the Poisson differential equation
into an optimization problem. A variety of functionals
employing various electrostatic quantities as field variables
have been proposed to formulate the variational optimization
problem (Jackson 1999; Marcus 1956; Felderhof 1977;
Reiner and Radke 1990; York and Karplus 1999; Allen et al.
2001; Attard 2003; Rottler and Maggs 2004; Lipparini et al.
2010; Villasenor and Buneman 1992; Nakano et al. 1994).
Allen et al. (2001) performed an explicit (static) optimization
of a functional of the induced surface charge density
ω(s) at each MD step to solve the Poisson equation and
propagate ions. Marchi et al. (2001) worked with a true
energy functional of the polarization vector and implemented
a dynamical optimization framework to propagate ion
dynamics in parallel with the evaluation of polarization
vector fields. However, the choice of the polarization
vector as the variable field needed a three-dimensional
specification leading to increased computational costs that
can be avoided by choosing the induced charge density ω(s)
as the variational field.

Another class of methods for computing ω(s) transform
the problem into a matrix formulation (Boda et al. 2004;
Tyagi et al. 2010; Barros et al. 2014). The induced charge
computation (ICC) methods (Boda et al. 2004) use matrix
inversions to solve for ω(s). Matrix inversion operations
involve O(M3) calculations where M is the number of
surface mesh elements. Techniques to improve upon this
scaling have been subsequently developed (Tyagi et al.
2010). Alternatively, iterative methods to solve the matrix
equation have been proposed (Barros and Luijten 2014).
In particular, the generalized minimum residual method
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solves the matrix equation without explicitly constructing the
inverse matrix and yields a converged result for ω(s) at each
simulation timestep within 4 - 5 iterations (Gan et al. 2015).

The evaluation of ω(s) in all the above approaches
requires the ionic configuration to be static at each
simulation step to guarantee the overall stability of the
simulation. In Section 3, we present the details of a recently
developed dynamical optimization framework that enables
the simultaneous (on-the-fly) updates of ω(s) and the ionic
configuration in the same simulation step (Jadhao et al. 2012,
2013).

2.3 Parameter Prediction using Machine
Learning

Machine Learning (ML) abstractions for parameter predic-
tion and tuning have been extensively employed in the
performance enhancement of bigdata or deep learning frame-
works. Denil et al. (2013) used artificial neural network
(ANN) and convolutional deep learning neural network
(NN) to predict the parameters found in image classifi-
cation tasks. The ANN was able to obtain an accuracy
of 95%. Yigitbasi et al. (2013) employed ML-based auto-
tuning for diverse MapReduce applications and cluster con-
figurations in Hadoop framework. Their work showed that
support vector regression (SVR) exhibits good accuracy
while being computationally efficient for performance mod-
eling of MapReduce applications.

Regression based prediction schemes have been
employed in different domain areas (Eng et al. 2014;
Kazemi and Sullivan 2014; Cherkassky and Ma 2004;
Chen and Yu 2014; Balachandran et al. 2016; Quan et al.
2014; Yadav et al. 2016). Eng et al. (2014) used random
forest regression algorithm to predict host tropism of
influenza A virus proteins with an accuracy above 96%.
Similarly, ensemble of regression trees were employed to
perform face alignment for real-time applications (in one
millisecond) by Kazemi and Sullivan (2014). SVR has been
used for wind speed prediction by Chen and Yu (2014).
ANN based regression has been studied by Quan et al.
(2014) to yield short term load prediction of electrical power
systems based on wind power forecasting. Yadav et al.
(2016) have employed ANN based regression for forecasting
solar radiation.

In recent years, ML methods have been applied to
enhance computational techniques aimed at understand-
ing material phenomena; ML has been used to predict
parameters, generate configurations in material simulations,
and classify material properties (Spellings and Glotzer 2018;
Schoenholz 2018; Liu et al. 2017; Morningstar and Melko
2017; Ch’ng et al. 2017; Behler 2016; Botu and Ramprasad
2015; Long et al. 2015; Ferguson 2017; Guo et al. 2018;
Ward et al. 2016). Spellings and Glotzer (2018) applied a
simple feedforward ANN to discover interesting areas
of parameter space corresponding to crystal forma-
tion in the self-assembly of colloidal building blocks.
Botu and Ramprasad (2015) employed kernel ridge regres-
sion (KRR) to accelerate the ab initio MD method for nuclei-
electron systems by learning the selection of probable con-
figurations in MD simulations. Liu et al. (2017) employed an
ANN to select efficient updates for Monte Carlo simulations

of classical Ising spin models. Balachandran et al. (2016)
have used SVR to create an adaptive ML model to aid the
design of new materials with desired elastic properties and
enhanced long-term performance using minimum number of
iterations.

These explorations have inspired us to use ML to design
an adaptive MD-based dynamical optimization framework
that updates the simulation timestep and auto-tunes the
virtual parameters characterizing the dynamics of ions near
polarizable NPs to yield a more stable and efficient simu-
lation. Related work in the area of adapting timestep in a
simulation has involved using analytical approaches to multi-
ple timestep integration (Luehr et al. 2014; Tuckerman et al.
1992). Recent work has also focused on adaptive ensem-
ble simulations to enhance the computational efficiency
of biomolecular simulations (Kasson and Jha 2018). We
also note the development of auto-tuning technology
for high-performance computing applications to reduce
execution time and enhance programmer productivity
(Whaley and Dongarra 1998). Here, auto-tuning relates to
the automatic generation of a search space of possible kernels
for a computational task to identify the best possible kernel,
with recent work involving the use of ML-based approaches
for identifying the search space (Balaprakash et al. 2018). In
Section 4, we describe the results of our experiments with
different regression-based ML models to identify and tune
optimal simulation parameters in MD simulations based on
the dynamical optimization framework.

3 Dynamical Optimization Framework for
Simulating Ions near Polarizable NPs

In this section, we provide the details of the dynamical
optimization framework for simulating ions in the presence
of polarizable NPs. This framework uses Car-Parrinello
molecular dynamics (CPMD) technique (Car and Parrinello
1985; Fois et al. 1993) to dynamically optimize an energy
functional of the polarization charge density which results
in the propagation of the ionic configuration in tandem with
an accurate update of the polarization charges (Jadhao et al.
2012, 2013). These details will help clarify the use of the
ML-based enhancement strategies outlined in Section 4.

3.1 Extended Lagrangian, Equations of
Motion, and CPMD Simulation

To implement the dynamical optimization of F [{ωk}],
the induced charges {ωk} are treated as dynamic virtual
variables. A fictitious kinetic energy is associated with this
virtual system:

K =

M∑
k=1

1

2
µkω̇

2
k, (5)

where µk is the mass of the kth virtual variable ωk, and M
is the number of mesh points discretizing the NP surface.
The extended Lagrangian L with F [{ωk}] as its electrostatic
potential energy is constructed by including K as an
additional term:

L = K +
N∑
i=1

1

2
miṙ

2
i − F [{ωk}]− H [{ri}]. (6)
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In (6), the second term is the usual total kinetic energy
associated with N ions (physical system), with mi being
the mass of the ith ion. The final term contains a set of
Lennard-Jones potentials to model the ion-ion and ion-NP
steric interactions. Note that F [{ωk}] ≡ F [{ωk}, {ri}] is
also a function of the set of ion positions {ri}.

The Lagrangian L yields the following Euler-Lagrange
equations of motion:

mir̈i = −∇riF [{ωk}, {ri}], (7)

µkω̈k = −∇ωk
F [{ωk}, {ri}], (8)

for the ith ion and the kth induced charge, respectively.
These equations are used to evolve the induced charge
configuration on the fly using the CPMD method. Following
(7), each ion is moved by the force −∇riF [{ωk}, ri] in a
timestep ∆ during which each induced charge is updated via
the force −∇ωk

F [{ωk}, ri] following (8). To simulate the
behavior of the ions at temperature T , the extended system of
ions and virtual variables is coupled to a set of Nosé-Hoover
thermostats (this coupling modifies the equations of motion
(7) and (8) similar to a canonical MD routine). This two-
temperature approach is a standard feature of CPMD (Sprik
1991; Blöchl and Parrinello 1992; Fois et al. 1993). The ions
couple to a thermostat at temperature T , while the virtual
system is coupled to one at Tv.

Velocity-Verlet algorithm is used to generate the dynamics
of the extended system. The dynamics is associated with a
conserved quantity, the total energy of the extended system:

E =
N∑
i=1

1

2
miṙ

2
i + K + F [{ωk}] + H [ri] + T + Tv.

(9)
Here, T and Tv are the energy terms associated with the
thermostats controlling the temperature of the physical and
virtual systems respectively. The extended energy and K are
monitored at periodic intervals during a CPMD simulation to
assess the stability and accuracy of the simulation.

Virtual masses µk are chosen to be proportional to the
areas of the mesh points. The value of the proportionality
constant µ depends on the attributes of the physical system
(e.g., NP charge, dielectric profile, ion valencies) as well
as the simulation timestep ∆. The parameters Tv and µ
are optimized to ensure the stability and accuracy of the
simulation (see Section 3.3); further technical details of the
method can be found in Jadhao et al. (2012).

3.2 OpenMP/MPI Hybrid Parallelization
A system with N ions near an unpolarizable NP effectively
translates into a system with M additional dynamical
variables in the case of a polarizable NP within the dynamical
optimization framework. Due to the long-range nature of the
electrostatic interactions, the associated computational costs
scale roughly as O((N +M)2), with a prefactor that can
be large owing to the complexity of the terms involved in
the expressions for forces derived from F [{ωk}]. Indeed,
performance profiling report generated using Performance
Counters for Linux (PERF) showed that the sequential
program spends the largest amount of computation time
(64.33% of the total) calculating the forces between the ions
for each step of the simulation. To reduce the computing

time associated with the evaluation of these forces and
enhance the performance of the simulation framework,
a hybrid OpenMP/MPI parallel programming model is
adopted. The hybrid model has advantages over pure MPI
or pure OpenMP, when cache performance is taken into
consideration. This strategy provides non-uniform memory
access (NUMA) traffic and inter-node communication
(Rabenseifner et al. 2009) to support maximum access
locality and minimum number of cache misses. We note that
the simulations associated with the dynamical optimization
framework presented in the previous publications employed
the OpenMP (shared memory) parallelization model, and
consequently, were limited in their application scope
(Jadhao et al. 2012, 2013; Jing et al. 2015).

Figure 1. Hybrid model (employed inside the Force
Calculation block) with distributed and shared memory
parallelization techniques implemented using MPI and OpenMP.

The hybrid masteronly model is implemented by
combining the distributed memory MPI approach and
the shared memory OpenMP approach (Rabenseifner et al.
2009), and is applied to the force and energy calculation
subroutines in the dynamical optimization framework. The
model uses one MPI process per node and OpenMP on
the cores of the node, with no MPI calls inside the
parallel regions. The domain decomposition is enabled
under a two-level mechanism. On the MPI level, a coarse-
grained domain decomposition is performed using boundary
conditions as explained in Fig. 1. The second level of
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Figure 2. Energy profiles of 206 ions near a polarizable NP
(whose surface is meshed with 1082 grid points). Data is shown
for ≈ 10 nanoseconds of simulated physical time (10 million
simulation steps). Conservation of the extended (total) energy
and nearly vanishing (≈ 0) virtual kinetic energy highlight the
first key feature of the dynamical optimization framework.

domain decomposition is achieved through OpenMP loop
level parallelization inside each MPI process.

3.3 Key Framework Features
We identify two key features of the dynamical optimization
framework that encode the accuracy and stability of the
simulation, and guide the process of designing the ML-based
enhancement strategies presented in Section 4. The first key
feature is the conservation of the extended energy E , given
by Eq. (9), and the approximate conservation of the energy
of the physical system that is captured by demanding that the
kinetic energy of the virtual system nearly vanishes:

K ≈ 0. (10)

In other words, the framework ensures that the physical
system remains unaffected as much as possible by the
presence of the virtual system.

The energy profiles of a typical, successful CPMD
simulation of ions near a polarizable, spherical NP at room
temperature are shown in Fig. 2: the extended energy E is
constant and the total virtual kinetic energy K stays stable
and close to 0 throughout the entire simulation (for ≈ 10
ns). In practice, this feature is incorporated in the simulation
by appropriately choosing values of simulation timestep ∆,
virtual variable mass µ, and the virtual system temperature
Tv ≪ T (Tv ≈ 0). These parameters are selected to control
large, abrupt rise in the kinetic energy associated with the
virtual system as the simulation progresses.

This feature is encoded in the quantity R which measures
the ratio of the fluctuations in E and the fluctuations in
the kinetic energy of the physical system. R determines
the stability and the accuracy of the simulation. For good
energy conservation (constant E ), it is demanded that the
simulations satisfy the condition R < 0.05 as noted in
the literature (Marchi et al. 2001). The latter inequality
implicitly satisfies the requirement that K is kept close to
the value dictated by the low temperature Tv.

The second important feature considers the effectiveness
of the framework to reproduce the induced charge

Figure 3. Comparison of the functional optimized dynamically
(circles) and the functional optimized at regular intervals
keeping the ionic configuration static during the optimization
process (squares). Results are shown for the same system as
in Fig. 2. The matching of the two functionals illustrates the
second key feature of the framework: the accurate tracking of
the induced charge density.

distribution accurately at each simulation step. At regular
intervals during the course of the simulation, the ion
coordinates and induced charge densities on the NP surface
are stored. Then, an ordinary (static) minimization of the
functional F is carried out to explicitly determine the
(numerically) exact induced charge density. The tracking of
the induced charge density distributions on the NP surface
can be assessed by evaluating the matching of F optimized
on the fly with the electrostatic energy value obtained by
optimizing the functional explicitly (Fig. 3). This functional
matching is the second key feature. In practice, we compute
the functional deviation, fd, which measures the average
difference between the dynamically optimized functional
F and the energy functional obtained via direct (static)
minimization. To pass the test of stability and accuracy, we
enforce |fd| < 1%.
R and fd are central to the success of the simulations based

on this framework and determine the associated “good”
virtual system parameters µ and Tv. In general, higher µ
leads to better energy conservation and lower R, while lower
Tv keeps the virtual system from excessive heating and
generates lower fd. Having just these two features biases
the prediction of µ (Tv) towards higher (lower) values for a
system of ions characterized with a generic input parameter
pattern. Very high values of µ and/or very low values of
Tv can affect the overall stability of the simulation as
the virtual system can be prohibitively slow (due to the
“heavy” virtual masses and “cooler” associated temperature)
to react to the evolving ionic configuration, resulting in
inaccurate induced charge updates. An experienced domain
expert would typically avoid these choices. To enhance
the stability of the simulation and bias the selection of
the virtual parameters towards those picked by a domain
expert, another quantity, Rv is introduced. Rv is the ratio
of the fluctuations in E and the fluctuations in the kinetic
energy of the virtual system K . Lower Rv implies that
fluctuations in K (that can arise from lower µ or higher Tv)
are sufficiently strong to endow the virtual system with the
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necessary dynamics to adapt to the evolving ionic system.
Unlike R and fd that exhibit universal bounds informed by
the physical dynamics of ions, the bound on Rv depends on
the set of systems investigated, and is informed largely by
past domain experience. For counterion-only systems used
as training set for the ML-based methods, Rv < 0.15 is
enforced. For systems characterized with electrolytes that
are expected to exhibit a greater number of ions (with both
positive and negative valencies), Rv can assume larger values
depending on the salt concentration.

Quantities R, fd, and Rv determine the choice of
the optimal virtual parameters. However, these quantities
and the success of the simulation depend critically on
another important parameter: the simulation timestep ∆.
The simulation timestep in the CPMD-based dynamical
optimization framework depends on both the physical and
the virtual system parameters, the latter being unknown a
priori. Conversely, the optimal values of virtual parameters
(µ, Tv) that ensure a long-time stable simulation are
dependent on ∆. This complicates the process of choosing
a reliable, yet efficient, value for ∆, µ, and Tv and one
typically chooses a conservative ∆ that is smaller than
the value used in conventional MD simulations (∆ ≈
1− 5 femtoseconds for an MD simulation of monovalent
electrolyte ions in water at room temperature).

4 ML-based Enhancement of the
Dynamical Optimization Framework

We now describe an ML-based procedure to increase
the efficiency and improve the stability of the dynamical
optimization framework while retaining the simulation
accuracy. We present an ML technique that uses the
aforementioned key features encoded in quantities R, fd,
and Rv to enhance the performance of the dynamical
optimization framework by 1) predicting and auto-tuning the
optimal virtual parameters µ and Tv , and 2) adapting the
timestep to the largest allowable value during the simulation.
The ML technique is combined with OpenMP/MPI Hybrid
parallel programming model, described in Section 3, to carry
out the simulation.

Figure 4. System overview of the ML-enhanced dynamical
optimization framework.

Figure 4 shows the overview of the enhanced framework.
ML-based parameter prediction was implemented using two
ML models (ML model I and II). First, the ion and NP
model attributes, as well as the initial timestep ∆ = ∆t0,
were fed to ML model I to predict the initial virtual system
parameters µ and Tv . The predicted parameters and ∆t0
were used to start the simulation that was parallelized
using the OpenMP/MPI hybrid programming model. At
intermediate times tn during the simulation, ML model II

was used to predict the new timestep ∆tn+1 and associated
virtual parameters that continue the simulation for the
subsequent time block (tn, tn+1). The ion distributions near
the polarizable NP were sampled during the simulation run
and the ion densities were stored as simulation output. ML
model II also checked if the simulation was successful up
to tn before dynamically tuning the parameters for the next
iteration. The program aborted and called the error handler
to display appropriate error messages if the simulation failed
due to the imposed R, fd, and Rv criteria. In addition, during
the simulation, the quantities R, fd, and Rv were computed
and saved as output for retraining both ML models after a set
number of simulation runs were executed. For every 1000
new simulation runs, both models were retrained.

After reviewing and experimenting with many ML
techniques for parameter tuning and prediction including
polynomial regression, support vector regression (SVR),
decision tree regression, and random forest regression
(Section 2.3 and Section 5.1), the artificial neural
network (ANN) was adopted for enhancing the dynamical
optimization framework. Figure 5 shows the details of the
ANN-based ML model II employed to predict the virtual
system parameters and the adaptive timestep for simulations
based on the framework; the ANN was trained to select
the largest allowable ∆ that satisfies the tests of stability
and accuracy encoded in the ML features. ML model I
exhibits a similar process but is trained without the time and
timestep parameters. The data preparation and preprocessing
techniques, feature extraction and regression techniques as
well as their validation for both models are discussed below.

4.1 Data Preparation and Preprocessing
Counterion-only systems (no added electrolyte) were
considered for generating the training set. The polarization
effects are expected to be strongest in these systems as added
electrolyte screens the ion-NP electrostatic interactions.
Further, counterion-only systems are relatively smaller
and enable a broader exploration of parameter space to
train the ML models. Interestingly, as we discuss later,
results from counterion-only systems were employed to
successfully extract and infer ionic distributions associated
with electrolyte systems for up to O(0.1) M concentration,
exhibiting the transfer learning aspects of the ML-based
procedure employed.

Prior domain experience and backward elimination using
the adjusted R squared was considered for creating the
training data set. Using this process, 5 input parameters that
significantly affect the polarization charges on the NP surface
were identified: NP permittivity ϵNP, solvent permittivity ϵS,
NP charge Q (in units of electronic charge |e|), counterion
valency v, and NP mesh size M . While the temperature of
the physical system and the size of the NP and ions affect
the polarization charges and associated ionic distributions, in
this initial study, these were considered fixed; NP diameter
was taken to be ≈ 7.5 times the ion diameter (0.357
nanometers), and temperature was fixed at 298 K. Despite
the aforementioned potential for transfer learning associated
with the ML procedure, additional parameters such as salt
concentration and co-ion attributes should be included in
the training set to predict the optimal parameters associated
with the simulation of electrolyte systems with higher
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Figure 5. ML procedure (model II) for determining the
parameters of the virtual system and the adaptive timestep
used in the dynamical optimization framework.

accuracy; future work will explore the training with these
additional input parameters. Virtual parameter mass µ and
virtual system temperature Tv were selected as the output
parameters. Few discrete values for each of the input/output
parameters were experimented with and swept over to create
and run 13,600 simulations for training the ML model I.
The range for different ionic system parameters was selected
based on physically meaningful and experimentally-relevant
values: ϵNP ∈ (2, 160); ϵs ∈ (2, 160); Q ∈ (−20,−100);
v ∈ 1, 2, 3. For the mesh size and the virtual system
parameters, the range was chosen based on previous trial and
error procedure: M ∈ (132, 1692), µ was swept from 1 to 40
using random discrete values to cover the range, and Tv was

swept from 0.001 to 0.005. All simulations were performed
for ≈ 1 nanoseconds.

To support on-the-fly tuning of ∆ and associated selection
of µ, Tv during the simulation, ML model II was trained
with two additional parameters. Simulation time t ≡ tn and
timestep ∆ ≡ ∆tn→n+1 were added as input and output
parameters respectively to the system parameters explored
in ML model I. 20 discrete simulation time values tn ≈
0.1, 0.2, . . . , 2 ns, and 4 discrete timestep values ∆ =
0.001, 0.002, 0.003, 0.004, were swept to generate 54,400
simulation configurations.

As described in Section 3.3, R, fd, and Rv encode the
key features of energy conservation and accurate tracking
of the induced charges that measure the success of the
dynamical optimization framework. Acceptable threshold
values were identified for R, fd, and Rv as 0.05, 1%,
and 0.15 respectively for the range of systems included
in the training set. These quantities were treated as output
features to filter the datasets to only keep the input
parameter configurations resulting in successful simulation
runs. From the data set for initial parameter prediction,
4530 input/output configurations were selected as successful.
From the data set for adaptive timestep prediction, 15640
input/output configurations were selected based on the same
R, fd, and Rv criteria. Each of these datasets were separated
as training and testing using a ratio of 0.7:0.3. Min−max
normalization filter was applied to normalize the input data
in the data preprocessing stage.

4.2 Feature Extraction and Regression
The ANN algorithm with two hidden layers (Fig. 5) was
implemented in Python for regression of two continuous
variables in ML model I, and for regression of three
continuous variables in ML model II. In both models, outputs
of the hidden layers were wrapped with the relu function; the
latter was found to converge faster compared to the sigmoid
function. No wrapping functions were used in the output
layers of the algorithm.

By performing a grid search, hyper-parameters such as the
number of first hidden layer units, second hidden layer units,
batch size, and number of epochs were optimized to 13, 8, 25,
and 150 respectively. Adam optimizer was used as the back
propagation algorithm. The weights in the hidden layers and
in the output layer were initialized to random values using a
normal distribution at the beginning. The mean square loss
function was used for error calculation in both ML models.
To stop overtraining the network, a drop out mechanism for
hidden layer neurons was employed during the training time.
ANN implementation, training and testing was programmed
with the aid of keras and sklearn ML libraries (Chollet et al.
2015; Buitinck et al. 2013; Abadi et al. 2016).

5 Results and Discussion

5.1 Initial Virtual Parameter Prediction
Several regression models were implemented and tested
to predict the initial virtual parameters µ and Tv . These
models were tested on 1359 input parameter sets comprising
of values within the range for which the models were
trained for. Additionally, the models were tested on 450
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completely random input sets of parameters, which included
some selections beyond the range of training dataset.
Table 1 shows the success rate and mean square error
for testing data sets as well as random input data sets.
Success rate was calculated based on R, fd, and Rv.
Reported mean square error (MSE) values are calculated
using k-fold cross-validation techniques with k = 10. ANN
based regression model predicted the initial virtual system
parameters correctly with 94.3% success rate (MSE of 0.56),
outperforming other non-linear regression models as evident
from Table 1. ANN based regression model was also able to
achieve a success rate of 87.2% on completely random input
parameters. This ANN based regression model was adopted
as ML model I.

Table 1. Comparison of regression models for the prediction of
initial virtual parameters.

Model Testing Sets Random Sets
Success % MSE Success %

Polynomial 45.7 12.25 16.5
Support Vector 78.3 4.56 58.4
Decision Tree 70.4 6.93 48.1

Random Forest 75.3 4.88 55.1
ANN based 94.3 0.56 87.2

Table 2 shows the predicted µ and Tv for selected systems
along with the quantities R, fd, and Rv that characterize
the key features of the framework: energy conservation and
tracking of the induced charges. The predicted µ and Tv

values produced stable and accurate dynamics of ions near
polarizable NP as evidenced by the values of R, fd, and
Rv that lie within the allowed ranges (R < 0.05, |fd| < 1%,
Rv < 0.15).

Table 2. Predicted parameters by ML model I, and simulation
accuracy and stability.

Inputs Prediction Results
ϵNP, ϵS, Q, v µ Tv R fd Rv

2, 10, -60, 1 9 0.001 0.001 -0.01 0.12
2, 78.5, -30, 3 7 0.002 0.003 -0.6 0.13
50, 78.5, -60, 2 18 0.001 0.001 -0.4 0.06
80, 160, -90, 3 30 0.002 0.002 -0.7 0.09
100, 120, 30, 2 36 0.005 0.002 -0.1 0.10

5, 71, -24, 2 42 0.001 0.007 -0.6 0.13
44, 37, -114, 1 38 0.006 0.002 -0.11 0.11
30, 35, -108, 3 43 0.007 0.002 -0.12 0.05
15, 78, -102, 1 17 0.025 0.005 -0.27 0.11

We note that when the ANN was trained utilizing only
R and fd quantities, higher µ and lower Tv values were
predicted as expected from the arguments presented in
Section 3.3. These virtual parameter choices are not optimal
for the stability of the simulation and will not be picked by
an experienced, domain expert. Inclusion of Rv as another
feature for training the model enabled the ANN to predict
the virtual system parameters that were likely to enhance the
stability of the simulation and be selected by an expert.

5.2 Auto-tuning CPMD Simulation Parameters

Similar to ML model I, ML model II employed the
ANN based regression model trained with two additional
parameters: simulation timestep ∆ and time t. This model
was trained to infer the largest allowed ∆ and auto-update
the associated optimal virtual parameters µ, Tv at tn for the
simulation during the interval (tn, tn+1) based on the ML
output features R, fd, and Rv in the time interval (tn, tn+1)
from the training data.

Figure 6 illustrates the computational gains resulting
from the auto-tuning of ∆ using ML model II for systems
of counterions near a nanoparticle (NP). NPs of different
dielectric permittivity (2, 40 and 60) in water (dielectric
permittivity 78.5) are considered. The effect of varying ion
valency (v = 1, 2) is also probed. Other input parameters
are NP charge Q = −100, NP mesh size M = 1272, and
ϵS = 78.5. Symbols indicate the gains associated with the
enhanced framework with adaptive timestep. The dashed line
is the result from the non-adaptive simulation with static
timestep for ϵNP = 2, v = 1 case (other systems also yield
the same result when non-adaptive model is used). Compared
to the simulation with non-adaptive ∆ (performed using only
ML model I), the auto-tuning of ∆ extended the simulation
of the ionic system to a longer physical time for the same
number of simulation steps; a speedup of ≈ 1.25− 3 was
observed depending on the system configuration, also see
Table 3. For the system with ϵNP = 2, v = 1, the auto-tuning
yielded a total simulated physical time of 4.5 ns compared
to the 2.2 ns obtained with non-adaptive simulation. Figure
6 (inset) shows the variation in ∆ as a function of the
computational steps for the same systems. The tuning of ∆
changed with the attributes of the ions and NP. Generally,
longer ∆ values (and associated higher speedup) were
obtained for systems exhibiting a weaker dielectric contrast.

Figure 6. Simulated physical time t associated with the
dynamics of ions as a function of computational steps S for a
system of counterions near a polarizable NP. The legend
denotes NP permittivity and ion valency (ϵNP; v). Symbols are
the results from using ML-enabled tuning of simulation timestep
∆ and the dashed line is the result for the non-adaptive case.
(Inset) ∆ in units of ≈ 1.09 picoseconds. Open symbols
correspond to the systems denoted with the closed symbols in
the legend; black dashed line denotes ∆ = 0.001 associated
with the non-adaptive case. ∆ values represent the average
timestep over a period of tn → tn+1.
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Table 3 quantifies the speedup by showing the perfor-
mance comparison of the aforementioned ion-NP systems
for 2 million steps on 4 MPI nodes each with 16 OpenMP
threads and a fixed walltime of ≈ 20 hours. ML-based adap-
tive timestep tuning enabled the simulation of the system
for a longer physical time under fixed compute resources
and walltime. A maximum speedup of 3.15 was achieved
for the ion-NP system defined with the input parameters:
ϵNP = 60, ϵS = 78.5, Q = −100 , v = 1 and M = 1272,
without adjusting any MPI or OpenMP parameters.

Table 3. Performance comparison of different ion-NP systems
simulated for 2 million steps (≈ 20 hrs walltime) on 4 MPI nodes
each with 16 OMP threads.

Physical System Time (ns) Speedup Stability
Non-adaptive

2, 78.5, -100, 1 2.18 1.00x 0.01552
ML-based Adaptive

2, 78.5, -100, 1 4.56 2.09x 0.00048
2, 78.5, -100, 2 2.75 1.26x 0.00088
40, 78.5, -100, 1 6.12 2.81x 0.00076
60, 78.5, -100, 1 6.85 3.14x 0.00063

Figure 7. Key output features R, fd, Rv as a function of the
simulated physical time t for the counterion-NP system
characterized with NP charge Q = −100, ion valency v = 1,
NP permittivity ϵNP = 2, solvent permittivity ϵS = 78.5, and
mesh size M = 1272. ML-enabled auto-tuning of timestep ∆
and virtual parameters produces enhanced stability (diminished
fluctuations in fd) compared to the non-adaptive case (stronger
fluctuations in fd). (Inset) ML-enabled auto-tuning of the virtual
parameter µ for the same system (closed circles) and fixed µ for
the non-adaptive case (closed diamonds).

The ML-enhanced framework with adaptive timestep
also improved the overall stability of the MD simulation.
Figure 7 shows the key output features associated with the
simulation of the ion-NP system characterized with ϵNP =
2, v = 1 (other input parameters being the same as in Fig.
6). Fluctuations in the output feature fd, which measures
the deviation of the on-the-fly optimized functional from the
statically optimized functional, illustrate the stability of the
simulation. Auto-tuning of parameters produced diminished
fluctuations in fd compared to the non-adaptive framework.
Figure 7 (inset) shows the variation of virtual parameter (µ)

with simulated physical time for the same ion-NP system.
By definition, the non-adaptive model produced constant µ.
On the other hand, the adaptive model produced the auto-
tuning of µ which was correlated with the more stable
dynamics (red circles characterizing fd in the outset of Fig.
7). Indeed, the variance in fd data for the non-adaptive model
(fd|σ2 = 0.01552) was much higher than that for the adaptive
model (fd|σ2 = 0.00048). Table 3 shows the variance of fd
for the same ion-NP systems analyzed above; in all cases,
the variance was found to be significantly smaller by over
an order of magnitude (indicating higher stability) for the
adaptive model compared to the non-adaptive case. This
enhanced stability can be attributed to the optimal updates
of parameters µ, Tv during the intermediate times of the
simulation.

Figure 8. Correlation between the peak densities associated
with the distribution of counterions for ion-NP systems
characterized by different NP permittivity ϵNP; other parameters
are the same as listed in the caption of Figure 7. Blue squares
are values from the non-adaptive simulation, red circles are
results from the ML-enabled adaptive simulation. (Top-left inset)
Density distribution of counterions for the system with ϵNP = 2;
symbols are the results from the adaptive model, line
corresponds to the non-adaptive case. (Bottom-right inset) Peak
densities from the two models as a function of ϵNP.

In addition to increasing the efficiency and stability
of the simulation, the framework with ML-enabled auto-
tuning of parameters (adaptive framework) retained the
accuracy associated with the framework using non-adaptive
timestep and virtual parameters (non-adaptive framework).
The accuracy can be assessed by comparing the density
profiles of the ions computed using the two approaches.
For different ϵNP values (other input parameters same as
above), the peak densities computed using simulations based
on adaptive framework were found to be in agreement with
those calculated using the non-adaptive framework as shown
in Figure 8; data from either approach falls on the dashed line
which indicates linear correlation. Top-left inset of Figure
8 shows the variation of the counterion density (in σ−3,
where σ = 0.357 nm is the ion diameter) as a function of the
distance from the NP (of radius 7.5σ) for the specific case
of ϵNP = 2. The density profiles extracted from the adaptive
and non-adaptive frameworks were found to be in good
agreement (relative error in either distributions was found to
be ≈ 1%). Bottom-right inset of Fig. 8 shows the variation of
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the peak density of counterions as a function of the dielectric
permittivity ϵNP of the NP. Both approaches yield similar
peak densities. Lowering ϵNP leads to an increase in the
repulsive force on the counterions due to the induced charges
on the NP surface, leading to the reduction in the peak
density of counterions near the NP surface.

5.3 Benchmarking ML-enhanced Simulations
The enhanced dynamical optimization framework was
benchmarked using BigRed2 cluster nodes. These nodes
have maximal achieved performance of 596.4 teraFLOPS,
and feature a hybrid architecture based on two Cray, Inc., 344
XE6 (CPU-only) compute nodes, providing a total of 1,020
compute nodes, 21,824 processor cores, and 43,648 GB of
RAM. Each XE6 node has two AMD Opteron 16-core Abu
Dhabi x86 64 CPUs and 64 GB of RAM; each XK7 node
has one AMD Opteron 16-core Interlagos x86 64 CPU, and
32 GB of RAM.

Figure 9 compares the strong scaling plot of the
performance of the adaptive and the non-adaptive dynamical
optimization framework parallelized using the OpenMP/MPI
hybrid model. The reported speedup is defined as the ratio
of serial run-time to the time taken by the parallelized
simulations (with and without ML-enabled auto-tuning) to
simulate a set tb nanoseconds of ionic dynamics. In Figure 9,
results are shown for simulation of a system of 60 ions and
1082 mesh points as well as a larger system of 2908 ions and
1082 mesh points for tb ≈ 2 nanoseconds. The larger system
of 2908 ions is comprised of both positive and negative
ions characterized by an electrolyte concentration c ≈ 0.2
M (with 60 counterions, 1424 positive electrolyte ions, and
1424 negative electrolyte ions). While the ML models were
not trained with c as an input parameter, simulations of the
electrolyte systems using ML-predicted timestep and optimal
virtual parameters associated with counterion-only systems
were successful for up to c ≈ 0.4 M (with varying tb; see
Section 5.4), enabling the benchmarking of simulations of
larger systems.

Figure 9. Strong scaling plot of the performance of the
OpenMP/MPI hybrid technique with ML-enabled auto-tuning of
the simulation timestep (open symbols) compared to the case
with no auto-tuning (closed symbols). Data is shown for 60 and
2908 ions; in both systems, NP is meshed with 1082 mesh
points (induced charges). For both systems, the combined ML
and hybrid method outperforms the hybrid-only implementation.

With non-adaptive timestep, the hybrid model produced
the maximum speedup of 33.80 with 128 processes (8 MPI
nodes and 16 OpenMP threads inside each MPI node) for the
smaller system. For the same configuration, the hybrid model
with ML-enabled auto-tuning of the simulation timestep was
able to achieve a maximum speedup of 101.07 with 128
processes. Thus, the runtime for this system was reduced
from 55 hours to 30 minutes (68 minutes without adaptive
time-stepping). We note that the maximum speedup was
calculated without considering the execution time reduction
gained from the memory optimization techniques. For the
hybrid model, we found that the optimal configuration of
OpenMP threads is socket bound as noted in the literature
(Rabenseifner et al. 2009). As a result, the number of optimal
OpenMP threads in our experiment was 16 for any number
of MPI processes.

When implemented to a larger system with a total number
of 2908 ions and 1082 mesh points exhibiting induced
surface charges, the combination of the hybrid methodology
and the ML-based selection of adaptive timestep reduced
the execution time of simulation for 2 nanoseconds from 88
days to 15.3 hours (32 hours without adaptive time-stepping)
with a speedup of over 200. Clearly, the optimum number
of MPI processes are proportional to the problem size when
OpenMP thread affinity is set to the socket resulting in a well
weak scaling system. The maximum speedup of 620.76 was
obtained for 1024 processes executing a simulation of 5816
ions and 1272 mesh points for tb ≈ 0.5 nanoseconds.

5.4 Application: Concentrated Electrolytes
near an Oil-Water Emulsion Droplet

The ML-enhanced framework was applied to compute
the distribution of monovalent electrolyte ions outside a
charged oil-in-water emulsion droplet (de Graaf et al. 2008;
Bier et al. 2008) at room temperature T = 298 K. Positive
and negative ions were considered to be of the same size
to simplify the system and focus on analyzing the effects of
polarization charges on the density distributions. Such model
systems have been considered in previous numerical studies
of electrolyte ions near polarizable nanospheres (Messina
2002; dos Santos et al. 2011; Shen et al. 2017). All ions were
modeled as Lennard-Jones (LJ) spheres of diameter σ =
0.357 nm. The oil-water emulsion droplet was modeled as a
spherical, dielectric interface with surface charge Q = −60e
and radius a = 7.5σ ≈ 2.7 nm. The whole system of ions
and the droplet was taken to be in a large spherical simulation
cell of radius b = 40σ ≈ 14 nm. The emulsion surface and
the simulation cell boundary were modeled as spherical LJ
walls. All excluded-volume interactions were modeled using
the repulsive 6-12 LJ potential with ϵLJ = 1 kBT and cutoff
rc = 21/6σ.

The dielectric permittivity of oil was taken to be ϵo = 2,
while water was associated with ϵw = 78.5. The difference
in the polarizable properties of oil and water lead to induced
charges on the oil-water interface. Electrostatic interactions
arising from the bare and induced charge interactions in
the system were modeled using the forces originating from
the functional described in Eq. (4). The oil-water dielectric
interface (which can be considered as the surface of the
NP) was meshed with M = 1082 mesh points; higher M
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values were found to yield similar densities indicating that
M = 1082 was large enough to obtain converged density
profiles. In addition to the system with no added electrolyte,
systems with electrolytes characterized by concentration
c ≈ 0.02, 0.1 M were considered to analyze the effects of
changing c on the ionic distributions. Together with the 60
counterions (associated with the charged oil-water droplet),
these concentrated electrolytes correspond to systems with
a total of 350 and 1514 ions respectively. Simulation of
the smallest system (60 ions) assuming non-polarizable NP
surface was also performed for assessing the role of surface
polarizability.

It should be noted that the ML procedure was only trained
for smaller systems with counterions (c = 0, thus in the
absence of co-ions). Further the training was performed for
relatively smaller computational time (up to 2 million steps).
With the application of the ML-enhanced framework to the
aforementioned electrolyte systems, we are elucidating the
transferability of the features learned for the smaller system
to different, larger physical systems (with additional co-
ions and salt counterions, and long-time dynamics). Such
an extended application of the developed ML models is
possible, in part, because the addition of electrolytes weaken
the effective interaction between counterions and oil-water
surface as a result of the screened electrostatic forces.

The aforementioned attributes of the physical system
supply the input parameters for the enhanced dynamical
optimization framework. Following the process elucidated in
Fig. 4, these input parameters were first passed to the ML
model I to predict the required virtual system parameters to
kickstart the simulation. Two protocols were followed: in one
case, the auto-tuning using ML model II was performed for
the entire duration of the simulation by repeating the optimal
timestep and virtual parameter pattern inferred by the ANN
for 2 million steps interval for subsequent cycles of 2 million
steps. In the other approach, ML model II was employed to
auto-tune the timestep and virtual parameters up to the first 2
million steps and subsequent evolution was performed with
fixed values of these parameters predicted by ML model I
(non-adaptive). Both approaches yielded the same results for
the densities within the error bars. The total number of steps
S were selected based on the convergence of the density
distributions; S was system-dependent and converged results
were obtained after ≈ 7− 20 nanoseconds depending on the
electrolyte concentration.

In all simulations, regardless of system sizes and
presence/absence of electrolytes, good energy conservation
was observed with R < 0.05. Similarly, the induced charges
on the oil-water dielectric interface were accurately tracked
by the on-the-fly optimization framework (fd < 1%; inset in
Figure 10 shows the accurate tracking of the functional for
the c = 0.02 M case). These two key features demonstrated
the success of the ML-based virtual parameter selection
process. As noted before, the bound on Rv is system-size
and system-feature-dependent; for counterion-only systems,
Rv < 0.15 was recorded as per the expected limit while
for electrolyte systems the bound on Rv was higher and
increased with increasing c. These findings demonstrate that
ML models could be trained on smaller systems and applied
to larger systems to obtain efficient and stable dynamics of
ions in the latter case.

Figure 10. Ionic density profiles extracted from ML-enhanced
MD simulations based on the dynamical optimization
framework. Outset shows the density of positive ions for
electrolytes of concentration c ≈ 0.0, 0.02, 0.1 M near a
negatively-charged (−60e) oil-water emulsion with 60
associated counterions. The dielectric permittivity of oil and
water is 2 and 78.5 respectively. Black dashed line refers to the
result for the emulsion assumed to be unpolarizable (with oil
permittivity as 78.5) at c = 0 M. (Inset) Comparison of the
functional optimized dynamically (triangles) and the functional
optimized at regular intervals keeping the ionic configuration
static during the optimization process (circles) for the c ≈ 0.02
M system.

Figure 10 shows the density profiles of the positive
ions associated with the aforementioned systems. For all
concentrations, the densities reach a constant value in the
bulk away from the polarizable oil-water surface (negative
ion densities, not shown, also reach a constant value in
the bulk). Positive ions are found to accumulate near the
dielectric interface, with the peak density increasing with
c. Negative ions are depleted near the interface due to the
repulsion from the bare charge on the oil-water surface as
well as the induced charge. Comparison of the no electrolyte
(counterion-only) result with the case where the surface is
considered to be unpolarizable (with a permittivity equal
to that of water) is also shown. The polarization charges
on the surface lead to depletion of ions from the interface.
Increasing electrolyte concentration leads to the rise in
the peak density; the overall behavior is determined by
the competition between the ion-induced charge repulsion
near the surface and the ion-ion electrostatic and steric
correlations. The position of the peak density remains
relatively unaltered regardless of the c value, as observed
previously for monovalent electrolytes (Messina 2002).

The inset in Fig. 10 shows the comparison of the potential
energy functional optimized dynamically with the energy
obtained after optimizing at regular intervals keeping the
ionic configuration static during the optimization process for
the c ≈ 0.02 M system. The stability and accuracy evident
from this plot demonstrates the success of the ML-based
parameter selection process; the potential energy and the
associated induced charges it characterizes were accurately
tracked at all times for up to 10 million steps. Other systems
showed similar agreement between dynamically optimized
and statically optimized energy functionals.
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6 Conclusion and Outlook

We illustrated the computational gains accessible by
integrating ML methods for parameter auto-tuning in MD
simulations by demonstrating the enhancement of stability
and efficiency of MD simulations of ions near polarizable
NPs based on the dynamical optimization framework. The
ANN-based ML model yielded the highest success rate
among the non-linear regression models employed to predict
the virtual system parameters at the start of the simulation.
When integrated with the MD simulation, the ANN model
predicted the timestep and the associated optimal virtual
parameters with 94.3% success rate. The auto-tuning of
the simulation timestep resulting from the ML-enhanced,
adaptive simulation framework enabled the simulation of
ions for a longer physical time with a net speedup of ≈
1.25− 3 (depending on the system configuration) compared
to the non-adaptive simulation model. The combination of
the ML procedure with the hybrid parallelization method
generated stable dynamics of thousands of ions in the
presence of polarizable NPs with computational time
reducing from thousands of hours to tens of hours yielding a
maximum speed up of ≈ 600. Compared to the non-adaptive
simulation with static initial virtual parameters, the stability
of the adaptive framework increased by over an order of
magnitude.

This enhanced simulation framework has many applica-
tions and we demonstrated its utility by generating stable,
accurate dynamics of ions in the presence of a polarized
nanoemulsion droplet for up to ≈ 10 million simulation
steps. Additionally, we showed the broad applicability of
the approach by demonstrating that the ML models trained
on a smaller system can be applied successfully to produce
accurate and stable dynamics of larger systems characterized
by new attributes such as electrolyte concentration. At the
same time, the approach reveals a limit on the electrolyte
concentration and physical time that one can simulate based
on training a counterion-only system. Future efforts will
involve exploring the training of ML models with electrolyte
concentration and attributes as input parameters. We will also
explore integrating the current ML-enabled enhanced frame-
work with fast Ewald solvers to support periodic boundary
conditions and reduce the O(n2) scaling in system size to
O(n log n) (Marchi et al. 2001; Barros et al. 2014).

The use of ML to enhance the simulation framework
enables users across the globe, with a diversity of domain
experience, to simulate ions near polarizable NPs via the use
of web-based applications hosted on services like nanoHUB.
A tool powered by this enhanced framework was recently
published on nanoHUB (Kadupitiya et al. 2018). We will
extend our framework to enable the process of using the
data generated by this nanoHUB application for continuous
training of the ML-based parameter prediction procedure.
The approach presented here to integrate ML-based
parameter prediction methods with MD-based simulations
can be extended to other energy minimization problems. The
implications of ML-enabled tuning of simulation timestep
also suggest new avenues of exploring ML to advance
simulation methods, such as ML-informed dynamic grid
sizes in mesh-based problems.
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